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On Kalman Filtering with Compromised Sensors: Attack Stealthiness
and Performance Bounds

Cheng-Zong Bai, Vijay Gupta , and Fabio Pasqualetti

Abstract—Control systems operate under the assumption that
sensors are trustworthy. Yet, when communication channels are
unprotected or sensors are accessible from networked stations,
malicious users can compromise the system by spoofing the
measured information. We consider a linear time-invariant system
with a single sensor, where the state is estimated by a Kalman
filter. We assume the presence of an attacker with the ability to
modify the measurements arbitrarily, which are then processed by
the Kalman filter for as long as the attacker remains undetected.
The objective of the attacker is to maximize the mean square error
of the Kalman filter. We adopt a notion of attack stealthiness based
on the Kullback–Leibler divergence measure, and characterize the
worst case degradation induced by an attacker with a fixed stealth-
iness level. Additionally, we characterize optimal attack strate-
gies that achieve our bound of performance degradation, thereby
proving tightness of our result.

Index Terms—Detection of stealthy malicious attacks, Kullback-
Leibler divergence, security of cyberphysical systems.

I. INTRODUCTION

Cyber-physical systems are an integral part of modern society, and
need to operate reliably in the face of accidental and malicious mal-
functions. Existing protection mechanisms based on data encryption
and fault detection have proven ineffective especially against delib-
erate manipulation from resourceful attackers [2]–[4], showing the
need for new theoretical and practical approaches to cyber-physical
security [5].

For a system to function reliably, contingencies and malfunctions
need to be promptly detected and remediated. While accidental mal-
functions can be detected more easily [6], [7], malicious attacks can
remain unnoticed when the system parameters and measurements are
properly manipulated [8], [9], thereby posing additional challenges and
risks. For deterministic systems, recent studies have shown that attack
detectability is equivalent to the control-theoretic notion of invariant
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zeros [10]. In particular, in a deterministic system an attack is unde-
tectable from the system measurements if and only if it excites only
the zero dynamics of the attack-output system [8], [11]. Thus, attack
detectability in deterministic systems has a binary answer that is inde-
pendent of the detection algorithm. For systems driven by process and
measurement noise, instead, attack detectability is typically defined
based on common detection algorithms, such as the bad data detector
[12]. While convenient for analysis, this approach fails to provide a
comprehensive characterization of attack detectability. In fact, when
the attacker has knowledge of the detection algorithm, it may orches-
trate attacks that are undetectable from the algorithm that is being used,
but could possibly be revealed with other methods. This motivates us to
adopt a notion of attack stealthiness that does not rely on any specific
type of detector, and that consequently allows us to reveal fundamental
detectability properties.

In [1], we introduced the notion of ε-marginal stealthiness to quan-
tify the stealthiness level in an estimation problem with respect to the
class of ergodic detectors. This notion, however, is not sufficiently gen-
eral and it lacks a concrete connection with useful detection metrics
such as the error probability. Following [13], in this paper we adopt a
notion of ε-stealthiness that is based on the information-theoretic no-
tion of the Kullback–Leibler divergence (KLD), which quantifies the
achievable exponent of the probability of false alarms and is indepen-
dent of the attack-detection algorithm being used. We consider linear
time-invariant systems with a single sensor, where the state is estimated
by a Kalman filter. We allow the attacker to arbitrarily manipulate the
measurements, with the objective to maintain a desired stealthiness
level while maximizing the mean square error (MSE) of the Kalman
filter implemented by the estimator with the corrupted measurements.
Our analysis and results depart from the literature in different ways.
For instance, compared to [14], we do not assume that the system is
k-sparse observable, that is, we allow all sensors to be compromised by
the attacker. Compared to [15], we do not restrict the detection scheme
to the class of χ2 detectors (in fact, we do not restrict the detection
scheme to any particular class), and we do not restrict the attack strate-
gies to be linear. Finally, we remark that since the submission of this
paper, some recent literature has appeared that builds on it and uses
a notion of attack detectability that is similar to what we propose in
[1], [13], and in this paper. For instance, Kung et al. [16] extend the
notion of ε-stealthiness given in [13] to higher order systems, and show
how the performance of the attacker differ in the scalar and vector
cases. In [17], Zhang and Venkitasubramaniam extend the setup in [13]
to vector and not necessarily stationary systems, but consider a finite
horizon problem. Two other relevant recent works are [18] that uses the
notion of the KLD as a causal measure of information flow to quantify
the effect of attacks on the system output, whereas [19] characterizes
optimal attack strategies with respect to a linear quadratic cost that
combines attackers control and undetectability goals.

The main contributions of this paper are twofold. First, we pro-
pose an information-theoretic approach to define a graded notion of
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attack stealthiness, namely ε-stealthiness, and to characterize funda-
mental limitations for the detection of sensor attacks in stochastic con-
trol systems. We derive limitations on the degradation of the MSE
of the Kalman filter for strictly stealthy attacks (ε = 0) and for gen-
eral ε-stealthy attacks (ε > 0). Furthermore, we quantify performance
degradation as a function of the attacker’s knowledge of the system,
and as a tradeoff with the stealthiness level. Second, we design optimal
attacks that achieve the identified performance bounds, and prove their
tightness. Finally, we illustrate our results.

