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Over one third of the estimated 3 million people with epilepsy
in the United States are medication resistant. Responsive neu-
rostimulation from chronically implanted electrodes provides a
promising treatment alternative to resective surgery. However,
determining optimal personalized stimulation parameters, includ-
ing when and where to intervene to guarantee a positive patient
outcome, is a major open challenge. Network neuroscience and
control theory offer useful tools that may guide improvements
in parameter selection for control of anomalous neural activity.
Here we use a method to characterize dynamic controllability
across consecutive effective connectivity (EC) networks based
on regularized partial correlations between implanted electrodes
during the onset, propagation, and termination regimes of 34
seizures. We estimate regularized partial correlation adjacency
matrices from 1-s time windows of intracranial electrocorticog-
raphy recordings using the Graphical Least Absolute Shrinkage
and Selection Operator (GLASSO). Average and modal control-
lability metrics calculated from each resulting EC network track
the time-varying controllability of the brain on an evolving land-
scape of conditionally dependent network interactions. We show
that average controllability increases throughout a seizure and is
negatively correlated with modal controllability throughout. Our
results support the hypothesis that the energy required to drive
the brain to a seizure-free state from an ictal state is smallest
during seizure onset, yet we find that applying control energy at
electrodes in the seizure onset zone may not always be energet-
ically favorable. Our work suggests that a low-complexity model
of time-evolving controllability may offer insights for developing
and improving control strategies targeting seizure suppression.

effective connectivity | network topology | controllability |
epilepsy | GLASSO

Responsive neurostimulation (RNS) is a nonresective treat-
ment for medication-resistant epilepsy that aims to suppress

seizures by delivering an electrical stimulus through intracra-
nial electrodes in response to abnormal electrographic activity.
Despite the fact that the first implantable RNS device was
approved in 2013, the mechanism of action and optimal patient-
specific stimulation settings remain unknown (1, 2). A better
understanding of the cortical locations and patterns of brain
activity that are most responsive to stimulation would improve
treatment efficacy and efficiency. By modeling the brain as a
network, with distinct brain regions representing nodes and
with statistical dependencies representing measures of influence
between regions as edges, the challenge of finding the best strat-
egy for seizure suppression can be recast as a problem of network
control (3, 4).

Evidence from prior empirical and computational studies sug-
gests that a linear network control framework can be used to
predict how neural activity will respond to an external stimu-
lus, where the dynamics are constrained by a static, structural

brain network built from the pattern of white matter tract con-
nections between large-scale cortical and subcortical anatomical
regions (5–8). The theory also provides predictions of the opti-
mal stimulation parameters required to drive the brain state, a
time-dependent measure of activity at each brain region in the
network, from an initial state to a desired target state through
a series of state transitions along an optimal trajectory (9, 10).
These predictions have been quantified for direct electrical stim-
ulation targeted at improving memory (7) but have not yet been
defined or tested for stimulation applied to controlling seizures
for two main reasons. First, seizures are characterized by rapid
state transitions that violate the assumption of linearity over
the course of the whole seizure (11, 12). Second, it is theorized
and observed that information propagation through the brain
may depend on the underlying state of coherence between brain
regions and that exogenous inputs to brain regions may bias the
direction of information flow (13, 14). In light of these data, it is
clear that informing linear estimates of controllability with static
white matter networks fails to capture dynamic corticocortical
influences over changing patterns of network coherence (15).

A number of nonlinear models exist that faithfully describe
the intricacies of seizure progression and stimulation (16, 17).
A linear control framework can approximate such models over
short time horizons and can offer a greater repertoire of acces-
sible tools for full network control (18). Therefore, we address
the above limitations in an extension to the linear control frame-
work; instead of assuming that a single, structural connectivity
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network governs the transitions between brain states, we esti-
mate a sequence of effective connectivity (EC) networks from
intracranial electroencephalography (iEEG) seizure recordings
to capture the evolving constraints on neural dynamics through-
out a seizure. Our networks are constructed such that nodes
represent iEEG electrodes and edges represent a measure of
EC derived from the electrographic time series. Unlike func-
tional connectivity measures, which describe only how activity
between network nodes is correlated, EC implies underlying
causality between nodes in a network (19). A number of data-
driven methods including Granger causality, directed transfer
function, and partial directed coherence have been used to cre-
ate EC brain networks (20–22). In the context of this paper, EC
describes the undirected conditional dependence of nodes in a
network, given the activity of all other nodes, and is therefore
a powerful approach for understanding the impact of an exter-
nal stimulus on seizure dynamics (20) (Fig. 1). We define brain
state at each second to be high-γ band power (30 to 150 Hz) at
each electrode; this measure of brain activity is sensitive to fre-
quency and amplitude changes accompanying ictal transitions in
neural recordings (7, 23, 24). Our model supports the assump-
tion that structural connectivity only partially dictates our ability
to control rapidly evolving neural processes via external stimula-
tion and that the transient coupling between brain regions also
impacts neural controllability.

