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Why should we reverse-engineer the brain?

e personalized therapies & reversal of cognitive decline
Reverse-Engineer the Human Brain

One of the greatest challenges of
modern science, and the key to ...

DBS Therapy On
Off Medication

[Medtronic]
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Why should we reverse-engineer the brain? Why should we reverse-engineer the brain?

e personalized therapies & reversal of cognitive decline e personalized therapies & reversal of cognitive decline
e efficient computing systems & brain-computer interfaces e efficient computing systems & brain-computer interfaces

e next generation machine intelligence

energy: ~ 10 W energy: ~ 100 W wall slalom. == outut

Vs

von Neumann, 2012, The Computer & the Brain Deepmind Google Research
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How to reverse-engineer the brain? odels and scales of interest

How do you work?

No idea.
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Models and scales of interest

Models and scales of interest
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[Kumar et al.,

2010, Closed Loop Neuroscience]
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[Moser et al., 2015, Cold Spring Harb Perspect Biol]
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Models and scales of interest

Models and scales of interest
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B e, EF GRS e models retain biological compatibility
channels  synapses  neurons networks systems  social networks . .
(10nm) (Lum) (100 um) (>1cm) (CNS) (people) (1 em) e models remain analytically tractable
neural scale 4/35 neural scale 4/35

Functional patterns of brain activity Functional patterns of brain activity

cluster 1 cluster

I correlation

brain regions
correlation

I correlation

brain regions

e synchrony between brain regions long known (EEG, fMRI, [Berger & Gray, 1929])
e rich repertoire of synchrony patters (transient, long-range, clustered)

o different patterns are biomarkers of health and disease (epilepsy, Parkinson’s)
5/35 5/35



Modeling functional patterns Resting-state activity modeled by phase oscillators

brain regions white matter fibers brain network

G
Hestas

V)2 (IS Y

EANIENE

R a7 -+ - each node of the brain net-

AL ISP .
N work captures the dynamics
S

TREENG of a population of neurons

e nodes = brain regions; edges = bundles of white matter fibers

e static brain networks carry structural and statistical information
e dynamic brain networks are useful for the prediction & control of neural dynamics

6/35 7/35

Resting-state activity modeled by phase oscillators Resting-state activity modeled by phase oscillators

excitatory and inhibitory
Excitatory/ @ Inhibitory communities are in a )
‘ regime of self-sustained 0; = wi+ Z ajjsin(0; — 0;)
oscillations J#i
(weakly coupled Wilson-Cowan)
[Hoppensteadt and Izhikevich, 1997]

neurons' firing rates
describe a limit cycle

dynamics approximated by
a single phase variable
[Cabral et al., 2011]
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Resting-state activity modeled by phase oscillators Dynamical brain network to simulate neural activity

0; Zwp+ E a,-jsin(f)j—e,-) ; )
oscillator's phase
L i dynamical brain network with:

interconnection weight . .
— nodes = brain regions

| —natural frequency ] ]
edges = white matter fibers

node dynamics = Kuramoto

7/35 8/35

Sanity check Sanity check
brain correlation pattern brain correlation pattern
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Oscillator properties and functional patterns Oscillator properties and functional patterns

correlation pattern correlation pattern
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brain regions brain regions
e correlated brain regions < synchronized oscillators
e correlated regions typically form disjoint clusters
10/35 10/35
Oscillator properties and functional patterns
correlation pattern
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Analysis of cluster synchronization

e correlated brain regions <> synchronized oscillators

e correlated regions typically form disjoint clusters

cluster synchronization in oscillator networks as a proxy for correlated neural activity

10/35




Cluster synchronization Cluster synchronization

Network partition

Network partition

P ={C1,C,C3} ¢ P = {C1,(,,C3} OO/ e / : @”/ N\
) oy l 13 l )
® N /
= J} ) T\/L.é = N | O’O \ ¥ N Wi
_— QO (&\@o ~— ~_— _
| | ¢ = | | -
time time
cluster synchronization manifold for P = {C1,...,Cn}:
Sp={0e€T" : §=0;foralli,jeCx,k=1,....,m
11/35 ‘ P =1 iZojroral f) & bk ’ ! ‘ 11/35

