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Monitoring / surveillance 
with autonomous teams Smart factories

Smart cities

EPFL GE

TechRepublic

System State

Setting:
• Large-scale system monitored by 

a network of agents
• Each agent periodically receives 

signals about the state of the 
system

• Each agent’s signals are 
only partially informative

• Network can be mobile, time-
varying, contain adversaries

Objective:
Formulate algorithms that allow 
all regular nodes in the network 
to cooperatively estimate the 
state of the entire system

Large-Scale Systems Monitored by a Network of Agents

MIT IDSS

Social Networks
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Specific instances
 Distributed consensus: each node 𝑣𝑣𝑖𝑖 has a local (static) measurement, and all nodes 

must converge to the same function of their local measurements

 Distributed optimization: each node has a local function 𝑓𝑓𝑖𝑖(𝑥𝑥) and the nodes must 
cooperatively calculate the minimizer of the sum of their local functions

 Distributed state estimation: the nodes are each measuring different parts of a 
dynamical system, and must cooperate to estimate the global system state

 Distributed hypothesis testing: the nodes must cooperate to identify the true state of 
the world from a set of possible hypothesis, based on stochastic measurements

There exist various distributed algorithms to solve versions of these problems
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The Need for Resilience
 What happens if certain nodes fail or are compromised by an attacker?

 Attacks can be coordinated, based on “insider knowledge”, targeted against 
vulnerable nodes, etc.

𝑓𝑓1(𝑥𝑥)

𝑓𝑓2(𝑥𝑥)

𝑓𝑓3(𝑥𝑥)

𝑓𝑓8(𝑥𝑥)

𝑓𝑓7(𝑥𝑥)

𝑓𝑓4(𝑥𝑥)

𝑓𝑓5(𝑥𝑥)
𝑓𝑓12(𝑥𝑥)

𝑓𝑓13(𝑥𝑥)

𝑓𝑓6(𝑥𝑥)
𝑓𝑓11(𝑥𝑥)

𝑓𝑓9(𝑥𝑥)

𝑓𝑓14(𝑥𝑥)

𝑓𝑓15(𝑥𝑥)

𝑓𝑓16(𝑥𝑥)

𝑓𝑓10(𝑥𝑥)
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Illustration of vulnerabilities in distributed 
consensus/optimization algorithms

Optimal value Optimal value

Constant value held 
by malicious node

One malicious node holding a constant value All nodes follow algorithm
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Considerations for Resilient Algorithms
 What do the “normal” nodes know?
 Entire network topology versus only their local neighborhoods
 Nominal behavior of all nodes versus only local dynamics

 How much computation/storage do the normal nodes have?
 Extensive computations with lots of stored data versus simple computations on 

limited data

 What are the objectives for the normal nodes?
 Calculate the desired value exactly versus calculate an approximate value
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Considerations for Resilient Algorithms (cont’d)
 What kinds of misbehavior need to be overcome?
 Node drops out of the network (“crashes”)
 Node updates its state according to a known model
 Node updates its state in an arbitrary (unknown) manner (“Malicious”)
 Node can send conflicting values to different neighbors (“Byzantine”)

 How many misbehaving nodes can there be?
 𝑭𝑭-total: Up to 𝐹𝐹 misbehaving nodes in the entire network
 𝑭𝑭-local: Up to 𝐹𝐹 misbehaving nodes in the neighborhood of each normal node 

Answers to the above questions will dictate the conditions on the network topology 
required to design resilient algorithms

“Faulty”
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The Role of Network Connectivity
 Classical result: If there are up to F malicious nodes, all nodes can reliably 

exchange information if and only if network is (2F+1)-connected
 [Dolev et al., ‘93], [Lynch, ‘96], [Sundaram & Hadjicostis, ‘11], [Pasqualetti et. al, ’12], …

 Typical assumptions: 
 All nodes know the entire network topology and nominal dynamics of the other nodes
 Each node can store data and perform extensive computations