Notation: We denote a random variable by boldface X and its
realization by the normal font x. The probability density function of
X is denoted by fX (x) and, by abusing the notation, by fX or fx .
A Gaussian distribution with mean μ and variance σ2 is denoted by
N (μ, σ2 ). A sequence {yn }k

n =1 is denoted by yk
1 . The KLD between

two random sequences xk
1 and yk

1 is defined as

D
(
xk

1

∥
∥yk

1

)
=

∫ ∞

−∞
fxk

1
(tk

1 ) log
fxk

1
(tk

1 )

fy k
1
(tk

1 )
dtk

1 (1)

where fxk
1

and fy k
1

are the probability density functions of xk
1 and yk

1 ,

respectively. The set of real numbers is R. sgn(·) is the sign function
with sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.

II. PROBLEM FORMULATION

A. System Model

Consider a process with state xk ∈ R that evolves as

xk+1 = axk + wk , k ≥ 1, (2)

yk = cxk + vk

where a, c ∈ R, |a| < 1, the initial condition x1 ∼ N (0, Π0), and w∞
1

and v∞
1 represent the process noise sequence and the measurement

noise sequence, respectively. Both noise sequences are assumed to be
white processes with wk ∼ N (0, σ2

w ) and vk ∼ N (0, σ2
v ), with σ2

w

and σ2
v being positive. All the random variables in the process noise

sequence, measurement noise sequence, and the initial condition are
assumed to be mutually independent.

If no attacker is present, an estimator uses the measurements
yk

1 to generate a minimum MSE (MMSE) estimate x̂k+1 of the
state xk+1 based on these measurements. The Kalman filter pro-
vides a recursive calculation for the estimate that minimizes the MSE
E[(x̂k+1 − xk+1 )2 ]. Thus, the estimate evolves as

x̂k+1 = ax̂k + K(k)(yk − cx̂k ) (3)

where K(k) is the Kalman gain. For nonzero a and c, the Kalman
gain converges exponentially. In the sequel, we assume that the MMSE
estimate is obtained by a steady-state Kalman filter with initial con-
dition x̂1 = 0. The results in this paper can be generalized to more
general initial conditions at the expense of more notation; the main
intuition is that the problem formulation and the main results below
are dominated by the steady state of the system. Given this assump-
tion, we remove the time dependence on the Kalman gain and denote
it by K . The Kalman gain is given by K = acP (c2P + σ2

v )−1 , where
P = E[(x̂k+1 − xk+1 )2 ] is the MSE of the state estimation, which is
the positive solution to the following equation:

P = a2P + σ2
w − a2 c2P 2

c2P + σ2
v

.

Let zk = yk − cx̂k be the innovation of the Kalman filter at time
k. Notice that z∞

1 is a white sequence with zk ∼ N (0, σ2
z ) and

σ2
z = c2P + σ2

v .

B. Attack Model

An attacker can possibly replace the measurement sequence y∞
1

transmitted by the sensor with any arbitrary attack sequence ỹ∞
1 . If

the estimator is not aware of the presence of the attacker, the attack
sequence ỹ∞

1 is treated as the input to the Kalman filter. Denote the
corresponding output of the Kalman filter by ˆ̃x∞

1 . This sequence is
treated as the estimate of the state since the estimator does not know
that an attack is in progress. Similar to (3), the sequence ˆ̃x∞

1 is obtained
as

ˆ̃xk+1 = a ˆ̃xk + K(ỹk − cˆ̃xk ) (4)

where the initial condition ˆ̃x1 = x̂1 . With this corrupted estimate, the
estimation error is given by (ˆ̃xk+1 − xk+1 ). Denote the corresponding
MSE that is induced by the attacker by P̃k+1 = E[(ˆ̃xk+1 − xk+1 )2 ].

We now specify the information available at the attacker for the
design the attack sequence ỹ∞

1 . We assume that the attacker knows
the system model in (2), and that the information about the system
variables at time k is denoted by the set Ik . Examples of information
patterns Ik are as follows.
1) The attacker has access to the system state (Ik = {xk

1 }).
2) The attacker has access to the measurements (Ik = {yk

1 }).
3) The attacker has access to the measurements with a delay d ∈ N

(Ik = {yk−d
1 }).

4) The attacker has no information about the state Ik = {∅}.
The attacker uses a Kalman filter to obtain an MMSE state estimate

x̂A
k+1 of the state xk+1 . Let KA be the steady-state Kalman gain in

this filter, PA its steady-state MSE, and {zA
n }k

n =1 the innovation at the
attacker.

Assumption 1: Due to causality constraints, Ik is independent of
w∞

k and v∞
k+1 , and the innovation {zA

n }k
n =1 is a white Gaussian process

with zA
k ∼ N (0, σ2

z A ). �
The next result follows from the principle of orthogonality [20].
Lemma 1: For any information pattern I∞

1 that satisfies
Assumption 1,
1) the attacker’s innovation zA

k is independent of all random variables
zA

h , with h < k, generated by Ik−1
1 ; and

2) the attacker’s estimation error (x̂A
k+1 − xk+1 ) is independent of

all random variables generated by Ik .
Finally, denote the “innovation” sequence at the estimator in the

presence of an attacker by z̃k = ỹk − cˆ̃xk . Note that the sequence z̃∞
1

need not be i.i.d. nor does the marginal distribution of any random
variable z̃k be Gaussian with mean 0 or variance σ2

z . Since there is
a bijective mapping between ỹk

1 and z̃k
1 for all k ∈ N, we may call

equivalently the sequence z̃∞
1 as the attack. We will make the following

assumption.
Assumption 2: The innovation sequence {zA

k }∞k=1 is a minimal
sufficient statistic [21] for the attack sequence z̃∞

1 . In particular, this
implies that the sequence {zA

i }n−1
i=1 can be reconstructed from the se-

quence z̃n−1
1 . Since z̃n−1

1 is a function of the attacker’s information
pattern {zA

i }n−1
i=1 , the two sequences thus have a bijective mapping. �

Assumption 2 implies that the information pattern at the attacker can
equivalently be represented as Ik = {zA

n }k
n =1 .