Invariance of cluster synchronization Invariance of cluster synchronization

1 7
L
\ a3 g 5 ase /
o o o
/ 3 4 5 6 \
o [
2 8

1 7
L
\ as3 g 5 ase /
o o o
/ 3 4 5 6 \
o [
2 8

0-4 = 95 = W4 —Ws -+as3 sin(93 = 94) — ase sin(96 = 95)
N——

diff. nat. freq. diff. external coupling
9-4 = wq + as3 sin(03 = 94) + ags sin(95 = 94)
) oscillators 4 and 5 remain phase synchronized if:
05 = ws + asg Sin(@g = 95) + asa sin(94 = 95)
e diff. of natural frequencies = — diff. external coupling at all times
12/35 e equal natural frequencies (ws = ws) and equal coupling (243 = ase) 12/35



Invariance of cluster synchronization Invariance of cluster synchronization

Invariance of the cluster synchronization manifold Sp iff: Invariance of the cluster synchronization manifold Sp iff:
e w; = wj for all oscillators in the same cluster e w; = wj for all oscillators in the same cluster
e the network weights are balanced e the network weights are balanced
[Menara et al., 2020 TCNS] [Menara et al., 2020 TCNS]

8
2
balanced weights for partition P = {C1,C, ... }:  J C1={1,2,3}, C>={4,5,6}
Z aj; —aj; = 0 for all i,j € Cx and all partitions C; # Cy 10 C1 — Cé' =C — Czj
zeCy 9 i :
> Cz — Ci = CQ —)Cf
13/35 4 2 5 13/35

Cluster invariance in empirical brain networks

Invariance of cluster synchronization

. o . . fMRI data correlations
Invariance of the cluster synchronization manifold Sp iff:

clustering algorithm

e w; = wj for all oscillators in the same cluster

e the network weights are balanced

[Menara et al., 2020 TCNS]

...distance from balanced network weights

b —~— b —— 6 24 subjects
0 ~—~— 0 —~— 0 [Ponce-Alvare

3 i
‘ 2 2015 PLOS Comp

3io]
10 - —
cognitive system
9 assignment

0 9 intrinsic networks

5 0 1 2 3 4 5 13/35 [Power et al., 2012 Neuron] 14/35




Cluster invariance in empirical brain networks

Cluster invariance in empirical brain networks

fMRI data correlations fMRI data correlations

clustering algorithm

clustering algorithm ‘ simplified model /imperfect clusters? ‘

C
%.
B,
C
%.
B,

e
T
|

24 subjects
[Ponce-Alvarez et al.
2015 PLOS Comp B

24 subjects
[Ponce-Alvarez et al.
2015 PLOS Comp B
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Local stability of cluster synchronization Local stability of cluster synchronization

1 4 1 4
C, ={1,2}
X12 X34 Co = {3,4) X12 X34
X23 X23
2 g 2 g
x12 = 01 — 02 = —(a12 + az1) sin(x12) + a13sin(xe3) — a1z sin(x12 + x23 + x34) _ _
x12| | —(a12 + a21) sin(x12) . ) a13
. ; : . . . . = . + (SII’\(X23) — sm(x12 + xo3 + X34))
X34 = 03 — 04 = —(a34 + a43) sin(x34) + a315in(x23) — as1sin(x12 + x23 + X34) X34 —(a34 + a43) sin(x34 as1
——
. . ; . . . Xintra F(Xintra) G (Xintra Xinter)
Xp3 = 01 — 03 = (wp — w1) + asz sin(x3a) + a1 sin(x12) — (242 + a24) sin(x23)

15/35 15/35



Local stability of cluster synchronization Local stability of cluster synchronization

1 4 1 4

X12 X34 X12 X34

X23 X23

).(intra - F(Xintra) + G(Xintrayxinter)

e F = intra-cluster dynamics; G = inter-cluster dynamics . . . . .
. ] | ) . . If intra-cluster weights > inter-cluster weights, then Xj,t;a = 0 is locally exponen-
e the origin of F is exponentially stable with rate dep. on intra-cluster weights . L . . .
) tially stable, and the cluster synchronization manifold is locally exponentially stable.
(from homogeneous Kuramoto dynamics)

e G is vanishing (G(0, Xinter) = 0) and lin. bounded (|| G (Xintra; Xinter) || < Y| Xintrall)

