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Abstract— In this paper we study cluster synchronization in
a network of Kuramoto oscillators, where groups of oscillators
evolve cohesively and at different frequencies from the neigh-
boring oscillators. Synchronization is critical in a variety of
systems, where it enables complex functionalities and behaviors.
Synchronization over networks depends on the oscillators’
dynamics, the interaction topology, and coupling strengths, and
the relationship between these different factors can be quite
intricate. In this work we formally show that three network
properties enable the emergence of cluster synchronization.
Specifically, weak inter-cluster connections, strong intra-cluster
connections, and sufficiently diverse natural frequencies among
oscillators belonging to different groups. Our approach relies on
system-theoretic tools, and is validated with numerical studies.

I. INTRODUCTION

Synchronization is fundamental to a number of complex
phenomena in natural, social, and man-made systems [1],
[2]. Examples include coordinated flashing of fireflies [3],
cohesive flocking of birds [4], orchestrated firing of neurons
[5], [6], entrainment of circadian rhythms [7], and reliable
energy production in power grids [8], [9]. While some sys-
tems rely on complete synchronization to function properly,
recent studies have highlighted the importance of cluster
synchronization, where different groups evolve cohesively
but independently from one another. Cluster synchronization,
for instance, may be responsible for several neural patholo-
gies, such as Parkinson’s [10] and Huntington’s [11] diseases,
and epilepsy [12]. Due to its ubiquitous relevance, complete
synchronization has been a topic of extensive study in the last
decades [13], [14], [15], [16]. Yet, fundamental mechanisms
and conditions enabling partial or cluster synchronization
have remained elusive.

In this paper we consider networks of Kuramoto oscillators
[17], and we characterize topological and intrinsic conditions
enabling cluster synchronization. Our choice of Kuramoto
dynamics stems from its ability to characterize a variety of
complex phenomena across scientific domains [16], [9], [6],
[18], despite its simplicity and limited number of param-
eters. While cluster synchronization may be the result of
intricate interactions, we show that three main properties
are responsible for the emergence of clusters. Specifically,
we show that oscillators may form a cluster when they
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are strongly interconnected among each other, with weak
outside interconnections, and with natural frequencies that
are sufficiently different from those of the connected units.

Related work Complete synchronization of Kuramoto os-
cillators has been the subject of extensive research [13],
[19]. Results have been derived for different configurations,
including infinite and finite-dimensional networks. For in-
stance, it is now known that, when the oscillators’ natural
frequencies are heterogeneous, synchronization is achieved
for sufficiently large coupling strength, which overcomes
the differences between the intrinsic characteristics of each
oscillator.

Cluster or partial synchronization has received consider-
ably less attention than full synchronization. In [20] pat-
terns and group synchronization are studied, together with
their stability properties for different classes of dynamics.
Similarly, in [21] the authors describe a network of oscilla-
tors where clustered dynamics are due to the nonidentical
dynamical behaviors of different clusters, and focus on
the relationship between cluster synchronization and the
topology of the underlying unweighted graph. More recently,
the relation between cluster synchronization and network
symmetry is studied in [22]. In [23] the authors propose a
general technique to study stability of each cluster. In par-
ticular they exploited symmetry methods to find all possible
clusters in networks of Laplacian-coupled oscillators. Cluster
synchronization in networks with general topologies is the
topic of [24], where the authors use the graph-theoretical
notion of external equitable partitions to find clusters of
oscillators. In this work we propose the use of system-
theoretic tools to study cluster synchronization in networks
of Kuramoto oscillators, and we characterize key properties
enabling the emergence and stability of clusters.