We use our model to build on prior work in network control
theory to address several specific hypotheses regarding seizure
dynamics in humans. We focus on two measures of controlla-
bility that characterize the ease of driving the brain into new
states as time evolves (3, 25). Average controllability reflects the
average input energy required at a node to transition the activ-
ity from some initial brain state to all nearby states (brain state
vectors with a unit magnitude) (9, 26). The EC networks used in
our model can be decomposed into sets of eigenmodes, repre-
senting invariant axes in state space upon which neural activity
can be measured over time, and eigenvalues dictating the rate of
activity decay along each mode. Modal controllability reflects the
ease of moving a system to states dominated by small eigenmodes

that are intuitively difficult to reach because they contribute less
to the dynamics of the system and are far from the dominant
energy minimum (6, 9, 27). Specifically, the metric quantifies
the extent to which input at a given node controls activity along
all eigenmodes of the system, weighted toward smaller modes,
thus summarizing how the underlying network will respond to
control inputs. Modal controllability can be separated into the
measures of persistent modal controllability and transient modal
controllability, which describe the extent to which control input
at a node perturbs the slow- or fast-decaying modes of the sys-
tem, respectively (4, 7, 25). Collectively, these metrics allow a
broad assessment of a system’s accessible control strategies. We
hypothesize that seizure propagation will be accompanied by a
heightened average controllability and decremented modal con-
trollability with respect to values at seizure onset, consistent
with an enhanced strengthening of the epileptic network (9, 27).
We extend this evaluation by using a model of seizure-regime-
dependent linear control to find the optimal control function
required to drive the brain to a seizure-free state from a subset of
control nodes. We predict that controlling the nodes that define
the observed seizure onset zone (SOZ) as epileptiform activity
emerges will be the most effective. Although the true epilep-
togenic zone, defined as the brain region supporting seizure
generation, may extend beyond the SOZ (28), our prediction is
built upon prior observations that SOZ nodes precede the rest of
the nodes in the constructed network in showing increased func-
tional connectivity (29). We reason that this may facilitate local
control before the seizure spreads. Broadly, our study builds on
the principles of network control theory to study time-evolving
coherence-mediated control, which has the potential to inform
practical efforts to improve neurostimulation-based therapies.

Results
Characterizing Seizure Regimes. Prior studies of functional con-
nectivity networks built with electrocorticography (ECoG) data
suggest that seizures can be segmented into three main
regimes—onset, propagation, and termination (12, 30, 31)—
and that linear modeling is applicable within 1-s time windows

A B C

Fig. 1. Time-evolving EC as a tool in seizure control strategies. (A) In a toy network with two empirical functional connections across three nodes, correlative
functional connectivity may estimate a spurious edge between nodes that interact indirectly. Conversely, EC reflects the direct influence between nodes in
a network, setting the edge weight of conditionally independent nodes to zero, and thus provides a scaffold to model control strategies over time.
Throughout a seizure, we can build EC networks to represent distinct regimes of neural connectivity (B) and infer a dynamic control energy landscape from
those networks, shown superimposed on the principal axes of the system’s state space (C). We can then use tools from control theory to determine the
optimal control input required to drive neural activity to seizure freedom given the state of the control energy landscape.
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in each regime given the stationarity of the time series (22,
32). We sought to determine whether such a regime separation
existed in EC; if so, dynamic controllability could be meaning-
fully compared in seizure regimes. To address this question,
we began by constructing EC networks from consecutive 1-s
time windows of preictal and ictal ECoG recordings from 34
partial or secondarily generalized seizures across 14 subjects
undergoing EEG monitoring prior to surgical treatment for
medication-resistant epilepsy. EC networks were obtained using
the Graphical Least Absolute Shrinkage and Selection Operator
(GLASSO) method to estimate the regularized partial correla-
tion between pairs of recorded time series in each time window
as this method has been shown to estimate the presence of true
network connections with high sensitivity compared to other EC
methods (see Materials and Methods for more details) (11, 33–
35). For each seizure of variable length T seconds recorded with
a variable N channels, this procedure provided a total of T reg-
ularized partial correlation matrices of size N ×N (see Fig. 2 A
and B and Materials and Methods).

