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Overview

e Brain as a networked dynamical system
e New: rapid advancements in neuro-technologies
e Critical applications in

v Deep brain stimulation (DBS)
V" Transcranial magnetic stimulation (TMS)

v Brain-machine/computer interfaces (BMI/BCl)

v Optogenetics
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Starting Point: Biophysical Spiking Models

e Conductance-based (a.k.a. Hudgkin-Huxley) models:

Extracellular Medium

Neuron = RC Circuit  Cpmg®VIE] ol
n =
LT

Intracellular Medium

e Input = current, output = voltage

e Nonlinear (active) & time-varying resistors = excitable behavior (spiking)
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Data from [Henze et al, CRCNS, 2009]
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[Image Att: Behrang Amini, Wikimedia.org]
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Mean-Field Approximation: Rate Dynamics

e Often, it seems that
information mostly encoded

Membrane
Potential

in firing rate (#spikes/s)
e —
S
. . o 10F 4
e 1;(t) = firing rate K
of neuron i 2o ]
= 0 I . . . | . . .
0 2 4 6 8 10 12 14 16 18 20
i L ) Time (s)
e Simplifying assumptions:
1. Poisson spiking
2a. For constant input I ; o)

i = 0(Lin i)
2b. For time-varying input Iin ;(t)
Tii(t) = —xi(t) + o (Lin,i(t))
3. Slowly varying inputs Iy ;(t) (> )
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Network Dynamics

e Node = population of neurons
e State = average firing rate

e Network dynamics (mean-field approximation):

%(t) = —x(t) + o (Wx(t) + p(t))
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Approximating the Sigmoidal Nonlinearity

Two popular approximations:

v Linear-Threshold: Piecewise-linearization of o(-) Bk ,

mg

Titi = —T; + [ZJ Wijx; +Pi]

0

— For arbitrary dynamics, implicit phase and amplitude (oscillations),
switched-affine
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Linear-Threshold Networks as Switched-Affine Systems

m;

Tidi = —x; + [ Z Wiz + pi ] (-] e
J

*
0 mi- -

Im.'z
/ Solution exist in the classical sense (C') and is unique
v State space:

[0, m] = [0, 73] x [0, m2] X - -+ x [0, 1702]

v Dynamics of each node i can be in 3 modes = 3" switching regions

Tiiti = —T; if Iin.i S 0
Tili = —Xi + Lini if 0 < fini <my
Ti; = —Ti +my if ms < L

v Switched-affine representation:

TX = (—I + Eﬁ(x)W)X + Ei(x)p + Ef,(x)m, O'(X) c {0, 67 S}n
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Complex & Nonlinear Dynamics

v Wide range of complex behavior, including

1. Monostability 2. Multistability

0.1

,Stable Equilibria
=Unstable Equilibrium
\
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3. Limit cycles 4. Chaos
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Equilibria and Global Stability

Some definitions:
e W c 7 if all its principal submatrices are Hurwitz

e W c P if all its principal minors are positive
e W € L if there exists P = PT > 0 such that for all & € {0,1}"

(1 + W'diag(o))P 4 P(—I + diag(e)W) < 0

Z

~

Necessary &
Sufficient for EUE

Necessary for GES

(Conj: also sufficient)

h’sz,
Sufficient for GES . (@
[Feng & Hadeler, 1996] \\

Sufficient for GES
[Pavlov et al, 2005]

8/15



Implications for the Brain: Need for Stabilization

e The stronger or larger a network, the more unstable it becomes
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Brain networks are large and become stronger with learning

(without losing stability!)

= Need for stabilization mechanisms:

o via structure W — homeostasis (re-normalizing rows of W)

o via input p(t) —
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Selective Stabilization via Inhibitory Control

e Input decomposition: p(t) = Bu(t) + p

Higher-Order Areas

e Stabilization can/should be selective -

o
X to be stabilized
X=| 1
X arbitrary (active)

u(t) =1 or u(t) = Kx(t)
If dim(u) > dim(x"), there exists u(t) such that
GES *

x(t) — x" = (O,X*l)

if and only if the x sub-dynamics is internally GES

v

= The stability of X' is the sole determiner of the stabilizability of x
10/15



Extensions to Hierarchical Structures

e Layer dynamics:
Tixi(t) = —xi(t) + [Wiaxi(t) + pi(t)]

1. Selective activity/stabilization:

o 00 o1
X; to be stabilized W i ij
Xi = 1 . . ’ i,j = 10 11
X; arbitrary (active) Wi,j Wi,j

2. Chain topology (information processing pathways):

<

X2

X

® @@

pi(t) = Biuwi(t) + Wi i1xi—1(t) + Wy iixia(t) + ¢ &

x;
3. Timescale separation: xN
TL>Tg > - >T; >+ >TN T
Sensory
Input
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Extensions to Hierarchical Structures — cont’d