[Menara et al., 2020 TCNS]
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Stability of multiple clusters Stability of multiple clusters

1 3 5 1 3 5
X12 X34 X56 X12 X34 X56
X23 Xa6 X23 Xa6
2 4 6 2 4 6
(k) (k) (If he followi iX i M i )
Xintra _ F(k)(xintra) + G(k)(xintra7xinter) the following matrix is an M-matrix,
S = [sk] = Amax(Xi) =20 if k=1,
Ji : Jacobian of F at xi(nliza =0 Xi : solution to J] X + Xy Jx = —/ ' —(KO) if k#£4,
(KO HG(k)(Xintravxinter)” <3r 'V(ke)HXi(nft)raH then the synchronization manifold is locally exponentially stable.
16/35 L [Menara et al., 2020 TCNS] ) 16/35




Stability of multiple clusters

1 8 5

X12 X34 X56

X23 Xa6

intra-cluster weights > inter-cluster weights = stability

16/35

An example

aq

O Unstable @ Stable W Weights Condition
1 8 3

0.5
0.4

an e )
0.2

0.1
2 4 10—4

1072 107' 10°

(€3]

1073

e fix ag, wi, wp and vary ap, B

17/35

An example

ay

An example

aq

1 8 3

e fix ag, wi, wy and vary ap, B

17/35

O Unstable @ Stable W Weights Condition

1 3
B 0.5
0.4

s N
0.2

0.1
2 4 10—4

1072
Q2

1073

e fix ag, wi, wp and vary ap,

e network weights provide conservative estimates of stability. frequencies?

107!

10°

17/35



An example

O Unstable

aq

| Stable
1 3 3

=N W e Ot

2 4 50 100 150 200

|wa — w]

wz — wi|

e fix ag, ag, and vary 3,
e network weights provide conservative estimates of stability. frequencies?

e large frequency differences promote stability. why?
17/35

Approximate stability of cluster synchronization

(1)

intra

e isolated clusters are stable oscillatory systems

X'(2t) e clusters subject to inter-cluster perturbation
intra

Xinter

e linearized dynamics:

ey

intra — Jlx(l) an n12 cos(xinter) X(z)

intra intra

® Xinter — (w2 — w1)t as |wp — wi| grows

18/35

Approximate stability of cluster synchronization

e isolated clusters are stable oscillatory systems
(1) (2)

intra intra
4

e linearized dynamics:

(1) _ (1)
Xintra = J1Xintra

e connectivity + homogeneous frequencies = intra-cluster synchronization

Approximate stability of cluster synchronization

e isolated clusters are stable oscillatory systems

(1) »(2) e clusters subject to inter-cluster perturbation
intra intra

Xinter

e linearized dynamics:

e

intra (l) X(2)

& JlXintra + 112 COS((WZ - wl)t) intra

e inter-cluster perturbation is modulated by wy — w;

18/35

18/35



Approximate stability of cluster synchronization

Approximate stability of cluster synchronization

e isolated clusters are stable oscillatory systems

e clusters subject to inter-cluster perturbation

2 o i(nzt)ra

intra

e e isolated clusters behave as low-pass filters
inter

@)

18/35

Stability of multiple clusters using weights and frequencies

1 3 >
; :E: ,\
2 4 6
&;j = | frequency gain from cluster C; to cluster C;|

If Amax([§ij]) < 1, then the sync. manifold is locally exp. stable.

[Menara et al., 2019 ACC]

19/35

1 3
e isolated clusters are stable oscillatory systems
5L % e clusters subject to inter-cluster perturbation
intra intra
Xinter e isolated clusters behave as low-pass filters
2 4

If |wj — wi| — oo for all clusters, then the synchronization manifold is

locally exponentially stable.

[Menara et al., 2020 TCNS]

18/35

An example

O Unstable B Stable
B Approx B Thm3.2

1 8 3 05
0.4
(e%1 a2 o 0.3
B 0.2
0.1

2 4

1072 107t 10°

Q2

107* 107°

e fix ag, wi, wp and vary ap,
e combine weights and frequency gains into small-gain condition

e combined weights/frequency conditions are consistently tight
20/35



Control of functional patterns

—

\

correlation
brain regions

correlation

|
—

Control of cluster synchronization PR ror—

so far...

e modeling of neural activity through oscillator network
e modeling of functional patterns via cluster synchronization
e conditions for invariance/stability of cluster synchronization

21/35

Control of functional patterns Control of functional patterns

frequency control

—

brain regions
| .
= correlation
brain regions
correlation

brain regions brain regions

e external control of oscillator frequency [Menara et al., 2020 LCSS]

how do we restore healthy functional patterns?