C. Stealthiness

The attacker is constrained in the input ỹ∞
1 it replaces since it seeks

to be stealthy or undetected by the controller. If the estimator is aware



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 12, DECEMBER 2017 6643

that an attacker has replaced the correct measurement sequence y∞
1 by

a different sequence ỹ∞
1 , the system can presumably switch to a safer

mode of operation. Notions of stealthiness have been proposed in the
literature. For deterministic closed-loop systems, Pasqualetti et al. [8]
showed that stealthiness of an attacker is equivalent to the existence
of zero dynamics for the system driven by the attack. Similar to [8],
we seek a notion of stealthiness without placing any restrictions on the
attacker or the detector employed by the estimator, but for stochastic
systems in an estimation context.

To this end, we follow the development in [13] and pose the problem
of detecting an attacker by the estimator as a (sequential) hypothesis
testing problem. Specifically, the estimator relies on the received mea-
surements to decide the following binary hypothesis testing problem:

H0 : No attack is in progress (the estimator receives yk
1 );

H1 : Attack is in progress (the estimator receives ỹk
1 ).

For a given detector employed at the estimator to select one of the two
hypotheses, denote the probability of false alarm (i.e., the probability
of deciding H1 when H0 is true) at time k by pF

k , and the probability
of correct detection (i.e., the probability of deciding H1 when H1 is
true) at time k by pD

k .
One may envisage that stealthiness of an attacker implies pD

k = 0.
However, as is standard in detection theory, we need to consider both
the quantities pF

k and pD
k simultaneously.1 Intuitively, an attack is

hard to detect if the performance of any detector is independent of
the received measurements. Thus, we define an attacker to be stealthy
if there exists no detector that can perform better (in the sense of
simultaneously achieving higher pD

k and lower pF
k ) than a detector

that makes a decision by ignoring all the measurements and making a
random guess to decide between the hypotheses.

Definition 1 (Stealthy attacks [13]): An attack ỹ∞
1 is

1) strictly stealthy, if there exists no detector such that pF
k < pD

k for
any k > 0.

2) ε-stealthy, if, for ε > 0 and any value of Δ ∈ (0, 1), there exists
no detector for which 0 < 1 − pD

k ≤ Δ and

lim sup
k→∞

− 1
k

log pF
k > ε. (5)

�
Intuitively, an attack is strictly stealthy if no detector can perform

better than a random guess in deciding whether an attack is in progress.
Furthermore, an attack is ε-stealthy if there exists no detector such that
0 < 1 − pD

k ≤ δ for all time k and pF
k converges to zero exponentially

fast with rate greater than ε as k → ∞.

D. Performance Metric

We assume that the attacker aims at maximizing the MSE P̃ (k + 1)
for the estimate calculated at the estimator. To remove the dependence
on a particular time k, we consider the asymptotic behavior of P̃k+1 .
Specifically, the metric of the performance degradation that the attacker
can induce is the limit superior to the time averaged MSE, as given by

P̃ � lim sup
k→∞

1
k

k∑

n =0

P̃n +1 . (6)

This metric exists even for those attack sequences for which P̃k+1

does not converge. Note that if P̃∞
1 is a convergent sequence, then

P̃ = limk→∞ P̃k (see, e.g., [21]).

1For instance, a detector that always declares H1 to be true will achieve
pD

k = 1. However, it will not be a good detector because pF
k = 1.

We seek to solve the following problems.
1) What is the performance degradation that a strictly stealthy attack

can induce? What is such an attack?
2) What is the performance degradation that an ε-stealthy attack can

induce? What is such an attack?

III. MAIN RESULTS

A. Preliminary Results

The following results can be proved along the lines of [13] and relate
stealthiness to the KLD, thus providing an operational definition that
is easier to work with.

Lemma 2 (Condition for Strictly Stealthiness): An attack z̃∞
1 is

strictly stealthy if and only if z̃∞
1 is a sequence of i.i.d. Gaussian

random variables where z̃k ∼ N (0, σ2
z ). �

Lemma 3 (Conditions for ε-stealthiness): If an attack z̃∞
1 is

ε-stealthy, then the following condition holds:

lim sup
k→∞

1
k

D
(
z̃k

1

∥∥zk
1

) ≤ ε. (7)

Conversely, if an attack sequence z̃∞
1 is ergodic and satisfies

lim
k→∞

1
k

D
(
z̃k

1

∥
∥zk

1

) ≤ ε (8)

then the attack is ε-stealthy. �

B. Strictly Stealthy Attacks

We begin by considering the performance degradation induced by a
strictly stealthy attack. Define

ẽk+1 � ˆ̃xk+1 − x̂A
k+1 .