For the purposes of our analysis, we next used a retrospective
community detection method to detect seizure regimes; real-
time seizure regime classification remains an interesting chal-
lenge that lies outside the scope of this study. We calculated what
has previously been termed a functional connectivity dynam-
ics matrix (36) or a configuration similarity matrix (30). This
T ×T similarity matrix contains ij th elements that represent
the Pearson correlation coefficient between the upper trian-
gles of the i th and j th EC networks. In addition, entries were
inversely weighted by a constant β times the duration between
time points to promote state contiguity (Materials and Methods).

Using a Louvain-like locally greedy community-detection algo-
rithm to maximize a modularity quality function, we partitioned
the columns of the similarity matrix thereby separating each
seizure into three temporal regimes characterized by distinguish-
able patterns of EC (Fig. 2C). The largest temporally contiguous
network assignments in each community were selected for sub-
sequent analyses and were labeled chronologically as seizure
regimes 1 through 3 with respect to the median time point of
the community cluster (Fig. 2D). On average, 96 ± 5% of the
EC networks from a given seizure were assigned to one of the
three contiguous regimes, compared to only 30 ± 12% assigned
during an equal-length preictal period where distinct regimes
would not be expected (SI Appendix, Fig. S2). Thus, we found
that our data-driven method could be used to demarcate onset,
generalization, and termination regimes across seizures, as veri-
fied by a board certified epileptologist (BL), and that the pattern
of region-to-region influences were sustained within each seizure
regime.

Dynamic Controllability of Epileptic Networks. We now turn to an
investigation of how the EC network representing each seizure
regime impacts regime-dependent controllability. In the context
of our model, analysis of the average and modal controllabil-
ity metrics can answer the question of whether energy input
during a given regime will be characterized by diffuse propaga-
tion throughout the network, pushing the brain state into other
nearby states (high average controllability), or whether control
input is able to drive the brain to states that are hard to reach
by maintaining influence over the small modes of the system
(high modal controllability). Additional analysis of persistent

A

C D

B

Fig. 2. Time evolving controllability through EC. (A) For each seizure, we extracted consecutive 1-s time windows of cortical ECoG recordings from N
electrode channels. (B) From these data, we estimated T distinct EC networks. (C) We used community detection to determine three seizure regimes based
on the similarity of the regularized partial correlation adjacency matrices and selected a single EC network to represent each regime for our optimal control
analysis. (D) The distribution of the three largest regimes found in all 34 seizures. Regimes are organized chronologically and are plotted by their normalized
temporal median versus the longest consecutive run of time windows, as a percentage of total seizure length. Each data point represents a regime in a
single seizure.
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modal and transient modal controllability metrics can describe
the extent to which input energy into the brain network is either
sustained while controlling slowly decaying modes or attenuated
while controlling quickly decaying modes, respectively. We inves-
tigate metrics in each seizure regime under the assumption that
the seizure progressed naturally (without prior stimulation) up
to the seizure regime of interest.