 Need scalable algorithms and mechanisms to overcome adversarial behavior in 
large-scale networks
 Shouldn’t require regular nodes to know network topology
 Tradeoff between knowledge and achievable objectives
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Local-Filtering Dynamics for 
Resilient Consensus
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Local Filtering Dynamics for Consensus
 Suppose each node 𝑣𝑣𝑖𝑖 starts with an initial value 𝑥𝑥𝑖𝑖(0)
Mechanism:
 At each time-step t, each node 𝑣𝑣𝑖𝑖 receives values from its neighbors
 𝑣𝑣𝑖𝑖 removes the F highest and lowest values in its neighborhood, updates its 

state as a weighted average of remaining values 

 Weights 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) and 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) specify a convex combination at each time-step

Neighbors after removing 
extreme values

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖(𝑡𝑡) + �
𝑣𝑣𝑗𝑗∈𝒥𝒥𝑖𝑖(𝑡𝑡)

𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡)𝑥𝑥𝑗𝑗(𝑡𝑡)

Dolev, et al., ‘86;  Azadmanesh et al., ‘90s; Vaidya et al., ’12; LeBlanc, Zhang, Koutsoukos and Sundaram ’12, ‘13 
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Failure of Convergence
 Network where convergence does not occur:

 Connectivity of graph is ⁄𝑛𝑛 2, but no node ever uses a value from 
opposite set

Fully-connected graph with ⁄𝑛𝑛 2 nodes
Initial value 0

Fully-connected graph with ⁄𝑛𝑛 2 nodes
Initial value 1

One-to-one edges between sets 

0 0 0 0 0 0

1 1 1 1 1 1
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Insufficiency of Connectivity as a Metric
 Graph contains sets where no node in any set has enough neighbors outside 

the set
 i.e., all outside information is filtered away by each node

 Need a new topological property to characterize conditions under which 
local filtering will succeed
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 We introduce the following definitions
 A set S is 𝒓𝒓-reachable if it has a node that has at least 𝑟𝑟 neighbors outside the set

Robust Graphs

𝑣𝑣5

𝑣𝑣7 𝑣𝑣8

𝑣𝑣6

𝑣𝑣1

𝑣𝑣3 𝑣𝑣4

𝑣𝑣2

Zhang & Sundaram, ACC 2012; LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE JSAC 2013
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Robust Graphs

A 3-reachable set

A 4-reachable set

𝑣𝑣5

𝑣𝑣7 𝑣𝑣8

𝑣𝑣6

𝑣𝑣1

𝑣𝑣3 𝑣𝑣4

𝑣𝑣2

 We introduce the following definitions
 A set S is 𝒓𝒓-reachable if it has a node that has at least 𝑟𝑟 neighbors outside the set

Zhang & Sundaram, ACC 2012; LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE JSAC 2013
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Robust Graphs
 A graph is 𝒓𝒓-robust if for every pair of disjoint subsets, at least one of the sets 

is 𝑟𝑟-reachable

3-robust graph:  
For every pair of disjoint subsets of nodes, at least one subset is 3-reachable

𝑣𝑣5

𝑣𝑣7 𝑣𝑣8

𝑣𝑣6

𝑣𝑣1

𝑣𝑣3 𝑣𝑣4

𝑣𝑣2

Zhang & Sundaram, ACC 2012; LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE JSAC 2013
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Robust Graphs
 A graph is 𝒓𝒓-robust if for every pair of disjoint subsets, at least one of the sets 

is 𝑟𝑟-reachable

3-robust graph:  
For every pair of disjoint subsets of nodes, at least one subset is 3-reachable

𝑣𝑣5

𝑣𝑣7 𝑣𝑣8

𝑣𝑣6

𝑣𝑣1

𝑣𝑣3 𝑣𝑣4

𝑣𝑣2

Zhang & Sundaram, ACC 2012; LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE JSAC 2013
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Condition for Resilient Consensus under Local-
Filtering

 F-local set: up to F adversaries in neighborhood of every node

 Takeaway point: If the graph satisfies the required “robustness” property, 
local-filtering algorithm provides strong resilience guarantees against a 
potentially large number of worst-case adversaries

LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE JSAC 2013; Zhang, Fata and Sundaram, IEEE TCNS 2015

Theorem:
If network is (2𝐹𝐹 + 1)-robust, normal nodes will reach consensus in the convex 
hull of their initial values despite actions of any 𝐹𝐹-local set of Byzantine nodes
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Robustness of Complex Networks
 r-robustness and r-connectivity coincide in various models for complex networks:

 Erdos-Renyi random graphs (Zhang, Fata & Sundaram, TCNS 2015)
 1-D geometric random graphs (Zhang, Fata & Sundaram, TCNS 2015)
 Preferential attachment graphs (Zhang, Fata & Sundaram, TCNS 2015)
 Random intersection graphs (Zhao, Yagan & Gligor, CDC 2014)
 Random k-partite graphs (Shahrivar, Pirani & Sundaram, Automatica 2017)
 Circulant graphs (Usevitch & Panagou, CDC 2017)

Takeaway points:
 Although r-robustness is stronger than r-connectivity, the properties occur 

simultaneously in many large-scale networks
 Such networks will be conducive to applying local-filtering dynamics for resilient 

coordination

“Local-Filtering” is a promising scalable mechanism for 
resilient distributed coordination in large-scale networks 
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Applications of Local-Filtering in Distributed 
Optimization and State Estimation
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Distributed Optimization
 Each node 𝑣𝑣𝑖𝑖 in the network has a local convex function 𝑓𝑓𝑖𝑖:ℝ → ℝ

 Nodes wish to calculate (in a distributed manner) arg min
𝑥𝑥∈ℝ

1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖(𝑥𝑥)

 Common approach: consensus-based distributed optimization
 Each node updates its estimate of the optimal parameter as

 𝑑𝑑𝑖𝑖 𝑡𝑡 is a subgradient of 𝑓𝑓𝑖𝑖(𝑥𝑥) evaluated at 𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡 𝑥𝑥𝑖𝑖 𝑡𝑡 + ∑𝑣𝑣𝑗𝑗∈𝒩𝒩𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 (𝑡𝑡)
 𝛼𝛼𝑡𝑡 ∈ ℝ≥0 is a stepsize

𝑥𝑥𝑖𝑖 𝑡𝑡 + 1 = 𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡 𝑥𝑥𝑖𝑖 𝑡𝑡 + �
𝑣𝑣𝑗𝑗∈𝒩𝒩𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑑𝑑𝑖𝑖(𝑡𝑡)

Consensus Step
Gradient Step
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Resilient Distributed Optimization via Local-
Filtering Dynamics
 To obtain resilience, apply local-filtering 

𝑥𝑥𝑖𝑖 𝑡𝑡 + 1 = 𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡 𝑥𝑥𝑖𝑖 𝑡𝑡 + �
𝑣𝑣𝑗𝑗∈𝒥𝒥𝑖𝑖(𝑡𝑡)

𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑑𝑑𝑖𝑖(𝑡𝑡)

Neighbors after removing 
extreme values

Theorem:
Suppose network is (2𝐹𝐹 + 1)-robust and that 𝛼𝛼𝑡𝑡 → 0 and ∑𝛼𝛼𝑡𝑡 = ∞ in the Local-
Filtering distributed optimization dynamics.

Then, all regular nodes asymptotically reach consensus and converge to the convex 
hull of the local minimizers of the regular nodes, regardless of actions of any F-local 
set of Byzantine adversaries.

Sundaram & Gharesifard,  Allerton 2015, TAC 2019;  Su & Vaidya, 2015
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Distributed State Estimation
 Consider a dynamical system, monitored by a network of nodes:

 Each node 𝑣𝑣𝑖𝑖 obtains the state measurement 

𝑦𝑦𝑖𝑖 𝑡𝑡 = 𝐶𝐶𝑖𝑖𝑥𝑥(𝑡𝑡)
 Nodes seek to cooperatively estimate the full state 𝑥𝑥(𝑡𝑡)

𝑥𝑥 𝑡𝑡 + 1 = 𝐴𝐴𝐴𝐴(𝑡𝑡)

Contribution: A fully distributed state estimator that allows all normal nodes to asymptotically recover 
the state despite 𝐹𝐹-local Byzantine adversaries.