Lemma 4: The MSE P̃ (k + 1) can be expressed as

P̃k+1 = PA + E
[
ẽ2

k+1

]
. (9)

Proof: First, note that E[ẽk+1 (x̂A
k+1 − xk+1 )] = 0 because of the

orthogonality principle. Thus, we can write

P̃k+1 = E
[( ˆ̃xk+1 − x̂A

k+1 + x̂A
k+1 − xk+1

)2 ]

= PA + E
[
ẽ2

k+1

]
+ 2E

[
ẽk+1 (x̂A

k+1 − xk+1 )
]

= PA + E
[
ẽ2

k+1

]
.

�
Lemma 5: For a strictly stealthy attack z̃∞

1 , E[ˆ̃x2
k+1 ] = E[x̂2

k+1 ].
Proof: Linear recursions (3) and (4) that generate the estimates

x̂k+1 and ˆ̃xk+1 , respectively, are identical except for the driving terms
being zk

1 (for x̂k+1 ) and z̃k
1 (for ˆ̃xk+1 ). Now, note that if the attack

z̃∞
1 is strictly stealthy, Lemma 2 implies that similar to zk

1 , z̃k
1 is also

an i.i.d. sequence of Gaussian random variables with mean zero and
variance σ2

z . Since the initial conditions for recursions (3) and (4) are
also identical, we have E[ˆ̃x2

k+1 ] = E[x̂2
k+1 ]. �

We now have the following result.
Theorem 1 (Performance degradation of strictly stealthy attacks):

Consider the problem formulation in Section II. For any strictly stealthy
attack z̃∞

1 , the MSE P̃ induced satisfies

P̃ ≤ PA +
(
(σ2

x − P )
1
2 + (σ2

x − PA )
1
2
)2

(10)

where σ2
x � limk→∞ E[x2

k ] = σ 2
w

1−a 2 . Moreover, one strictly stealthy
attack z̃∞

1 that achieves the upper bound is given by

z̃k = −
√

σ2
z

σ2
z A

zA
k . (11)
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Fig. 1. (a) Geometric interpretation of Theorem 1, and (b) performance
degradation P̃ induced by a strictly stealthy attack as a function of
P and PA .

Proof: We begin by noticing that

E
[
ẽ2

k+1

]
= E

[
(ˆ̃xk+1 − x̂A

k+1 )
2 ]

(a )
≤ (

E
[ˆ̃x2

k+1

] 1
2 + E

[
(x̂A

k+1 )
2 ] 1

2
)2

(b )
=

(
E

[
x̂2

k+1

] 1
2 + E

[
(x̂A

k+1 )
2 ] 1

2
)2

(c )
=

( (
E

[
x2

k+1

] − P
) 1

2 +
(
E

[
x2

k+1

] − PA

) 1
2

)2
(12)

where (a) follows from Minkowski’s inequality [22, Th. 4.7.5], (b)
follows from Lemma 5, and (c) follows from the principle of orthogo-
nality since x̂k+1 and x̂A

k+1 are both MMSE estimates for xk+1 . The
upper bound now follows by substituting (12) into (9) and considering
the limit for k → ∞.

For achievability, we need to identify the conditions for Minkowski’s
inequality above to hold with equality. For this, the attack must be
such that ˆ̃xk+1 = −βx̂A

k+1 for a given constant β ≥ 0. This condi-
tion is satisfied by the attack (11) given the linearity of the Kalman
filter recursions. Thus, we are left to verify if the attack is strictly
stealthy. Since, with this attack z̃∞

1 is an i.i.d. Gaussian sequence with
z̃k ∼ N (0, σ2

z ), this condition is also satisfied, and the theorem
follows. �

Remark 1 (Geometric illustration of Theorem 1): The upper bou-
nd in Theorem 1 can be illustrated geometrically, as shown in Fig. 1.
In fact, from (10) and (11) we have

P̃
1
2 =

((
P

1
2

A

)2
+ (σx̂A + σx̂ )2

) 1
2

where σx̂A = (σ2
x − (P

1
2

A )2 )
1
2 and σx̂ = (σ2

x − (P
1
2 )2 )

1
2 . We ob-

serve that, because σx is constant, if a strict stealthy attacker has more
information about the state variable (i.e., with a smaller value of PA ),
it can induce larger MSE P̃ . Similarly, if the state estimator believes
that the received data are trustworthy (i.e., with a small value of P ),
then a strictly stealthy attacker can induce larger error. �

C. ε-Stealthy Attacks

We now characterize the performance limitations of ε-stealthy at-
tacks. We first present a converse result that gives an upper bound
for the MSE P̃ induced by an ε-stealthy attack. Then, we provide an
ε-stealthy attack that achieves this bound.

1) Preliminary Technical Results: We will use the follow-
ing technical results in the later derivations. We refer the interested
reader to the Appendix for a proof of these results. The first result fol-
lows immediately from the monotonicity and concavity of the function
f (x) =

√
x.

Lemma 6: Suppose that x ≤ c1 + c2
√

x, where x, c1 , and c2 are
nonnegative real numbers. Then

x ≤ 2c1 + c2
2 +

√
(2c1 + c2

2 )2 − 4c2
1

2
(13)

where the upper bound is the unique solution to the equation
x = c1 + c2

√
x. Moreover, the upper bound is monotonically increas-

ing with respect to c1 and c2 .
The second result provides some bounds that will be used in the

later results. Let αn aẽn be the linear MMSE (LMMSE) estimate of
Kz̃n given aẽn and let Mn be its corresponding MSE. Also, define the
quantities

Ek � 1
k

k∑

n =1

E
[
z̃2

n

]

βk �
(

1
σ2

z A k

k∑

n =1

Mn

) 1
2

≥ 0. (14)

Lemma 7: For any time n, the following inequalities hold:

1
k

k∑

n =1

E
[
Kz̃n KA zA

n

] ≤ σz A βk

(
K2

A σ2
z A

) 1
2 (15)

1
k

k∑

n =1

E
[
aẽn Kz̃n

] ≤
(

K2Ek − (σz A βk )2

) 1
2
(

1
k

k∑

n =1

a2 E
[
ẽ2

n

]
) 1

2

.

