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Data-Driven Minimum-Energy Controls
for Linear Systems
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Abstract—In this letter, we study the problem of
computing minimum-energy controls for linear systems
from experimental data. The design of open-loop minimum-
energy control inputs to steer a linear system between two
different states in finite time is a classic problem in con-
trol theory, whose solution can be computed in closed form
using the system matrices and its controllability Gramian.
Yet, the computation of these inputs is known to be ill-
conditioned, especially when the system is large, the con-
trol horizon long, and the system model uncertain. Due to
these limitations, open-loop minimum-energy controls and
the associated state trajectories have remained primarily
of theoretical value. Surprisingly, in this letter, we show
that open-loop minimum-energy controls can be learned
exactly from experimental data, with a finite number of
control experiments over the same time horizon, without
knowledge or estimation of the system model, and with an
algorithm that is significantly more reliable than the direct
model-based computation. These findings promote a new
philosophy of controlling large, uncertain, linear systems
where data is abundantly available.

Index Terms—Linear systems, optimal control, statistical
learning, identification for control, control of networks.

I. INTRODUCTION

CONSIDER the discrete-time linear time-invariant system

x(t + 1) = Ax(t) + Bu(t), (1)

where, respectively, A ∈ Rn×n and B ∈ Rn×m denote the
system and input matrices, and x : N → Rn and u : N → Rm

describe the state and input of the system. For a control hori-
zon T ∈ N and a desired state xf, the minimum-energy control
problem asks for the input sequence u(0), . . . , u(T −1) with
minimum energy that steers the state from x0 to xf in T steps,
and it can be formulated as

min
u

T−1∑

t=0

∥u(t)∥2
2,

s.t. x(t + 1) = Ax(t) + Bu(t), (2)
x(0) = x0, x(T) = xf.
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As a classic result [1], the minimization problem (2) is feasible
if and only if (xf −ATx0) ∈ Im(WT), where

WT =
T−1∑

t=0

AtBBT(AT)t (3)

is the T-steps controllability Gramian and Im(WT) denotes the
image of the matrix WT . Further, the solution to (2) is

u∗(t) = BT(AT)T−t−1W †
T(xf −ATx0), (4)

where W †
T is the Moore–Penrose pseudoinverse of WT [2].

The controllability Gramian (3) and the minimum-energy
control input (4) identify fundamental control limitations for
the system (1), and have been extensively used to solve
design [3], sensor and actuator placement [4], and control
problems [5] for systems and networks. However, besides their
theoretical value, the optimal control input (4) is rarely used
in practice or even computed numerically because (i) it relies
on the perfect knowledge of the system dynamics, (ii) its
performance is not robust to model uncertainties, and (iii) the
controllability Gramian is typically ill-conditioned, especially
when the system is large [5], [6]. This implies that the control
sequence (4) is numerically difficult to compute, and that its
implementation leads to errors [7]. To the best of our knowl-
edge, efficient and numerically reliable methods to compute
minimum-energy control inputs are still lacking.

Paper Contributions: This letter features two main contri-
butions. First, we show that minimum-energy control inputs
for linear systems can be computed from data obtained from
control experiments with non-minimum-energy inputs, and
without knowledge or estimation of the system matrices. Thus,
optimal inputs can be learned from non-optimal ones, and we
provide three different expressions for doing so. Surprisingly,
we also establish that a finite number of non-optimal control
experiments is always sufficient to compute minimum-energy
control inputs towards any reachable state. Second, we show
that the data-driven computation of minimum-energy inputs
is numerically as reliable as the computation of the inputs
based on the exact knowledge of the system matrices, and
substantially more reliable than using the closed-form expres-
sion based on the Gramian. Further, as minor contributions,
we (i) derive bounds on the number of required control experi-
ments as a function of the dimension of the system, number of
control inputs, and length of the control horizon, (ii) discuss
the effect of noisy data on the data-driven expressions, and
(iii) extend our data-driven framework to the case of output
measurements.
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