Aritra Mitra
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Problem and Challenges
 For simplicity, consider a scalar dynamical system of the form:

 For this system, nodes with non-zero measurements can estimate the state 
themselves without communicating with neighbors
 We call such nodes the “source nodes”, denoted by set 𝑆𝑆
 A non-source node must communicate with (potentially adversarial) neighbors

 Key Question: How does a non-source node process the information received 
from neighbors to asymptotically estimate 𝑥𝑥(𝑡𝑡)?
 Require redundancy in both measurements (source nodes) and network structure

(for information diffusion)

𝑥𝑥(𝑡𝑡 + 1) = 𝑎𝑎𝑥𝑥(𝑡𝑡), 𝑎𝑎 ∈ ℝ, 𝑎𝑎 ≥ 1
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Mode Estimation Directed Acyclic Graph (MEDAG)

Source nodes

Non-source 
nodes

MEDAG for 𝐹𝐹 = 1 For a given 𝐹𝐹 ∈ ℕ, define a Mode Estimation 
Directed Acyclic Graph (MEDAG) to be a DAG 
where:
 The root nodes are the source nodes 𝑆𝑆
 Each non-root node has at least (2𝐹𝐹 + 1) parents

 Such graphs capture the required redundancy in 
both measurements and topology

 When does a given graph contain a MEDAG with 
respect to a given source set?
 We show a graph-theoretic notion similar to “(2F+1)-

robustness” is required for MEDAG to exist:
“strong (2F+1)-robustness with respect to 𝑺𝑺”

 If graph contains MEDAG, it can be found in 
polynomial time via a distributed algorithm

Mitra & Sundaram, CDC 2016, Automatica 2019, Autonomous Robots 2019
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Local Filtering Dynamics for Resilient Distributed 
State Estimation
 Suppose the network contains a MEDAG
 Each non-source node 𝑣𝑣𝑖𝑖 applies a two-stage filtering strategy:
 At each time-step, it only listens to its parents in the MEDAG, denoted 𝑃𝑃𝑖𝑖.

 It sorts the estimates received from 𝑃𝑃𝑖𝑖 from highest to lowest. removes the 𝐹𝐹
highest and 𝐹𝐹 lowest values, and takes a convex combination of the rest to update its 
state estimate:

Set of parents whose estimates 
are used at time 𝑡𝑡

�𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑎𝑎 �
𝑣𝑣𝑗𝑗∈𝒥𝒥𝑖𝑖(𝑡𝑡)

𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑥𝑥𝑗𝑗(𝑡𝑡)

Estimate of state 𝑥𝑥(𝑡𝑡 + 1) at 
node 𝑣𝑣𝑖𝑖
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Main Result for Resilient Distributed State 
Estimation

 Key benefit of approach: Each step of our algorithm can be implemented in a fully 
distributed and secure manner
 Can be extended directly to more general (non-scalar) sytems

Mitra & Sundaram, CDC 2016, Automatica 2019, Autonomous Robots 2019

Theorem:
Suppose the network is strongly (2F+1)-robust with respect to 𝑆𝑆.  Then by applying local-
filtering, all regular nodes can asymptotically estimate the state despite the actions of 
any F-local set of Byzantine nodes.
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Resilient Distributed Hypothesis Testing

 Problem: nodes have to cooperatively identify the true state of the world (out of 𝑚𝑚
possible hypotheses) based on stochastic signals
 Contribution: a new distributed hypothesis testing algorithm that is provably resilient to 
𝐹𝐹-local Byzantine adversaries
 See poster by Aritra Mitra (at this workshop), and talk tomorrow at 10:00am!

Mitra, Richards & Sundaram, ACC 2019

𝑚𝑚 possible states of 
the world

Aritra Mitra
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Summary
 Resilient algorithms require appropriate notions of network “redundancy” in 

order to overcome adversaries
 Specific notion of redundancy depends on the nature of the algorithm, assumptions 

about adversaries, etc.

 Traditional graph property for resilience to F-total adversaries: 2F+1 connectivity
 Corresponding algorithms require strong assumptions about network topology and 

capabilities of normal nodes

 Formulated a class of scalable algorithms for resilience against F-local adversaries
 Based on “Local Filtering” dynamics, where normal nodes ignore extreme values 

from neighbors
 Requires a new graph property: (2F+1)-robustness
 Local filtering can be used as a building block for resilience in a variety of applications
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Thank you!
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