(16)

Furthermore, (15) holds with equality if E[Kz̃n KA zA
n ] > 0, zA

n is a
scalar multiple of Kz̃n − αn aẽn , and the sequence z̃∞

1 is stationary.
Similarly (16) holds with equality if E[aẽn Kz̃n ] > 0 and the sequence
z̃∞

1 is stationary.
We can now bound two important quantities.
Lemma 8: The time average of E[ẽ2

n +1 ] is bounded as

1
k

k∑

n =1

E
[
ẽ2

n

] ≤ Sk +
√

S2
k − 4(1 − a2 )2R2

k

2(1 − a2 )2 (17)

where

Rk = K2Ek + K2
A σ2

z A + 2|KA |σ2
z A βk +

1
k

E
[
ẽ2

1

]
,

Sk = 2(1 − a2 )Rk + 4a2(K2Ek − σ2
z A β2

k

)
.

Lemma 9: The following relations hold

Mn ≥ 1
2πe

e2h (K z̃n |a ẽn ) (18)

1
k

k∑

n =1

h(z̃n |z̃n−1
1 ) ≤ 1

2
log

2πeσ2
z A β2

k

K2 . (19)

2) Converse: We will use the following in the converse result.
Lemma 10: For any γ > 0, the following functions always exist:

δ(γ) = arg min
x∈R

x,

subject to
1
2
x − γ − 1

2
≤ 1

2
log x

δ̄(γ) = arg max
x∈R

x,

subject to
1
2
x − γ − 1

2
≤ 1

2
log x.

Furthermore, δ : [0,∞] → (0, 1] and δ̄ : [0,∞] → [1,∞).
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Proof: Since a logarithm function is concave, the feasible region
of x in the constraint 1

2 x − γ − 1
2 ≤ 1

2 log x is a closed interval lower
bounded by δ(γ) and upper bounded by δ̄(γ), as defined above. Thus,
the result follows. �

We now present a converse result for the MSE induced by ε-stealthy
attacks.

Theorem 2 (Converse): Consider the problem formulation from
Section II. The MSE induced by any ε-stealthy attack is upper
bounded by

P̃ ≤ PA + max
β≥ 0

S +
√

S2 − 4(1 − a2 )2R2

2(1 − a2 )2

s.t. δ(ε)K2σ2
z ≤ σ2

z A β2 ≤ δ̄(ε)K2σ2
z (20)

where

R = K2E + K2
A σ2

z A + 2|KA |σ2
z A β,

S = 2(1 − a2 )R + 4a2(K2E − σ2
z A β2),

E =
(
2ε + log

σ2
z A β2

K2σ2
z

+ 1
)
σ2

z . (21)

Proof: We first prove the theorem for a finite number of time steps
k and then let k → ∞. From Lemma 8, the MSE induced by any attack
is upper bounded as

1
k

k∑

n =1

E
[
ẽ2

n

] ≤ Sk +
√

S2
k − 4(1 − a2 )2R2

k

2(1 − a2 )2 (22)

where

Rk = K2Ek + K2
A σ2

z A + 2|KA |σ2
z A βk +

1
k

E
[
ẽ2

1

]
,

Sk = 2(1 − a2 )Rk + 4a2(K2Ek − σ2
z A β2

k

)
.

Thus, we seek to solve

max
βk ,Ek

Sk +
√

S2
k − 4(1 − a2 )2R2

k

2(1 − a2 )2 (23)

subject to attack being ε − stealthy.

From Lemma 3, for an ε-stealthy attack, condition (7) must hold.
Assume for a finite k that 1

k
D(z̃k

1 ‖zk
1 ) ≤ ε. Since the innovation z∞

1 is
a sequence of i.i.d. N (0, σ2

z ) random variables, we can write

1
k

D
(
z̃k

1

∥
∥zk

1

)
=

1
2

log(2πσ2
z ) +

Ek

2σ2
z

− 1
k

k∑

n =1

h(z̃n |z̃n−1
1 ). (24)

Using Lemma 9 yields

Ek

2σ2
z

=
1
k

D
(
z̃k

1

∥
∥zk

1

)
+

1
k

k∑

n =1

h
(
z̃n

∣
∣z̃n−1

1

) − 1
2

log
(
2πσ2

z

)

≤ ε +
1
2

log
σ2

z A β2
k

K2σ2
z

+
1
2
. (25)

We now translate this into constraints on βk and Ek as follows.
1) Note that Mn is the MSE of the LMMSE estimate of Kz̃n , and

thus, must satisfy Mn ≤ K2 E[z̃2
n ]. Using this relation with (14),

we obtain

σ2
z A β2

k =
1
k

k∑

n =1

Mn ≤ K2Ek .