For all four controllability metrics, we observed a signifi-
cant regime dependence at the group level. We obtained 12
metric values for each seizure—four single values to summa-
rize the average, modal, persistent modal, and transient modal
controllability metrics in three regimes—and then compared
the values in each regime across the 34 seizures. Within a
regime, a given metric was calculated for each node in each
EC network assigned to the regime. Then the median value
for each node was obtained across networks, and the aver-
age of the resulting N × 1 vector was used to summarize
the regime. Across 34 seizures in 14 epilepsy patients, we
observed a significant effect of seizure regime on average
controllability (χ2(2, 34)= 9.59, P < 0.01), modal controllabil-
ity (χ2(2, 34)= 9.59, P < 0.01), transient modal controllability
(χ2(2, 34)= 8.88, P < 0.016), and persistent modal controllabil-
ity (χ2(2, 34)= 18.59, P < 1× 10−4) using Friedman’s ANOVA
across regimes. In post hoc analysis after Bonferroni correc-
tion for multiple comparisons of seizure regimes within each
metric, we found a significant increase in average controllabil-
ity from propagation to termination regimes (t =−3.03, P <
0.01), with a steady and significant decrease in modal control-
lability from onset to termination (t =3.03, P < 0.01). Both
transient and persistent modal controllability demonstrated a
significant increase in value from onset to propagation (t =
−2.78, P < 0.016, and t =−3.15, P < 0.01, respectively), and
both decreased again from propagation to termination regimes
(t =2.3, P < 0.064, and t =−4.12, P < 0.001), although the
decrease in transient controllability did not reach statistical sig-
nificance (Fig. 3). Our results demonstrate that the extent of
input energy propagation throughout the network will increase
with the seizure evolution and that ease of directing activity
toward hard-to-reach brain states is greatest at seizure onset.

Regime-Dependent Optimal Control Energy. The linear dynami-
cal model used to understand state-invariant controllability in

brain networks can also reveal the optimal control energy nec-
essary to drive the brain from an initial brain state x0 to a
final state xτ over τ time steps (4, 7, 9, 10). Optimal control
energy strives to minimize input energy while ensuring a direct
trajectory from initial to final states, thus circumventing scenar-
ios in which a controlled seizure might get worse before it gets
better. We used the optimal control framework—after verify-
ing that our EC regime model could sufficiently simulate brain
state evolution (SI Appendix, Results)—to determine when dur-
ing the seizure it would be most energetically favorable to drive
the brain state from each seizure regime to a seizure-free base-
line. Given the success of current RNS treatment practices where
current is injected just after seizure onset is detected, we hypoth-
esized that control energy would be smallest in the seizure onset
regime, which is a period in which the seizure is often spatially
confined (37).

We began by obtaining a representative EC network for each
regime in each seizure as the network with the highest average
similarity to other networks in the given regime. Per seizure, we
quantified an N × 1 initial brain state vector x0 for the three
seizure regimes by averaging the high-γ band power in 1-s time
windows at each electrode across all time windows within the
regime. We quantified a final, seizure-free brain state xτ by sim-
ilarly averaging band power across windows in a preictal time
period equal in length to the seizure duration. Then, we mea-
sured how much input energy would be required to use each
node to drive the brain from each of the three initial states, to
the baseline brain activity level recorded in the preictal period.
Finally, the nodal optimal control energy values were averaged
across all nodes in a particular regime to arrive at three opti-
mal control values for each seizure and regime. These values
were then grouped by regime across seizures (Fig. 4A). Again
Friedman’s ANOVA was conducted to find that seizure regime
had a significant effect on optimal control energy (χ2(2, 34)=
18.41, P < 1× 10−4). Specifically, the seizure onset regime
showed a significantly lower control energy requirement than the
propagation regime at the group level (N =34, t =−4.24, P <
6.6× 10−5) and a lower energy than in the termination regime,
although not significantly so (N =34, t =2.67, P < 0.02). The
results demonstrate how a perspective of dynamic controllabil-
ity can identify seizure regimes that may be controlled in an
energetically favorable manner.