Paper contributions The contribution of this paper is as
follows. First, we formalize the problem of cluster syn-
chronization in a network of Kuramoto oscillators, and we
provide a condition to ensure that the phases of a group
of oscillators remain within a certain angle from each
other. This condition quantifies the importance of inter- and
intra-cluster connections. That is, a cluster requires strong
coupling within the oscillators and weak coupling with the
neighboring oscillators outside the cluster. Second, we use a
series of approximations and tools from frequency analysis of
linear systems to show that, independently of the strength of
the interconnections, a group of oscillators remains cohesive
when their natural frequencies are sufficiently different from
the natural frequencies of the neighboring oscillators outside
the cluster. Finally, we provide numerical results to validate
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Fig. 1. This Figure shows a network of oscillators, where clusters of
synchronized oscillators emerge. The topics of the paper focus on the
analysis of the properties of the cluster C = {1, 2}.

our findings and motivate further studies.

Paper organization The rest of the paper is organized as
follows. Section II contains our setup and some preliminary
results. Section III contains our conditions for the emergence
of cluster synchronization. Finally, Section IV contains our
numerical studies, and Section V concludes the paper.

II. PROBLEM SETTING AND PRELIMINARY NOTIONS

We consider a network of oscillators represented by the
directed graph G = (V, E), where V = {1, . . . , n} and E ⊆
V×V denote the set of oscillators and their interconnections,
respectively. Let A = [aij ] be the weighted adjacency matrix
of G, with aij ∈ R>0 if (i, j) ∈ E and aij = 0 otherwise,
and let θi : R≥0 → R be the map describing the phase of
the i-th oscillator. We assume that the phase θi evolves as

θ̇i = ωi +

n∑
j=1

aij sin (θj − θi) , i = 1, . . . , n (1)

where ωi ∈ R≥0 is the natural frequency of the i-th oscillator.
The dynamics (1) are a generalized version of the classic
Kuramoto model [17].

Depending on the interconnection pattern and weights,
networks of Kuramoto oscillators exhibit a variety of syn-
chronization behaviors [25], [26]. In this paper, we are
particularly interested in characterizing clustered synchro-
nization, where the oscillators can be grouped based on their
oscillation phase. To formalize this concept, we introduce the
following definition.

Definition 1: (Cluster of oscillators) The set of oscillators
C ⊆ V is a cluster if there exists an angle 0 ≤ γ ≤ π such
that, whenever |θi(0)−θj(0)| ≤ γ , then |θi(t)−θj(t)| ≤ γ,
for all i, j ∈ C and at all times t ≥ 0. �

While complete synchronization is a well-studied problem
in the literature of Kuramoto networks [13], [14], [15],
[16], the emergence of synchronized clusters is a complex
phenomena whose explanation has remained elusive. In this
paper, we derive topological and intrinsic conditions on
the network of oscillators that facilitate the formation of
clustered dynamics. In particular, we show that synchronized

clusters may emerge as the result of three independent net-
work features: weak inter-cluster connections, strong intra-
cluster connections, and sufficiently diverse natural frequen-
cies among oscillators belonging to different groups. To
better convey this message and for ease of presentation,
we focus on the analysis of the properties of the cluster
C = {1, 2} shown in Fig. 1. Furthermore, and without loss
of generality, we assume ω1 = ω2 = 0. We remark that the
ideas and methods developed in this paper apply in fact to
more general network configurations, as we illustrate in our
numerical studies in Section IV.

III. CLUSTER SYNCHRONIZATION IN KURAMOTO
NETWORKS

Consider the network configuration in Fig. 1. The dynam-
ics of the clustered oscillators read as

θ̇1 = a12 sin(θ2 − θ1) +
n∑
j 6=2

a1j sin(θj − θ1),

θ̇2 = a21 sin(θ1 − θ2) +
n∑
j 6=1

a2j sin(θj − θ2).
(2)

A simple, yet conservative, bound on the clustering angle γ
between the phases of the oscillators can readily be obtained.

Lemma 3.1: (Cluster condition based on edges weight)
Consider the dynamics (2), and let

|θ1(0)− θ2(0)| ≤ arcsin

 n∑
j=3

a1j + a2j
a12 + a21

 =: γ.