Plugging this inequality in the inequality constraint (25) thus yields

σ2
z A β2

k

2K2σ2
z

≤ ε +
1
2

log
σ2

z A β2
k

K2σ2
z

+
1
2
. (26)

Using Lemma 10 thus implies that we can restrict the search of βk

to the region

δ(ε)K2σ2
z ≤ σ2

z A β2
k ≤ δ̄(ε)K2σ2

z . (27)

2) From Lemma 6, the objective function in (23) is monotonic in-
creasing with respect to Ek . Therefore, in order to maximize this
function, inequality (25) must hold with equality. Thus, the choice
of Ek is from the equality constraint

Ek =
(
2ε + log

σ2
z A β2

k

K2σ2
z

+ 1
)
σ2

z . (28)

Thus, (23) is equivalent to solving

max
βk > 0

Sk +
√

S2
k − 4(1 − a2 )2R2

k

2(1 − a2 )2 (29)

subject to (27) and (28).

Now, note that all the manipulations in the proof are continuous.
Thus, we can let k → ∞ and the corresponding limits of all quantities
[in particular, the limit of the right-hand side in (22)] will exist. The
proof now follows from (9) and the fact that 1

k
E[ẽ2

1 ] → 0 as k → ∞.
�

3) Achievability: We now show that the upper bound presented
in Theorem 2 can be achieved by an ε-stealthy attack. For notational
simplicity, we denote the upper bound for P̃ in (22) by P̃m ax and the
maximizing value of β in (22) by β
 .

Theorem 3 (Achievability): For any given ε, consider the attack z̃∞
1

generated using the following recursion:

z̃k = a(1 + α
 )z̃k−1 +
a(β
 sgn(KA ) − α
 KA )

K
zA

k−1

− β
 sgn(KA )
K

zA
k (30)

with the initial conditions z̃0 = z̃A
0 = 0

α
 �
√

K2E
 − σ2
z A (β
 )2

a2 (P̃m ax − PA )

E
 �
(
2ε + log

σ2
z A (β
 )2

K2σ2
z

+ 1
)
σ2

z .

The attack z̃∞
1 induces MSE at the estimator equal to the upper bound

P̃m ax in Theorem 2 and is ε-stealthy.
Proof: The proof is described in three steps. First, we write the

attack sequence in (30) in an alternate form that makes it easier to
reason. Then, we show that the attack induces MSE equal to P̃m ax .
Finally, we show that the attack is ε-stealthy.

To this end, we first prove that the attack z̃∞
1 can be considered to be

generated using the following relation:

Kz̃k = α
 aẽk − β
 sgn(KA )zA
k . (31)
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This is because (31) directly yields

Kz̃k = α
 a
(
a(ˆ̃xk−1 + Kz̃k−1 ) − (ax̂A

k−1 + KA zA
k−1 )

)

− β
 sgn(KA )zA
k

= a
(
α
 aẽk−1 − β
 sgn(KA )zA

k−1

)
+ α
 aKz̃k−1

+
(
aβ
 sgn(KA ) − α
 aKA

)
zA

k−1 − β
 sgn(KA )zA
k

= aK(1 + α
 )z̃k−1 + a(β
 sgn(KA ) − α
 KA )zA
k−1

− β
 sgn(KA )zA
k ,

⇒ z̃k = a(1 + α
 )z̃k−1 +
a(β
 sgn(KA ) − α
 KA )

K
zA

k−1

− β
 sgn(KA )
K

zA
k

which is identical to (30).
Now, we prove that the attack z̃∞

1 induces MSE equal to P̃m ax .
First note from (31) that αn = α
 and βn = β
 ∀n ∈ N for this
attack. Since−2E[Kz̃n KA zA

n ] = 2|KA |β
 σ2
z A ≥ 0, 2E[aẽn Kz̃n ] =

2α
 a2 E[ẽ2
n ] ≥ 0, zA

n is a scalar multiplication of Kz̃n − αn aẽn , and
the random sequence z̃∞

1 is stationary, from Lemma 7, both the rela-
tions (15) and (16) hold with equality. Consequently, Lemma 8 implies
that (17) holds with equality. Finally, from the structure of (31), fol-
lowing the proof of Lemma 9, the relation (19) holds with equality.
Thus, following the proof of Theorem 2, we obtain that the attack z̃∞

1
induces MSE equal to P̃m ax .

Finally, we can show that the attack z̃∞
1 generated by (30) is ε-stealthy

as follows. Sequence (30) is a Gaussian autoregressive-moving-average
(ARMA) sequence and hence its entropy rate is given by [23]

lim
k→∞

1
k

k∑

n =1

h
(
z̃n

∣
∣z̃n−1

1

)
=

1
2

log
2πe(β
 )2σ2

z A

K2 . (32)

Furthermore, by definition

lim
k→∞

Ek = lim
k→∞

E[z̃2
k ]

=
(α
 a)2 (P̃m ax − PA ) + (β
 )2σ2

z A

K2 = E
 . (33)

Using (24), (32), and (33), we thus obtain limk→∞ 1
k
D(z̃k

1 ‖zk
1 ) = ε.

