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Linear control theory

• The study of the linear differential equation

ẋ(t) = Ax(t) + Bu(t) + w1(t)

y(t) = Cx(t) + w2(t)

is a classic subject of control theory.

• Here x(t) ∈ Rn is the state, u(t) is the input, y(t) is the

observation, and w1(t),w2(t) are noises.

• Possible goals: tracking, stabilization, control, ...

• Many aspects are well-understood by now.

• What is still extremely unclear: what if the matrices B and C are

not given?

• This is the subject of this presentation. Designed to be

self-contained (no knowledge of control necessary...)
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Motivating example: PMU placement

• Goal: move closer to real-time observation of power grids.

• Most popular approach is based on installation of Phasor

Measurement Units (PMUs) which can sample at high rates (∼ 30

samples per second) and have access to accurate GPS for

synchronization.

• Installation cost of a single PMU ranges from $40,000 to $180,000.

• Roughly ∼ 1, 500 PMUs have been installed in the United States in

the past 15 years, with a total cost on the order of ∼ $100M

• This is part of the North American Synchronophasor Initiative. Goal

is described as 100% coverage of important transmission lines.
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PMU Placement as of 2015
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Problem statement (noiseless case)

• We are given a system of differential equations

ẋi =
n∑

j=1

aijxj , i = 1, . . . , n.

• We have the ability to install actuators and sensors, meaning that we can

transform the system into

ẋi =
∑
j

aijxj + ui , i ∈ I

ẋi =
∑
j

aijxj , i /∈ I

yi = xi i ∈ O

• We want to choose the sets I and O as sparse as possible to achieve:

1. Controllability: can move the state from any x(0) to any x(T )

2. Reachability: only care about moving the system in some directions.

3. Energy constrained control: controllability with a bound on control

energy (for example, to move from the origin to a random point on

the unit sphere).
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ẋi =
∑
j

aijxj + ui , i ∈ I
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ẋi =
∑
j

aijxj , i /∈ I

yi = xi i ∈ O

• We want to choose the sets I and O as sparse as possible to achieve:

1. Controllability: can move the state from any x(0) to any x(T )

2. Reachability: only care about moving the system in some directions.

3. Energy constrained control: controllability with a bound on control

energy (for example, to move from the origin to a random point on

the unit sphere).

4



Problem statement (noiseless case)

• We are given a system of differential equations
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Energy considerations

• Given

ẋ = Ax + Bu,

let E (xi → xf ,T ) be the energy it takes to drive the system from xi
to xf :

E (xi → xf ,T ) = inf{
∫ T

0

||u(t)||22 dt | u drives the system from xi to xf }

• In every real world scenario, use of arbitrarily large inputs in

unphysical.

• Very easy to write down reasonable-looking real 10× 10 systems

where the energy is of the magnitude 1030 or more.

• Want to measure “difficulty of controllability” through just one

number. Standard choice:

E(T ) =
1

S1

∫
||z||2=1

E (0→ z ,T ) dz ,

where S1 is the surface area of the unit sphere.
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ẋ = Ax + Bu,

let E (xi → xf ,T ) be the energy it takes to drive the system from xi
to xf :

E (xi → xf ,T ) = inf{
∫ T

0

||u(t)||22 dt | u drives the system from xi to xf }

• In every real world scenario, use of arbitrarily large inputs in

unphysical.

• Very easy to write down reasonable-looking real 10× 10 systems

where the energy is of the magnitude 1030 or more.

• Want to measure “difficulty of controllability” through just one

number. Standard choice:

E(T ) =
1

S1

∫
||z||2=1

E (0→ z ,T ) dz ,

where S1 is the surface area of the unit sphere.

5



Time-varying actuator scheduling

• Another variation: allow the set of actuators and sensors to be

time-varying.

• Introduced in a paper published in Automatica in 1972:

• Makes sense when the act of measurement itself is costly, or the

transmission of measurement is costly.

• I will consider this in discrete time. Will dispense with formal problem

statement.
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A very partial literature review

• [Simon and Mitter, Information and Computation, 1968]. Considers

minimizing the number of driver nodes.

• [Athans, Automatica, 1972]. An optimal control approach to time-varying

actuator scheduling.

• Many works on structural controllability of networks in the 1980-early

1990s by Shields, Pearson, Glover, Willems, Siljak, Commault, Dion...

• Much work (recent and old) on sensor placement for observation of PDEs.

• [Liu, Slotine, Barabasi, Nature, 2011] explain to minimize the number of

driver nodes generically for controllability.

• [Muller, Schuppert, Nature, 2011] argues most practical results involve

affecting only a small number of key variables.

• [O., IEEE Trans. on Control of Network Systems, 2014] How to achieve

controllability while minimizing the number of variables affected?