Then, at all times t ∈ R≥0,

|θ1(t)− θ2(t)| ≤ γ,

that is, C = {1, 2} is a cluster with respect to the angle γ.
Proof: To prove the positive invariance w.r.t. γ, we have

to show that, if |θ1 (t)− θ2 (t)| = γ at an instant of time
t, then the phase difference will not increase in absolute
value or, equivalently, the derivative of the absolute value
of the difference function is non-positive. The derivative of
|θ1 − θ2| at time t is the following:

d

dt
|θ1 − θ2| = − (a12 + a21) sin (γ) + u (3)

where γ = |θ1 − θ2| and

u := ±
n∑
j 6=2

a1j sin (θj − θ1)∓
n∑
j 6=1

a2j sin (θj − θ2)

Because the sine function is bounded, it is |u| ≤∑n
j=3 (a1j + a2j). Moreover, the hypothesis of Lemma 3.1

ensures that:

γ = arcsin

 n∑
j=3

a1j + a2j
a12 + a21

 ,

which implies that the derivative (3) is always non positive.
This fact guarantees the positive invariance of C w.r.t. γ.
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Fig. 2. This Figure shows max |x| := maxt |θ1 − θ2| and the bound γ as
a function of the couplings strengths and the oscillators’ natural frequencies.

Lemma 3.1 highlights an important property of a cluster,
that is, nodes inside the cluster are strongly connected while
nodes outside the cluster interact only through weak con-
nections. In fact, consistent with our intuition, the clustering
angle γ converges to zero when the ratio of the edges en-
tering the cluster (namely,

∑n
j=3 (a1j + a2j) in Lemma 3.1)

to the edges within the cluster ((a12 + a21) in Lemma 3.1)
approaches zero, and the bound becomes exact in this limit
(see Fig. 2(a)). Yet, as we show in Fig. 2(b), the bound
in Lemma 3.1 can be very conservative, especially when
the natural frequencies of the oscillators within the cluster
are far apart from the natural frequencies of the connected
oscillators outside the cluster.

To capture this behavior and obtain a more accurate bound,
we proceed as follows. Let x := θ1 − θ2, and notice that

ẋ = −(a12 + a21) sin(x) +

n∑
j=3

(a1ju1j − a2ju2j) , (4)

where uij = sin(θj−θi) for i ∈ {1, 2}. The following result
uses two linear systems to find a bound for the evolution of
x.

Lemma 3.2: (Linear bound) Let x, u1j , and u2j be as
in Equation (4), and γ as in Lemma 3.1, respectively. If
|xl (0)| ≤ |x (0)| ≤ |xu (0)|, then

|xl| ≤ |x| ≤ |xu|,

where xl and xu satisfy

ẋl = −(a12 + a21)xl +

n∑
j 6=2

a1ju1j −
n∑
j 6=1

a2ju2j ,

ẋu = − (a12 + a21) sin(γ)

γ
xu +

n∑
j 6=2

a1ju1j −
n∑
j 6=1

a2ju2j .

Proof: By hypothesis and Lemma 3.1, we know that
|x (t)| ≤ γ and |xu (t)| ≤ γ for every t.
If x, xu ≥ 0, we have that ẋ ≤ ẋu, indeed:

− sin (γ)

γ
xu ≥ −

sin (γ)

γ
γ = − sin (γ) . (5)

By using the Comparison Lemma in [27], it follows that

x (t) ≤ xu (t) , if x, xu ≥ 0,∀t ≥ 0. (6)

If x, xu ≤ 0, we can consider x̃ := −x, x̃u := −xu,
which are both non-negative and the Comparison Lemma
still proves that x̃ (t) ≤ x̃u (t), for all t ≥ 0, which means

x (t) ≥ xu (t) , if x, xu ≤ 0,∀t ≥ 0. (7)

Equations (6) and (7) together prove the right side of the
thesis |x| ≤ |xu|.

In order to prove that |xl| ≤ |x|, we can follow the same
reasoning as above, by reversing the inequalities.