Fig. 3. Group-level controllability dynamics throughout early, middle, and late seizure regimes. A single controllability metric value was obtained for
each regime in a seizure, and the distribution of regime metric values across all seizures (N = 34) is shown. Average controllability indicates the ease of
driving network activity to nearby states and was found to increase throughout seizure regimes (χ2(2, 34) = 9.59, P< 0.01). Modal controllability indicates
the ease of driving network activity to hard-to-reach or distant states and was found to decrease throughout seizure regimes (χ2(2, 34) = 9.59, P< 0.01).
Transient and persistent modal controllability describe the ease of perturbing the slow, sustaining modes of the system or the fast, attenuating modes.
A significant effect of seizure regime was found for both transient modal controllability (χ2(2, 34) = 8.88, P< 0.016) and persistent modal controllability
values (χ2(2, 34) = 18.59, P< 1× 10−4). Boxplots indicate the 75% confidence interval (box), median (solid line), 95% confidence interval (whiskers), and
outliers (stars). Starred bars indicate significant metric differences between regimes at the P< 0.017 level, determined using Friedman’s ANOVA.
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Fig. 4. State-dependent optimal control energy. (A) A significant effect of optimal control energy on seizure regime was found at the group level
(χ2(2, 34) = 18.41, P< 1× 10−4); energy values were significantly lower in the onset regime compared to propagation. Boxplots indicate the 75% confi-
dence interval (box), median (solid line), 95% confidence interval (whiskers), and outliers (stars). Starred bars indicate significant metric differences between
regimes using a t test at the P< 0.017 level. (B) The trajectory from seizure state to preictal baseline is controlled through designated SOZ nodes highlighted
in blue on the cortical grid for a seizure in subject HUP68 over τ control time steps. (Left) Total input energy into the set of SOZ nodes for subject HUP68
across τ control time steps. (Right) The Euclidean distance of network state at time t to final target network state xτ along the control trajectory (estimation
error, 31.46). (C) Optimal energy values are displayed across the three regimes for a single seizure in subject HUP68, where SOZ energy was significantly
lower than the null distribution in the onset regime (N = 5000, P< 0.05). Nodes are spatially arranged according to physical electrode placement, and the
color of each node outside the SOZ reflects the optimal control energy value averaged across resampled control sets in which the node participated. Nodes
in the SOZ are outlined in red.

Control Localization in Onset Regime. The optimal control energy
results demonstrated that the seizure onset regime is preferred
for its low energy requirements. In an effort to find the best
control location, we next asked whether controlling nodes at the
SOZ required less energy than controlling any other subset of
nodes, given that RNS treatments are typically localized to the
SOZ (1, 37). Seizures in all but four subjects exhibited focal
onsets, for a total of 22 seizures localized within the area of the
cortical grid electrodes and used in this analysis. We again mea-
sured the control energy required to drive the brain state along
an optimal trajectory from the initial states x0 in each seizure
regime to a final state xτ . This time, however, control input was
supplied to each SOZ node simultaneously. We then repeated
the simulation in 5,000 random reassignments of the SOZ labels
among the non-SOZ electrodes. We found that in only half of
the subjects exhibiting localizable SOZs, control using the SOZ
nodes required significantly less energy than control from other
subsets of nodes in the seizure onset regime (N =5,000,P <
0.05) (Fig. 4B and SI Appendix, Fig. S9). We observed no corre-
lation between SOZ significance and the number of SOZ nodes
(Mann–Whitney U =95.5,P > 0.84), suggesting that our results
are not simply due to differences in SOZ size. Factors such as age
at seizure onset, years with epilepsy, and seizure count were also
not significantly different between groups (SI Appendix, Results).
As an example, we show the spatial distribution of control energy
throughout the 8×8 electrode grid array in subject HUP68
where the SOZ energy was significantly lower during seizure
onset (Fig. 4C). Energy for non-SOZ nodes was calculated as
the average energy across all permutation tests in which they
participated. These results demonstrate that dynamic control-
lability analysis can answer spatiotemporal questions regarding
stimulation for seizure suppression.

Robustness of Results to Selected Parameters. Our analysis relies
on a number of assumptions, as well as parameterized methods
for EC network generation and regime delineation, and a param-
eterized optimal control energy model. We sought to evaluate
the reliability of our findings by assessing the sensitivity of our
results to our assumptions and parameter values. First, given that
spatiotemporal patterns of seizures propagating from the same
SOZ may be diverse within a subject (38), we chose to treat each
seizure as an independent data point. We completed an alter-
native analysis after grouping seizures within subjects and found

that the group-level trends of our main findings were preserved,
with persistent and transient modal controllability maintaining
significant differences across regimes despite the reduction in
number of data points (SI Appendix, Fig. S3). We also varied
the sparsity tuning hyperparameter, λ, used in EC estimation (SI
Appendix, Fig. S5), and adjusted the emphasis on temporal con-
tiguity of community assignments, β, when determining regimes
(SI Appendix, Fig. S6). In these analyses we found no significant
change in controllability values for any metric after varying each
parameter in a neighborhood around the parameter value used
in our main results. Finally, we reproduced our group-level opti-
mal control energy results using three additional pairs of time
horizon (τ) and distance–energy trade-off (α) parameters. We
found that optimal control estimation error increased but that
group-level trends were preserved for decreasing values of τ (SI
Appendix, Fig. S8). Taken together, we find that our main results
are robust to reasonable parameter variation.