• Generalizations by O., Pappas, Jadbabaie, Bushnell, Poovendran, Lygeros,

Cortes, Belabbas, Pasqualetti, Pequito, and their students to reachability

and minimizing control energy.

• [Jadbabaie, O., Siami, IEEE Trans. on Automatic Control submission]

Studies time-varying actuator placement.
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First main result

• Theorem: [O., IEEE Trans. on Control of Network Systems, 2014]

The minimal controllability problem (i.e., choosing the sparsest set I

of variables to affect to achieve controllability) is NP-hard.

• In fact, the smallest number of variables of ẋ = Ax that need to be

affected for controllability – let’s call this I ∗(A) – cannot be

approximated to a multiplicative factor better than O(log n) in

polynomial time.

• Arguably, this explains why no results until recently.

• As observed in follow-up papers, as a consequence reachability and

energy-efficient control are also NP-hard problems.

8



First main result

• Theorem: [O., IEEE Trans. on Control of Network Systems, 2014]

The minimal controllability problem (i.e., choosing the sparsest set I

of variables to affect to achieve controllability) is NP-hard.

• In fact, the smallest number of variables of ẋ = Ax that need to be

affected for controllability – let’s call this I ∗(A) – cannot be

approximated to a multiplicative factor better than O(log n) in

polynomial time.

• Arguably, this explains why no results until recently.

• As observed in follow-up papers, as a consequence reachability and

energy-efficient control are also NP-hard problems.

8



First main result

• Theorem: [O., IEEE Trans. on Control of Network Systems, 2014]

The minimal controllability problem (i.e., choosing the sparsest set I

of variables to affect to achieve controllability) is NP-hard.

• In fact, the smallest number of variables of ẋ = Ax that need to be
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Second main result

• Is there an algorithm that matches this O(ln n) inapproximability

barrier?

• Most experiments on real-world systems suggest that they are

controllable from a constant number of variables.

• Theorem: [O., IEEE Transactions on Control of Network Systems,

2014] There exists a polynomial time algorithm which, given the

matrix A, outputs a set I so that ẋ = Ax + B(I )u is controllable,

and the number of entries in I is at most I ∗(A)(1 + ln n).

• ...optimal up to constant factors.

• ...in many cases, this is good enough! For example, if the linear

system is controllable from O(1) entries, this finds O(ln n) entries.
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Proof idea: supermodularity

• Let φ be a function from subsets of {1, . . . , p} to R.

• Suppose φ is increasing: if X ⊂ Y , then φ(X ) ≤ φ(Y ). For a /∈ X ,

define

∆(X , a) = φ(X ∪ a)− φ(X )

• The function φ is called supermodular if X ⊂ Y implies

∆(X , a) ≥ ∆(Y , a).

• In other words, supermodularity is about diminishing returns.

• Can be thought of as a discrete version of concavity.

• Key idea: the dimension of the reachable space (the set of x(T )

reachable from 0) is a supermodular function of I .

• Each variable actuated increases the reachable space, but variables

have less effect when added later.

• Algorithm is simple: keep adding variables to greedily maximize the

dimension of the reachable space.

• The O(log n) approximability is a general result about greedy

supermodular optimization.
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Unfortunately, energy grows exponentially with these methods

11



What’s going on?

• Optimizing for controllability turns out to be not quite the right

thing to do.

• Need to explicitly consider energy in the problem formulation.

• Maybe we can generalize the supermodularity-based approach

discussed earlier?

• Two recent papers

T. Summers, F. Cortesi, J. Lygeros, “On submodularity and

controllability in complex dynamical networks,”

IEEE Transactions on Control of Network Systems, 2016

V. Tzoumas, M. A. Rahimian, G. J. Pappas, A. Jadbabaie, “Minimal

actuator placement with bounds on control effort,”

IEEE Transactions on Control of Network Systems, 2016

claimed that −E(T ) is a supermodular function of the actuated

variables.

• If true, the same guarantees would effortlessly carry over.

Unfortunately, I constructed a counterexample in [O., IEEE

Transactions on Control of Network Systems, 2018].
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Non-supermodularity of control energy

• Somewhat of a counterintuitive phenomenon. Counterexample:

A =



−182 0 −565 0 −11 −736

0 −1075 831 −276 −1752 −612

−565 831 −2435 214 1321 −1853

0 −276 214 −73 −453 −158

−11 −1752 1321 −453 −2864 −1045

−736 −612 −1853 −158 −1045 −3371



EI={1,2,3}(∞)− EI={1,2,3,4}(∞) ≈ 2.5 · 104

EI={1,2,3,5}(∞)− EI={1,2,3,4,5}(∞) ≈ 2.52 · 104

• Found by working backwards from the error in paper, which is the

assertion that A � B implies A2 � B2.