Finally, a Gaussian ARMA sequence is ergodic. Thus, both the
conditions stated in Lemma 3 are satisfied and the attack (31) is
ε-stealthy. �

4) Discussion: Some observations are in order. First, Theo-
rems 2 and 3 characterize the minimum-mean-square estimation error
achievable by an ε-stealthy attack as a function of the system param-
eters, noise statistics, and information available to the attacker. The
two theorems provide a fundamental limitation for the estimation er-
ror induced by any ε-stealthy attack, in the sense that the bounds are
independent of any specific detection mechanism employed by the es-
timator. Second, the maximum MSE P̃m ax that can be induced by an
ε-stealthy attacker is monotonically increasing with ε [see the upper
bound in (20)]. Thus, an attacker that is less stealthy can induce a higher
MSE. Third, it can be verified that the derivative of P̃m ax with respect
to PA is negative. Thus, P̃m ax decreases monotonically with respect to
PA , which is intuitively satisfying since it implies that if the attacker
has more information about the state, then it can induce a larger MSE
at the estimator. Finally, the optimal ε-stealthy attack z̃∞

1 is an ARMA
Gaussian sequence. Thus, the random sequence z̃∞

1 is not white and
using a residual error detector [4] may not be optimal to detect this
attack in the sense of maximizing the exponent of the probability of

Fig. 2. Upper bound of P̃ in Theorem 2 as a function of ε for different
information patterns at the attacker.

Fig. 3. Quantity ρ of the optimal attack (30) versus ε for different
information patterns at the attacker.

false alarm or under the Neyman–Pearson criterion. The design of an
optimal detector for this type of attacks is left as a direction of future
research.

IV. NUMERICAL RESULTS

To illustrate the results, consider a system as in (2) with parameters
a = 0.4, c = 1, σ2

w = 0.2, and σ2
v = 0.5.

Induced MSE Versus the Level of Stealthiness: We first illustrate
the tradeoff between an attacker’s level of stealthiness and the induced
MSE, as characterized in Theorem 2. Fig. 2 shows the upper bound
P̃m ax as a function of ε for different information patterns at the attacker.
It can be seen that for any information pattern, the MSE induced by
the attacker increases as its stealthiness decreases and it is more easily
detected.

Memory of the Optimal Attack: Since z∞
1 is an independent random

sequence, we can write

1
k

D
(
z̃k

1

∥
∥zk

1

)
=

1
k

k∑

n =1

I
(
z̃n ; z̃n−1

1

)
+

1
k

k∑

n =1

D(z̃n ‖zn )

where I(z̃n ; z̃n−1
1 ) denotes the mutual information [21] between z̃n

and z̃n−1
1 . An interesting interpretation of this equation is that the

stealthiness of the attack as measured by 1
k
D(z̃k

1 ‖zk
1 ) consists of two

terms. The term 1
k

∑k
n =1 I(z̃n ; z̃n−1

1 ) characterizes the memory of the

random sequence z̃∞
1 , whereas the term 1

k

∑k
n =1 D(z̃n ‖zn ) measures

the stealthiness obtained through the marginal pdf of z̃k
1 . For a sta-

tionary attack z̃∞
1 , we define ρ = lim k →∞ D ( z̃ k ‖zk )

lim k →∞ 1
k

D ( z̃ k
1 ‖z k

1 )
. The quantity ρ

can be used to quantify the portion of stealthiness that is lost through
the marginal pdf of z̃∞

1 . If ρ = 1, then the attack z̃∞
1 is a memoryless

random sequence. In particular, for the optimal attack, as character-
ized in [13], we have ρ = 1. If ρ = 0, then the attack z̃∞

1 is a colored
Gaussian sequence with z̃k ∼ N (0, σ2

z ). Fig. 3 shows the quantity ρ
for the optimal attack (30) versus the level of stealthiness ε for various
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Fig. 4. Upper bound in Theorem 2 as a function of the attacker’s
information about the state.

information patterns at the attacker. As expected, since the optimal
attack z̃∞

1 in (30) is an ARMA sequence, it has ρ < 1. Another inter-
esting observation is that if the attacker can estimate the state xk better,
the optimal attack loses a higher fraction of stealthiness through the
marginal pdf of z̃∞

1 .
Induced MSE Versus the Attacker’s Information Pattern: For a fixed

level of stealthiness ε, Fig. 4 shows the MSE P̃m ax for various values
of PA . A smaller value of PA corresponds to better information about
the state at the attacker, in which case it can induce higher error at the
estimator.

V. CONCLUSION

We study a problem in which an attacker can compromise the
measurements about the state of a linear time-invariant scalar process,
which are transmitted from a sensor to the estimator. An information-
theoretic notion of stealthiness that is independent of any specific
detection mechanism employed by the estimator is considered. We
analytically characterize the tradeoff between the stealthiness of the
attacker and the maximal MSE for the state estimation at the estimator
that the attack can induce. Moreover, we present an optimal attack
that induces the maximal MSE. In particular, we show that an optimal
ε-stealthy attack z̃∞

1 is a Gaussian ARMA random sequence.

APPENDIX

Proof of Lemma 7: To prove (15), note that

1
k

k∑

n =1

E
[
Kz̃n KA zA

n

]≤ 1
k

k∑

n =1

∣∣
∣E

[
Kz̃n KA zA

n

]∣∣
∣ (A-1)

(a )
=

1
k

k∑

n =1

∣
∣
∣E

[
(Kz̃n − αn aẽn )KA zA

n

]∣∣
∣

(b )
≤ 1

k

k∑

n =1

E
[
(Kz̃n − αn aẽn )2 ] 1

2
(
K2

A σ2
z A

) 1
2 (A-2)

(c )
≤

(
1
k

k∑

n =1

E
[
(Kz̃n − αn aẽn )2 ]

) 1
2 (

K2
A σ2

z A

) 1
2

(d )
=

(
1
k

k∑

n =1

Mn

) 1
2 (

K2
A σ2

z A

) 1
2 (e)

= σz A βk

(
K2

A σ2
z A

) 1
2 (A-3)

where (a) follows since both ˆ̃xn and x̂A
n (and hence also ẽn ) are

linear functions of In−1 and are thus independent of the attacker’s
innovation zA

n at time n, (b) and (c) follow from application of the

Cauchy–Schwarz inequality, (d) follows from the definition of Mn ,
and (e) follows from the definition of βk . The adequacy of the stated
conditions for (15) to hold with equality follows from the fact that
they are sufficient for the inequalities mentioned above to hold with
equality.