21/35 22/35



Control of functional patterns

frequency control structural control

e external control of oscillator frequency

[Menara et al., 2020 LCSS]

e design of structural weights and oscillator frequencies  [venara et a1, 2019 cDC & 2022 NatComm]

22/35

Control of functional patterns

frequency control

structural control coupling control

&

e external control of oscillator frequency [Menara et al., 2020 LCSS)

e design of structural weights and oscillator frequencies  [vienara et a1, 2019 cDC & 2022 NatComm]

e external control of oscillators coupling [Qin et al,, 2022 CDC]

22/35

Control of functional patterns

frequency control

structural control coupling control

e external control of oscillator frequency

[Menara et al., 2020 LCSS]

e design of structural weights and oscillator frequencies  [venara et a1, 2019 CDC & 2022 NatComm)

e external control of oscillators coupling [Qin et al., 2022 CDC]

22/35

Structural control of functional patterns

original network corrected network

@
: ) TN R
b parameters ﬂhllo‘”ma]/nndes\red CONTROL / A parameters desired functional
Aw functional pattern R . / A w, pattern R
® ; 1 &« 7 . 1
o b [ ®

O 1 2 ¢ : g

5 5

phases 6 £ phases 6 £

7r 5 ]

|
|

7
oscillators

b oscillators
0

e control knobs = network weights + oscillator frequencies
e biological constraints: positive weights, sparsity of interventions

e reference signal is n x n matrix of the phase correlation values (time-varying)
23/35



Structural control of functional patterns

Frequency-synchronization and functional patterns

network dynamics in matrix form (B = incidence matrix):

original network corrected network
®
. TN . .
® parameters abnormal /undesired CONTROL L1 AN parameters desired functional
A functional pattern R Low pattern R
W /! Ae, we
® 7 1 [ / 1
] , ]
° 3 . E
phases 6 Z £ phases 6 £
w 2 8 ]
8 8 8
=
1 } 1
° e | 1 1 7! z 1 4 7 L
P oscillators — oscillators
0 0
0 5 10 15 20 0 5 100 15 20
t t

e control knobs = network weights + oscillator frequencies
e biological constraints: positive weights, sparsity of interventions
e reference signal is n x n matrix of the phase correlation values (time-varying)

focus on time-invariant patterns, equilibrium assignment /

Frequency-synchronization and functional patterns

network dynamics in matrix form (B = incidence matrix):

91 w1
=|:|-8B

On Wn

sin(ﬁj — 9;)

ajj

when oscillators are frequency-synchronized:

e oscillator frequencies are all equal to Wmean = %Zw,-
e functional correlations are defined by phase differences

e feasible functional patterns have only n — 1 degrees of freedom

24/35

Frequency-synchronization and functional patterns

91 w1

sin(QJ- —9,‘) ajj

On Wn

24/35

frequency-synchronized configuration:
: W1 — Wmean
B sin(0j — 0,’) a,-j =

Wn — Wmean

to generate a desired functional pattern:

e compute n — 1 phase differences corresponding to desired functional values
e determine feasibility of the desired equilibrium (sign/sparsity constraints)
[ ]

find network weights and frequencies to satisfy the above equation

24/35



Feasibility of a functional pattern

oscillators

desired pattern

1

correlation

|
—_

4

oscillators

25/35
Feasibility of a functional pattern
1 3 desired pattern
4 _ _
. cos(fs — 03) = 0.5
= cos(f3 — 602) = 0.4
% cos(f, — 01) = 0.3
1
2 4 1 4
oscillators
-1 0 © 1 sin(f2> — 61) an W1 — Wmean
1 -1 0 0 sin(63 — 62) as|  |w2 — Wmean
0 1 -1 0 sin(04 — 03) 24| |ws — Wmean
0 o0 1 -1 sin(01 — 0a)| |am W4 — Wmean