Discussion
For patients with medication-resistant epilepsy, RNS as a means
of seizure suppression is a relatively new option that provides an
alternative to more permanent and invasive choices such as cor-
tical resection or laser ablation. While the majority of patients
improve over the course of months to years with treatment, the
current trial and error routine for selecting stimulation parame-
ters is far from ideal, and only rarely do patients achieve seizure
freedom (1, 2, 37). We completed this study to introduce a
control-theory framework for dynamic controllability that could
provide support for clinical treatment decisions and highlight the
regions and time points for stimulation that require the least
input.

Emergence of Quasi-Static Seizure Regimes. In a challenge to a
static brain controllability perspective, a number of studies find
that multiple patterns of corticocortical coupling may appear on
the same structural foundation and that time-evolving EC net-
works may provide a more accurate view of the connectivity land-
scape (14, 15, 35, 39). By estimating edges in our EC networks as
regularized partial correlations between brain regions, we strive
to remove contributions of common latent inputs from subcorti-
cal structures and describe only direct corticocortical influences.
Using this framework as a linear approximation of the region-to-
region dependencies in each seizure regime, we demonstrated
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superiority to a static structural model (SI Appendix, Results)
and uncovered a dynamic profile of controllability with implica-
tions for the input energy distribution across brain regions in a
given regime. Our results demonstrate increasing average con-
trollability and decreasing modal controllability throughout the
majority of seizures. Low average controllability at onset implies
that a widespread, diffuse distribution of input energy is hindered
at seizure initiation, complementing findings in functional con-
nectivity that show marked decoupling between brain regions at
onset due to loss of inhibitory restraint (12, 31). Later through-
out propagation and into termination regimes where coupling
between brain regions has been shown to increase (12, 29, 31),
our results suggest that it will become harder to direct the brain
into energetically unfavorable states (low modal controllability).

Interestingly, the temporal trend of persistent and transient
modal controllability differs from overall modal control in the
onset regime. The relatively low metric values at onset reflect
the combination of two factors—first, that input attenuation gov-
erned by the extreme eigenmodes could be relatively slower
in general at seizure onset than during propagation, and sec-
ond, that external perturbations may be less aligned with the
extreme eigenmodes at onset. Our findings are consistent with
a prior investigation of ictal eigenmode stability in a dynami-
cal linear framework showing that relatively faster decay in the
slowest eigenmodes occurred during midseizure, perhaps reflect-
ing greater synchrony with compensatory inhibition during the
propagation period (32). Our results indicate that decoupling
between brain regions at onset could make it particularly difficult
to control the very fast or very slow dynamics associated with the
extreme eigenmodes of the brain’s activity in that regime.

Spatiotemporal Control as a Tool for RNS Intervention. From the
perspective of clinical RNS treatment, our model supports
the current practice of intervening at seizure onset (37), with
group-level results indicating that the amount of control energy
required for a transition to a seizure-free state is smallest at
onset. We note that increased energy requirements for prop-
agation and termination regimes may be driven by our effort
to counteract the natural ictal progression, by fully controlling
brain state along a direct trajectory to seizure freedom, at an
energetic cost. Our analysis on locally differentiated optimal con-
trol energy between SOZ and non-SOZ nodes found that the
SOZ required significantly less energy for seizure suppression in
seizures in only half of the subjects. This finding does not sup-
port the SOZ as a universally energetically favorable stimulation
target and begs the question of whether energetically favorable
points outside the SOZ could still be clinically relevant stimu-
lation targets. There are a number of possible explanations and
factors that drive this result. Epilepsy is theorized to be a network
disorder (30, 40, 41); thus, it is likely that multiple cortical loca-
tions may be targeted to modulate the same pathologic network.
Additionally, in resective surgery, removal of the SOZ alone is
often insufficient, indicating that additional brain regions within
the broader epileptogenic zone contribute to support seizures
(28). These facts combined with evidence suggesting that seizure
precursors may appear outside of the SOZ (40), that tissue dam-
age at the SOZ may have remote effects on the functionality of
other brain regions (42), and that the vicinity of stimulus loca-
tion to the SOZ is not always significant for patient outcomes
(43) indicate that energetically favorable control points selected
by our model may still be effective even if outside the SOZ.
Among other factors, our results may also be constrained by the
linear control framework, which may capture shorter time hori-
zons for control but could oversimplify the true trajectory back
to a seizure free state (SI Appendix, Results).