• Approximation with energy constraints is currently an open problem.
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Minimal reachability

• An alternative approach is to look at reachability. The graphs we showed

above have lots of directions which are easily reachable.

• Can the supermodularity based approach be generalized to this setting?

• Suppose we just have one direction y1 which we want to be reachable. A

natural set function is

f (I ) = ||Preachable space(y1)||22

• Two recent papers

V. Tzoumas, A. Jadbabaie, G. J. Pappas, “Minimal actuator placement

with bound on control effort,” IEEE Conference on Decision and Control,

2015.

Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, R. Poovendran,

“Towards scalable voltage control in the smart grid,” Proc. of the 7th

International CPS Conference, 2016.

claimed this is a supermodular function.

• Unfortunately, we show in a recent preprint [Jadbabaie, O., Pappas,

Tzoumas, IEEE Trans. on Automatic Control, 2019] that this is false.

• In fact, we show a bit more....
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Third main result

• Definition: BPTIME(t(n)) is the class of problems for which a

randomized algorithm can compute the correct answer with

probability at least 2/3 in time t(n).

• Observe: we can always approximate the minimum reachability

problem to a multiplicative factor of n = 2log n (just actuate every

variable).

• Theorem: [Jadbabaie, O., Pappas, Tzoumas, IEEE TAC, 2019] For

any δ ∈ (0, 1), unless problems in NP can be solved in

BPTIME(nlog log n) there is no polynomial time algorithm which

approximates minimal reachability to a multiplicative factor of

2(log n)δ .

• Punchline: minimal reachability is almost exponentially harder than

minimal controllability, which was approximable to a factor of

O(log n).
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Summary and next directions

• Minimal controllability is NP-hard, but has a reasonable

approximation guarantee.

• Unfortunately, minimal controllability does not turn out to be a

good objective.

• Incorporation of either control energy or desired directions leads to a

loss of supermodularity with no crisp approximation results.

• What if we consider the Athans problem, i.e., allow the actuators to

change with time?

• Main idea: this problem might be a little easier.

• In fact, lets limit ourselves to choosing an average of d actuators per

step.
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Random sampling

• Natural idea: choose the actuators randomly!

• Unfortunately, this doesn’t work, in either static or dynamic case.

• Need some way to quantify which nodes are important. This

approach almost seems like beginning the question.

• Let’s discuss a seemingly unrelated question: given a weighted graph,

can you come up with a sparse subgraph which approximates it?

• A graph can be encoded as a Laplacian matrix (defined by putting

wij , the weight between the i ’th and j ’th node into the (i , j)’th entry

of the matrix.

• Given a graph with a Laplacian L, we are asking for a sparse

subgraph (say with O(n) edges) with a Laplacian Ls such that

L ≈ Ls .
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Resistance in a graph

A key observation is that you can define the resistance between any two

nodes:

18



Fourth main result

• Key idea: to sparsify a graph, you can sample edges proportional to

effective resistance across them.

• In fact, [Spielman, Srivastava, SICOMP, 2011] showed that you can

reduce a graph to O(n/ε2) edges (where n is the number of nodes)

without affecting eigenvectors/eigenvalues of the graph Laplacian by

more than O(ε).

• How can we use generalize this to our setting?

• Key idea: sample actuator i with probability proportional to

PT
i W (T )−1Pi where Pi is the i ’th column of

W (T ) =
∫ T

0
etABBT etA

T

dt. This is independent across time.

• Theorem: [Jadbabaie, O., Siami, IEEE Trans. on Automatic

Control submission, 2019] If T ≥ n and d is at least a constant

multiple of log n/ε2 then with high probability the control energy of

this scheme is at most 1 + ε times the best possible (here, best

possible means actuating every variable).
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Performance on a 250 agent network

The system matrix A is the

Laplacian of this undirected graph,

with colors corresponding to

weights on edges. The matrix is

semistable.

A sparse actuator schedule. A dot

corresponds to a used actuator at a

given time, and the color

corresponds to size of the

corresponding input.
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The IEEE 39-bus system

This is a way to represent a complete graph with equations

mθ̈i + di θ̇i = −
∑

j kij(θi − θj) + ui coupling the nodes. This matrix is

semistable. 21



Performance on the IEEE 39-bus system

Colors represent intensity of the actuator use. In contrast to the previous

example, this schedule seems to be “front-loaded.”
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Conclusion

• Key takeaways:

1. Exist optimal algorithm for minimal controllability.

2. Supermodularity is a key property. It’s lack makes things difficult.

3. Minimal reachability is, surprisingly, close to being unsolvable.

4. Effective control with time-varying actuators has been almost solved.

• Main challenge: find a class of systems for which incorporating

energy constraints and desired reachable directions can be done.

• Satisfactory answers could have a transformative impact not only in

electricity distribution systems and many other areas.
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