25/35

Feasibility of a functional pattern

oscillators

oscillators

sin(02 — 61)

desired pattern

1 4
oscillators

Feasibility of a functional pattern

desired pattern

1 4
oscillators

sin(93 - 92)
sin(6s — 63)

sin(61 — 6s) | |as

cos(fs — 03) = 0.5
cos(f3 — 602) = 0.4
cos(fy — 1) = 0.3

25/35

cos(fs — 03) = 0.5
cos(f3 — 62) = 0.4
cos(fy — 1) = 0.3

given
a2 W1 — Wmean
a3 | _ |W2 — Wmean
ass W3 — Wmean
W4 — Wmean

25/35



Feasibility of a functional pattern with positive weights

Feasibility of a functional pattern

1 3 desired pattern
-1 0 0 1 sin(62 — 61) an W1 — Wmean
a COS(94 - 03) = 05 1 -1 0 0 sin(03 - 92) ans _ W2 — Wmean
% COS(93 _ 02) = 04 0 1 —1 0 sin(94 = 93) ass4 W3 — Wmean
E 0 0 1 -1 sin(01 — 04) asl W4 — Wmean
z cos(fy — 1) = 0.3
2 4 I .
oscillators
?
-1 0 © 1 sin(f2 — 61) an W1 — Wmean
1 -1 0 0 sin(03 - 92) azs _ |wW2 = Wmean
0 1 -1 0 sin(0a — 03) 2| w3 — Wmean
0 0 1 -1 sin(01 = (94) as1 W4 — Wmean
25/35 26/35

Feasibility of a functional pattern with positive weights Feasibility of a functional pattern with positive weights
scaled incidence matrix B scaled incidence matrix B
—1 0 0 1 sin(02 — 01) aie W1 — Wmean —1 0 0 1 sin(02 — 01) a1z W1 — Wmean
1 -1 0 0 sin(€3 — 92) a3 | _ |W2 — Wmean 1 -1 0 0 sin(93 — 92) a3 | _ |W2 — Wmean
0 1 —1 0 sin(6’4 = 93) as4 B W3 — Wmean 0 1 —1 0 sin(94 = 93) ass B W3 — Wmean
o o0 1 -1 sin(01 — 0a) | |am W4 — Wmean o o0 1 -1 sin(0p — 0a) | |am W4 — Wmean

The functional pattern is feasible with pos. weights if:
e the network B contains a Hamiltonian path

e W'By>0

[Menara et al., 2022 NatComm]

26/35 26/35




Feasibility of a functional pattern with positive weights Feasibility of a functional pattern with positive weights

scaled incidence matrix B scaled incidence matrix B
-1 0 0 1 sin(02 — 01) 212_ W1 — Wmean -1 0 0 1 sin(02 — 01) ai2 W1 — Wmean
1 -1 0 0 sin(€3 — 92) a3 | _ |W2 — Wmean 1 -1 0 0 sin(€3 — 92) a3 | _ |W2 — Wmean
0 1 —1 0 sin(94 = 93) ass - W3 — Wmean 0 1 —1 0 sin(94 = 6'3) as4 B W3 — Wmean
o o0 1 -1 sin(6y — 0a) | |aa] W4 — Wmean o o0 1 -1 sin(01 — 0a) | |am W4 — Wmean
asq
1
The functional pattern is feasible with pos. weights if: The functional pattern is feasible with pos. weights if: If pattern is feasible,
w
= . — = . I solve (convex):
e the network B contains a Hamiltonian path H / e the network B contains a Hamiltonian path H ve (convex)
Th Th
e wBy>0 e w By>0 min J(a
a1<2/¢> = ( )0 d B
st. a>0and Ba=w
[Menara et al., 2022 NatComm] 1 \1\ a3 [Menara et al., 2022 NatComm]
26/35 26/35

Restoring functional connectivity in the damaged brain Restoring functional connectivity in the damaged brain

brain regions
brain regions

correlation

brain regions

brain regions

desired by
pattern

w, A
e structural data from Human Connectome Project [
. . - L P ic|_BOLD -
o (synthetic) functional data inspired by brain injury n— 0 ?_. [ Corelation }--{—
A O— g noise

e Balloon-Windkessel hemodynamic model for BOLD signals

27/35 27/35



Restoring functional connectivity in the damaged brain Restoring functional connectivity in the damaged brain