Although current RNS technology is limited by a restricted
number of seizure detection criteria and stimulation response
patterns (2), our methodology could enrich a number of model-

based control approaches that could be adapted to improve
seizure suppression in future implantable devices. For exam-
ple, model predictive control (MPC) is a multivariable control
algorithm that periodically reassesses the control function every
few time steps along the planned trajectory (44). MPC relies
on an internal representation of the dynamical environment,
and our partial correlation EC model may improve upon prior
estimates by reflecting direct corticocortical influences. Other
recent work has theoretically demonstrated that seizures may
be controlled via static output feedback of a linear dynamical
system, wherein the underlying model is derived using multivari-
ate autoregression (MVAR) (45). This work could be extended
by removing spurious links in an MVAR model using a par-
tial correlation constraint that assesses the correlation between
a pair of nodes after removing the linear effects of other vari-
ables in the same and previous time points (46). Exciting future
directions include testing the hypotheses generated from these
models using intracranial data from patients with RNS implants
and prospectively in new stimulation paradigms.

Methodological Considerations. Our model of dynamic controlla-
bility has a number of limitations. First, we chose to operational-
ize brain state here as high-γ band power. While this measure is
commonly used in the epilepsy literature, it does not perfectly
capture other relevant features of brain activity including the
slope of the power spectral density, nonsinusoidal features of
the LFP, etc. (47, 48). Additionally, our model uses only a single
seizure-free brain state, when in reality it could be represented by
many state vectors. Second, our model assumes noise-free, linear
network dynamics within each time window and assumes that the
corticocortical influences constraining brain state evolution dur-
ing a given seizure regime will remain stationary with respect to
the time horizon for optimal control. Although the brain is non-
linear and it is possible that the dynamics of the EC network will
move away from its regime configuration after stimulation, linear
approximations on a short timescale can capture broad dynam-
ics in epilepsy while allowing for the application of linear control
theory and ease of interpretability (11, 12). Extending this work
to models of nonlinear control theory could similarly investi-
gate ways to control the brain to a seizure free manifold, rather
than a single state, and would complement the hypotheses gener-
ated here (18, 27).While beyond the scope of this work, clinical
deployment of our method would necessitate real-time seizure
regime classification, such as described in the algorithm validated
by Baldassano et al. (49), and implementation details will depend
heavily on the capabilities of the stimulation platform. Finally,
while stimulation is occasionally used to induce, and then inhibit,
a seizure while in the epilepsy monitoring unit, such occurrences
are rare, and our dataset did not contain instances of stimula-
tion. Immediate next steps will include testing the validity of our
proposed method with data containing stimulation events at time
points spanning all ictal regimes.

In conclusion, we employed a method of measuring controlla-
bility of effective networks and optimal seizure control energy
across three temporal seizure stages. Our results present pre-
liminary work in building theoretically informed hypotheses for
future empirical validation.

Materials and Methods
Subject Data. The ECoG data used for this study were recorded from subdu-
ral electrodes implanted in 14 epilepsy patients undergoing EEG monitoring
prior to surgical treatment for medically refractory epilepsy at the Hospi-
tal of the University of Pennsylvania (HUP) (512 Hz sample rate) or at the
Mayo Clinic in Rochester, MN (500 Hz sampling rate). All subjects included
in this study gave written informed consent. This study was approved by the
University of Pennsylvania Institutional Review Board and Mayo Clinic Insti-
tutional Review Board. The implanted surface electrodes (ad Tech Medical
Instruments) were composed of both grid and strip arrays with 2.3-mm-
diameter contacts at 10 mm intercontact spacing. Electrode placement was
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planned according to clinical protocol by a team of epileptologists with a
separate reference electrode placed distant to the site of seizure onset, as
in prior studies (30, 39). The following characterizations were determined
by an epileptologist and reviewed in a clinical conference at HUP: seizure
categorization as complex partial and/or secondarily generalized, the earli-
est electrographic onset, unequivocal electrographic onset, and focal SOZ or
lack of seizure focus. The deidentified patient data were retrieved from the
online International Epilepsy Electrophysiology Portal (IEEG Portal) (50).