Then, we can write

1
k

k∑

n =1

E
[
aẽn Kz̃n

] ≤ 1
k

k∑

n =1

∣
∣∣E

[
aẽn Kz̃n

]∣∣∣

(a )
=

1
k

k∑

n =1

|αn |a2 E
[
ẽ2

n

]
(A.4)

(b )
≤

(
1
k

k∑

n =1

α2
n a2 E

[
ẽ2

n

]
) 1

2
(

1
k

k∑

n =1

a2 E
[
ẽ2

n

]
) 1

2

(c )
=

(

K2Ek − 1
k

k∑

n =1

Mn

) 1
2
(

1
k

k∑

n =1

a2 E
[
ẽ2

n

]
) 1

2

(d )
=

(

K2Ek − (σz A βk )2

) 1
2
(

1
k

k∑

n =1

a2 E
[
ẽ2

n

]
) 1

2

(A.5)

where (a) follows from the principle of orthogonality given that αn aẽn

is the linear MMSE estimate of Kz̃n given aẽn , (b) follows from
the Cauchy–Schwarz inequality, (c) is true because the principle of
orthogonality implies the relation Mn = K2 E[z̃2

n ] − α2
n a2 E[ẽ2

n ] and
(d) follows from the definition of βk . Furthermore, if E[aẽn Kz̃n ] > 0
and the sequence z̃∞

1 is stationary, the inequalities in the above chain
hold with equality. �

Proof of Lemma 8: First, note that zA
n is independent of ẽn and

hence E[aẽn KA zA
n ] = 0. Thus,

E
[
ẽ2

n +1

]
= E

[(
aẽn + Kz̃n − KA zA

n

)2 ]

= a2 E
[
ẽ2

n

]
+ K2 E

[
z̃2

n

]
+ K2

A σ2
z A

− 2E
[
Kz̃n KA zA

n

]
+ 2E

[
aẽn Kz̃n

]
.

Taking the time average of both sides yields

1
k

k∑

n =1

E
[
ẽ2

n +1

]
=

a2

k

k∑

n =1

E
[
ẽ2

n

]
+ K2Ek + K2

A σ2
z A

− 2
k

k∑

n =1

E
[
Kz̃n KA zA

n

]
+

2
k

k∑

n =1

E
[
aẽn Kz̃n

]
.

Thus, we can use (15) and (16) to obtain

(1 − a2 )

(
1
k

k∑

n =1

E
[
ẽ2

n

]
)

≤ K2Ek + K2
A σ2

z A + 2|KA |σ2
z A βk

+ 2|a|
(
K2Ek − σ2

z A β2
k

) 1
2

(
1
k

k∑

n =1

E
[
ẽ2

n

]
) 1

2

+
1
k

E
[
ẽ2

1

]
.

Using Lemma 6, the proof is complete. �
Proof of Lemma 9: Relation (18) follows from the maximum en-

tropy theorem [21, Corollary 8.6.6] since Mn is the MSE of estimat-
ing Kz̃n from aẽn . Now, note that {ˆ̃xn , x̂A

n } → {zA
i }n−1

i=1 → z̃n is a
Markov chain since ˆ̃xn , x̂A

n , and z̃n are all generated based on the
attacker’s information pattern In−1 , which is given by the attacker’s
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innovation sequence {zA
i }n−1

i=1 , as stated in Assumption 1. The proof
of (19) now follows from the following set of inequalities:

1
2

log
2πeσ2

z A β2
k

K2

(a )
=

1
2

log

(
2πe

K2 · 1
k

k∑

n =1

Mn

)

(b )
≥ 1

2
log

(
2πe

K2 · 1
k

k∑

n =1

1
2πe

e2h (K z̃n |a ẽn )

)

(c )
=

1
2

log

(
1
k

k∑

n =1

e2h ( z̃ n |a ẽn )

)
(d )
≥ 1

2
log

(
k∏

n =1

e2h ( z̃ n |a ẽn )

) 1
k

(e )
≥ 1

k

k∑

n =1

h
(
z̃n

∣
∣{zA

i }n−1
i=1

) (f )
=

1
k

k∑

n =1

h(z̃n |z̃n−1
1 )

where (a) follows from the definition of βk , (b) follows from (18), (c)
holds because 2h(Kz̃n |aẽn ) = log(K2 ) + 2h(z̃n |aẽn ) (see, e.g. [21,
Th. 8.6.4]), (d) is due to the arithmetic mean and geometric mean
inequality, (e) follows by applying the data processing inequality
[21, Corollary 2.8.1] to the Markov chain {ˆ̃xn , x̂A

n } → {zA
i }n−1

i=1 →
z̃n , and (f ) follows from Assumption 2. �
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