P ={C1,C2,C5} A
60 i desired correlation pattern
2 50 . B B 1
) L : = B
?ED 40 . é 'g ;
= 30| i & A+ A w+p ? =
£ 20 ’ g = &
o optimal corrections z S
10 L I E 8
" - L O n A .'h ‘
10 20 30 40 50 60 5 : < -1
. . &0 = brain regions
brain regions o 3 &
= )
=l o g
damaged 8
(brain injury, multiple sclerosis, ...) 2 BT q
28/35 brain regions 28/35

Modeling, analysis, control of functional connectivity via cluster synchronization:

connection to
rest of Canada/US

fault control

~0.05

0

-0.25 1 t
0 5001 90 90.01

voltage phases

I 10 20 29 10w 2
buses buses buses

[Menara et al., 2022 NatComm] 29/35 30/35



Modeling, analysis, control of functional connectivity via cluster synchronization: Modeling, analysis, control of functional connectivity via cluster synchronization:
[ Invariance: balanced weights + homogeneous intra-cluster frequencies j [ Invariance: balanced weights + homogeneous intra-cluster frequencies j
Stability: intra-cluster coupling >> inter-cluster coupling

large inter-cluster frequency differences

weights + frequencies = tight small-gain conditions

30/35 30/35

Modeling, analysis, control of functional connectivity via cluster synchronization:

electrode e) DBS
g Qo0
. - . . >
[ Invariance: balanced weights + homogeneous intra-cluster frequencies j o\ g %/ o I
Y ¥ axons/ 0 g 6 © vibrational control
Ve ~N ! soma dendrites
of network edges
Stability: intra-cluster coupling > inter-cluster coupling 5
large inter-cluster frequency differences
<M\W\

weights + frequencies = tight small-gain conditions

M)

i mnmmmmm il

il ﬂ

Control: graph-theoretic cond. for feasibility of functional patterns 0 [

structural control of functional patterns in brain/power

\ J 0 50 100 150
30/35




Remote (long-range) synchronization

Phase-amplitude synchronization

Cinggilo-opercular

=
=
@

brain regions
wt

correlation
brain regions
magnitude

|
—
o

5 10
brain regions

- =~ - Supramarginal gyrus

L R
Rostral anterior cingulate

F A A 7 4 '1‘
- / \ A |
> ‘ L ) / |
g\ ’ \ |

= \ \ ’
a NI, X/’ |

Brain-inspired, context-aware reinforcement learning

\Y7 /AN 32/35
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Cross-region structure 33/35

o

External input  Local interaction

References and acknowledgements

Neuromodulatory signals S (e Vigilance

(sensory inputs, neuromodulators, ) states

neurohormones) Agent

Behavioral (b)
B ‘—‘ states A All L ?
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)
g

Physiological < s Stimulus
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musc_— | T~
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y! s Tam Tam Tham Tpm -+ Spm _ 10pm
o] elee °d o

o
Task sets S )

Representations B, ¢ By l B, l

820 ...Sm

Task sequence
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Stbity Condions for luster Synchronizaton
in Networks of Heterogeneous
Kuramoto Oscilators

T
Functional control of oscillator networks
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Full vs cluster synchronization

Phase differences: x;;j = 0; — 0;

full synchronization: x — 0

Xintra — 0

cluster synchronization: -

Xinter =

o Difference dynamics
x = F(x)

o Difference dynamics

Xintra = F(Xintra) P G(Xintrainnter)
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Full vs cluster synchronization

Phase differences: xj; = 0; — 0;

full synchronization: x — 0

Xintra — 0

cluster synchronization: -

Xinter =

Full vs cluster synchronization

Xinter

Xintra Xintra

Xinter
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Phase differences: xjj = 0; — 0;

full synchronization: x — 0

Xintra — 0

cluster synchronization: -

Xinter =

o Linearization around synchronized

trajectory
x = Jx ‘\

known ©

unknown ®

o Linearization around cluster-
| synchronized trajectory

Xintra = (Jintra + Jinter(t))xintra
M SN——

Hurwitz © time-varying © 35/35