Lemma 3.2 exploits the Comparison Lemma [27] to bound
the evolution of the nonlinear differential dynamics of x with
linear dynamics. These expressions can be further used to
quantify how the oscillators’ natural frequencies influence
the angle deviations of nodes within the same cluster. In
particular, we approximate the differential angle x with its
upper bound xu, which obeys linear dynamics. Then, we
use Bode analysis to show that, in its linear approximation,
the cluster behaves as a low pass filter with respect to the
difference of the natural frequencies of the oscillators within
and outside the cluster. Thus, when the natural frequencies
of the oscillators outside the cluster increase, the inputs uij
have an increasingly smaller effect on the dynamics of the
cluster. This allows us to explain the behavior highlighted in
Fig. 2(b), and to derive a better bound – both qualitatively
and quantitatively – on the invariance properties of the
cluster. Let i be the imaginary unit, and let a . b denote
that the value of a is approximately less than the value of b.

Theorem 3.3: (Cluster condition based on edges weight
and oscillators’ natural frequency) Consider the dynamics
(2), and let |θ1(0)− θ2(0)| ≤ γ. Then,1

|θ1(t)− θ2(t)| .
n∑
j=3

(a1j + a2j)|G(iωj)| := β, (8)

where G is the transfer function defined as

G(s) =

(
s+

(a12 + a21) sin(γ)

γ

)−1
.

Moreover, as ωj increases to infinity for j = {3, . . . , n},

lim
t→∞

|θ1(t)− θ2(t)| = 0.

Proof: From (4), define

y1j := θj − θ1, y2j := θj − θ2, uij := sin (yij) . (9)

At first, let us show that θj (t) −→ ωjt as ωj goes to
infinity, for each j = 3, . . . , n. If we consider that each θj is
coupled with other Kj nodes in addition to θ1 and θ2, with
coupling weights wkj , we can evaluate θ̇j/ωj as:

θ̇j
ωj

= 1−
2∑
i=1

aij
ωj

sin (yij) +

Kj∑
k=1

wjk
ωj

sin (θk − θj) ,

which tends to 1 as ωj tends to infinity. As a consequence:

θ̇j (t) −→ ωj and θj(t) −→ ωjt. (10)

1In other words, max |θ1(t)−θ2(t)|−
∑n

j=3(a1j+a2j)|G(iωj)| ≈ 0.
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(a) n = 4 (b) n = 12 (c) n = 52 (d) n = 102

Fig. 3. Example of simulation with ω1 = ω2 = 0, ωi ∈ [0, 100] for i = 3, . . . , n, a12 = a21 = 1 and aij ∈ [0, 0.05] for the other couplings, except
for the case n = 102 (in this case aij ∈ [0, 0.02]). The blue line is the dynamics of |x| = |θ1 − θ2|, the yellow one indicates the value of γ from Lemma
3.1, whereas the red one is the tighter bound β given by Theorem 3.3.

By Lemma 3.2, we know that xu is an upper bound for
θ1 − θ2, if γ obeys the assumptions. The transfer functions
w.r.t. inputs uij for the linearized system xu, for each i = 1, 2
and j = 3, . . . , n, are the following:

G(ij) (s) = aijG (s) , (11)

G (s) =

(
s+

(a12 + a21) sin(γ)

γ

)−1
.

Note that G(ij) plays the role of a low pass filter (see Fig.
4). Therefore, if we take into account the frequency of the
inputs uij , we can reduce the conservative bound given by
Lemma 3.1, by evaluating the maximum Bode magnitude of
each input signal:∥∥∥G(ij)

∥∥∥
∞

= max
ω

∣∣∣G(ij) (iω)
∣∣∣ ≈ aij |G (iωj)| .

Equation (10) states that this approximation improves as the
natural frequencies tend to infinity.