Theorem: Hierarchical Stabilization & Tracking

Assume dim(u;) > dim(x;) for all i. There exists
u; (t) = KiXi (t) + l_lq;(t), VZ
such that

x; (t) = 0 (Inhibitory Stabilization)
Vi

11 1

x; () — X?l<wi,i—lxi—1(t) + Ci) (Tracking)

as
Ti
Ti—1
if
11 1

L1 1 11 1 11 ol
Ti%; (1) = — %, (8) + [Wi:x; (t) + W, iaxi01 (Wit X,

is GES for all C;H and c;

)+ cipr) + "
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Extensions to Hierarchical Structures — cont’d

1. Equilibrium maps

Lemma: Piecewise-Affine Equilibrium Maps

The equilibrium of layer ¢ is given by
x; (xi—1) = Fiaxio1 + i, Vxim1 € Uy, AEA;

where {F; x,f; x, ¥; x, A;} have recursive expressions

2. Multi-layer GES

Theorem: Global Exponential Stability (GES)

Let Fz £ maxieA; |Fi7>\|. If

P(IWiil + Wi i1 |Fir1[Wig1]) <1
1 . 1 1
then x; (¢) is GES for all ¢;y; and c;.
3. Time-scale separation: T:jl < ﬁ is often enough in practice
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Application: Goal-Driven Selective Attention in Rodents

1. Data: [Rodgers & DeWeese, Neuron, 2014] R1

2. Defining nodes
(clustering neurons)

x(Hz)

3. Computing x(t)

x(Hz)

4. Defining edges
(brain physiology)

z(Hz)

5. Finding edge weights:

z(Hz)

mein d(xdata» xmodel)

0=1[wi j, bij,ci, i, 2i(0)],5

6. Verifying theoretical conditions:
Vo om =4.70> 19 =233 > 13 =1.07 —Data, Rl = -Data, R2
/ Under RL: p(IW3h| + [W3h Py [Wih|) = 042 < 1 T R R
v Under R2: p(|W5| + [W5 5| Fy [Wyh|) =013 < 1
14/18



Beyond Equilibrium Attractors: Neural Oscillations

e Attractor dynamics: dynamics that settle to a stable pattern (manifold)

(U Facilitate analysis

@ Miss transients (unless x(0) close to attractor)

e Common forms:
1. Equilibrium attractors
o lIsolated equilibria, as above

11 1

x, (t) = 0 (Inhibitory Stabilization)
Vi
x; (1) = % (W%, () +¢;)  (Tracking)

o Continuum of equilibria (line, ring, plane, ...)

2. Oscillatory attractors
o Limit cycles (regular)

o Chaotic oscillations (irregular/noisy-like)
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Structural Characterization of Oscillations

e Network of Wilson-Cowan oscillators

mi 1
TiTi1 = —%i1 + [az‘mz’,l —bixi2 +pig + E ,Aiﬂij,l]o
J

Tidi,2

mi 2
—Ti2 + [Cil‘i,l —diTi2 +pi,2]0
e Lack of stable equilibria (LoSE) as proxy for oscillations
Theorem: Lack of Stable Equilibria
For each oscillator 7, LoSE iff
di +2 < a;
(ai — 1)(d¢ I 1) < bic;
(a;i — D)ms1 < bimya
P, , <Pie <Pig, £=1,2
and, if so, for the full network, LoSE iff

Ji: pig+ Zj Aijmjn < Pin

o

A ¢

O\ _ {)

AL,
Y
Pei () =ba
e
Y
Oscillator @
LoSE
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Summary

Starting Point: Biophysical Spiking Models

In this talk: G 1. o) s

v/
¥ € Circit cm ®

v Biophysical spiking models
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AN
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0= 50+ [Wo0) 4 O]

- 1. Selective activity/stabilzation

\

Stabilization via inhibition
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s oo
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Research Directions

Scale of 2
Abstraction

Macroscale |-

Mesoscale = = = = = = = = = = -

Microscale |-

»
>
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Perception |

Attention |- - - — - — — _

Memory |

Decision

Making |

Cognitive
Phenomenon
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Thank You!

Questions and Comments?

—

°

Extended results available at:

=) Hierarchical Selective Recruitment in Linear-Threshold Brain Networks
Part I: Intra-Layer Dynamics and Selective Inhibition
E. Nozari, J. Cortés, https://arxiv.org/abs/1809.01674

=) Hierarchical Selective Recruitment in Linear-Threshold Brain Networks
Part IlI: Inter-Layer Dynamics and Top-Down Recruitment
E. Nozari, J. Cortés, https://arxiv.org/abs/1809.02493

=) Oscillations and Coupling in Interconnections of Two-Dimensional Brain Networks
E. Nozari, J. Cortés, ACC'19
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