EC Networks. For each epileptic event, EC networks were constructed from
1-s time windows of both ictal and preictal data. All time series data from
ECoG channel recordings were rereferenced to the common average ref-
erence to avoid broad field effects (30, 35, 38). Each channel was digitally
filtered with 60 Hz notch, 120 Hz low-pass, and 1 Hz high-pass filters using
a fourth-order Butterworth design to remove line noise, drift, and high-
frequency noise, respectively (38). The preprocessed data were partitioned
into consecutive 1-s time windows spanning the length of the seizure and
preictal period. For each window, the GLASSO method was used to find a
regularized partial correlation EC matrix (33). See SI Appendix, Methods, for
details.

Community Detection to Identify Seizure Regimes. A similarity matrix was
computed using the Pearson correlation coefficient between all pairwise
combinations of the T distinct EC networks for a single seizure; each ele-
ment was linearly weighted by a contiguity parameter β= 0.01, such that
networks at two distant time points were weighted less than those at adja-
cent time points. Using MATLAB, the Louvain algorithm from ref. 51 was
used to assign networks to communities from the network similarity matrix.
The number of communities discovered can be tuned by the scaling param-
eter γ. For each EC network, the Louvain algorithm was run 100 times using
a value of γ that produced three communities, and a consensus partition
was selected from the 100 trial partitions. See SI Appendix, Methods, for
details.

Controllability Metrics and Optimal Control Calculations. Average, modal,
persistent modal, and transient modal controllability metrics were calcu-
lated in MATLAB with custom scripts and code from ref. 7. Before calculating
a given controllability metric, each function first ensures that the network is
stable by enforcing Schur stability and then subtracting the identity matrix
to normalize the eigenvalues (25). Optimal control energy was also calcu-
lated in MATLAB using functions referenced in ref. 7. Optimal control energy
requires the selection of the value for τ , the number of time steps over
which to perform the control trajectory optimization, and α, an energy–
distance trade-off parameter. Parameter selection details can be found in SI
Appendix, Methods.

Statistical Methods. Friedman’s ANOVA, t tests, and Bonferroni corrections
for multiple comparisons were performed using functions from MATLAB’s
statistics toolbox. We wrote custom MATLAB scripts to create null distri-
butions for our energy analysis by randomly sampling with replacement

5,000 sets of nodes containing the same number of nodes as our set of
interest. Our random resampling method is an extension of similar meth-
ods used to compute subject-specific confidence intervals for nodal metric
values (52).

Diversity Statement. Recent work in several fields of science has identified a
bias in citation practices such that papers from women and other minorities
are undercited relative to the number of such papers in the field (53–57).
Here we sought to proactively consider choosing references that reflect the
diversity of the field in thought, form of contribution, gender, and other
factors. We obtained predicted gender of the first and last author of each
reference by using databases that store the probability of a name being car-
ried by a woman (57, 58). By this measure (and excluding self-citations to the
first and last authors of our current paper), our references contain 22.92%
woman(first)/woman(last), 26.05% man/woman, 6.67% woman/man, and
44.36% man/man. This method is limited in that 1) names, pronouns, and
social media profiles used to construct the databases may not, in every case,
be indicative of gender identity and 2) it cannot account for intersex, non-
binary, or transgender people. Second, we obtained predicted racial/ethnic
category of the first and last author of each reference by databases that
store the probability of a first and last name being carried by an author of
color (59, 60). By this measure (and excluding self-citations), our references
contain 9.29% author of color (first)/author of color(last), 12.25% white
author/author of color, 23.54% author of color/white author, and 54.92%
white author/white author. This method is limited in that 1) names, Cen-
sus entries, and Wikipedia profiles used to make the predictions may not
be indicative of racial/ethnic identity and 2) it cannot account for Indige-
nous and mixed-race authors or those who may face differential biases due
to the ambiguous racialization or ethnicization of their names. We look for-
ward to future work that could help us to better understand how to support
equitable practices in science.

Data Availability. Anonymized iEEG were retrieved from the publicly acces-
sible database hosted on the International Epilepsy Electrophysiology Portal
(www.ieeg.org) (50).
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