The superposition principle for linear systems allow us to
define an approximation for the upper bound for the influence
of the inputs uij on |x (t)| as the sum of every contribution:

|x (t)| .
n∑
j=3

(a1j + a2j)|G(iωj)|,

which corresponds exactly to equation (8).
From (9) we have that for all j = 3, . . . , n and i = 1, 2,

it holds sin (θj − θi)→ sin (ωjt− θi) , as ωj → +∞.
Therefore, there is:

lim
{ωj}Nj=3→∞

ẋ = − (a12 + a21) sin (x) +

n∑
j=3

v̇1j − v̇2j ,

where v̇ij := aij sin (ωjt− θi).
As each ωj tends to infinity, then every vij tends to zero.

Indeed, for 3 ≤ j ≤ n and i = 1, 2:

vij (t) =

∫ t

0

aij sin (ωjτ − θi) dτ

= aij

∫ t

0

sin (ωjτ) cos (θi)− cos (ωjτ) sin (θi) dτ.

If we define:

f1 (t) :=
1

ωj
cos (ωjt) , g1 (t) := − cos (θi (t)) , (14a)

f2 (t) :=
1

ωj
sin (ωjt) , g2 (t) := − sin (θi (t)) , (14b)

it follows that

vij = aij

∫ t

0

(df1g1 + df2g2) dτ

= aij

(
f1g1

∣∣∣∣t
0

−
∫ t

0

f1dg1dτ + f2g2

∣∣∣∣t
0

−
∫ t

0

f2dg2dτ

)
.

From equation (2), we have that θ̇i, i = 1, 2, is O (ωj), if
ωj tends to infinity and hence:

dg1 = θ̇i sin (θi) ∈ O (ωj) , dg2 = −θ̇i cos (θi) ∈ O (ωj) ,

which implies that each term of vij tends to zero as ωj goes
to infinity, and hence

lim
{ωj}nj=3→∞

ẋ = − (a12 + a21) sin (x) . (17)

To prove the thesis, we can show that x∗ = 0 is a globally
asymptotically stable [27] equilibrium point for (17). Let us
consider the Lyapunov function V (x) := x2

2 > 0, ∀x 6= x∗.
In particular, we have:

V (x)→ +∞ as ‖x‖ → +∞, (18a)

V̇ (x) =
∂V (x)

∂x
· ẋ = − (a12 + a21)x sin (x) . (18b)

V̇ (x) is definite negative for all x s.t. |x| ≤ γ ≤ π/2. By
the Lyapunov Theorem for Global Asymptotic Stability [27]
the global asymptotic stability of x∗ is proved.

Theorem 3.3 quantifies how the natural frequencies of the
oscillators connected to a cluster affect the cluster stability. In
particular, the larger the difference between the frequencies
of the node within and outside the cluster, the smaller the
effect of the outside nodes on the evolution of the cluster,
independently of the weight of the interconnection edges. In
the limit when these frequencies grow to infinity, the clus-
ter becomes practically disconnected from the neighboring
nodes and achieves phase synchronization [13], [19].
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Fig. 4. Bode diagram of the magnitude (in absolute value) of the transfer
function that characterizes the linear system ẋu, which plays the role of a
bound for the dynamics of x w.r.t. each input uij . This linear system acts
as a low-pass filter, which cuts off the high frequencies of the input.

To conclude this section, we show that the bounds in
Lemma 3.1 and Theorem 3.3 coincide when the natural
frequencies of the oscillators outside the cluster approach the
natural frequencies of those inside the cluster. In particular, it
is important to note that in this situation both the bounds are
conservative, since a synchronization among all the nodes
within the network is reached [13], [19].

Corollary 3.4: (Equivalence of bounds when the natural
frequencies coincide) Let ωj = 0 for all j = 1, . . . , n. Then

n∑
j=3

(a1j + a2j)|G(iωj)| = γ,

that is, the bounds in Lemma 3.1 and Theorem 3.3 coincide.
Proof: As defined in (11), G (s), evaluated in s = i0

becomes:

G (i0) =

(
(a12 + a21) sin(γ)

γ

)−1
,

which implies
n∑
j=3

(a1j + a2j) |G (i0)| = γ

sin (γ)

n∑
j=3

a1j + a2j
a12 + a21︸ ︷︷ ︸
sin(γ)

= γ.

Therefore, the two bounds coincide.

IV. NUMERICAL EXAMPLES

In this section we validate our theoretical findings and
assumptions through a number of numerical studies. Fig.
3 and Fig. 5(a) show the behavior of the phase difference
x with respect to the bounds derived in Lemma 3.1 and
Theorem 3.3. In particular, Fig. 3 shows that the bound
γ derived in Lemma 3.1 is more conservative than the
bound β computed in Theorem 3.3, because it does not
account for the frequencies of the neighboring oscillators.
The simulations show that both bounds become more and
more conservative as the number of neighboring oscillators
increases, suggesting that the properties of a cluster may
also depend on the number of neighboring oscillators. Fig.
5 summarizes the results in Fig. 3 showing how the bounds
γ and β and the phase difference x behave as a function of
the number of neighboring oscillators and their frequencies.
It should be observed that, while γ is a bound for the phase

n− 2
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Fig. 5. (a) Comparison between the growth of the two bounds γ (related
to Lemma 3.1) and β (obtained by Theorem 3.3) w.r.t. the number of nodes
n. (b) Comparison between the growth of the bounds β and the real value
of max |x| w.r.t. the values of ωi.

C

Fig. 6. Example of configuration of a network, which nodes are represented
by clusters of oscillators.

difference x, the quantity β is only approximately greater
than x. In other words, β is an approximation for the largest
phase difference x over all possible network configurations.

The analysis in this paper is limited to the case of a
cluster with two oscillators with natural frequency equal to
zero. Yet, the clustering mechanisms apply to more general
network configurations. Consider for instance the network
of oscillators represented in Fig. 6. Fig. 7 shows the largest
difference of the phases of the oscillators within the cluster
C, as a function of the coupling strength and the natural
frequencies of the neighboring oscillators outside the cluster.
Consistent with our analysis for a cluster with two nodes, the
cluster C is more and more cohesive as the coupling strength
with neighboring nodes decreases, or the difference with the
neighboring natural frequencies increases.

Finally, we consider the case where the natural frequencies
of the nodes within the cluster are nonzero (ω1 = ω2 =
ω0 6= 0). As shown in Fig. 8(a) and 8(b), all our results and
bounds still hold, as they depend on the difference between
the natural frequencies of the nodes within and outside the
cluster, not their absolute values.

V. CONCLUSION AND FUTURE WORK

In this work we characterize cluster synchronization in
networks of Kuramoto oscillators. In particular, we unveil
conditions on the interaction network and oscillators natural
frequencies that enable the emergence of groups of oscilla-
tors that evolve cohesively independently of the neighboring
oscillators. We use tools from linear and nonlinear sys-
tems theory to quantify that cluster synchronization depends
primarily on three properties: strong intra-cluster coupling,
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Fig. 7. Maximum difference between the nodes within the cluster w.r.t. (a)
the coupling with the nodes outside the cluster and w.r.t. (b) the differences
between the natural frequencies, in the configuration of Fig. 6, where a
cluster C of n = 4 nodes is analysed. Results obtained as the mean of
20 simulations per each value of the considered parameter. Specifically, the
coupling strength aij is chosen in the range [0, 1] (with a12 = a21 = 1)
and the natural frequencies are in the set {0.01, 0.1, 1, 10, 100, 500, 1000}.

(a) ω0 = 10, {ωj}nj=3 = 100. (b) ω0 = 100, {ωj}nj=3 = 10.

Fig. 8. Examples of simulation of a network with n = 4 nodes and the
natural frequencies of the clustered oscillators ω0 6= 0. The two simulations
are symmetric, in terms of difference between ω0 and the natural frequencies
of the external nodes.

weak inter-cluster coupling, and sufficiently heterogeneous
oscillators’ natural frequencies. Several directions are left as
the subject of future investigation, including the study of
more complex clusters configurations and network topolo-
gies, and the design of systematic procedures to predict
clusters.
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