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Abstract

In this note we discuss a novel graph partitioning problem, namely continuous graph partitioning, and we discuss its application
to the design of surveillance trajectories for camera networks. In continuous graph partitioning, each edge is partitioned in a
continuous fashion between its endpoint vertices, and the objective is to minimize the largest load among the vertices. We show
that the continuous graph partitioning problem is convex and non-differentiable, and we characterize a solution amenable to
distributed computation. The continuous graph partitioning problem naturally arises in the context of camera networks, where
intruders appear at arbitrary locations and times, and the objective is to design camera trajectories for quickest detection of
intruders. Finally, we propose a surveillance strategy for networks of PTZ cameras and we characterize its performance.
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1 Introduction

Autonomous camera networks are becoming the lead-
ing technology for the surveillance of human activities
in civil and military applications [2]. Besides computer
vision and pattern recognition difficulties, the design
of efficient algorithms for the cameras to autonomously
and distributively complete tracking, surveillance, and
recognition tasks remains one of the main challenges.

In this note we focus on the problem of detecting static
intruders by means of a network of autonomous PTZ
cameras. We assume the cameras to move their field
of view (f.o.v.) to cooperatively surveil the whole en-
vironment, and we develop algorithms for the cameras
to self-organize, coordinate and detect intruders in the
shortest amount of time. To this aim, we present a novel
graph partitioning problem, namely continuous graph
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partitioning, which is used to optimally assign regions of
competence to each camera.

Related work The recent literature on coordination
problems in camera networks mobile robotics is of rel-
evance to this work. In [3, 4, 5] distributed algorithms
are proposed for PTZ cameras to partition a one-
dimensional environment, and to synchronize along a
trajectory with minimum worst-case detection time of
intruders. We improve the results along these directions
by, for instance, developing cameras trajectories and
partitioning methods for general environment topolo-
gies. In mobile robotics, the patrolling problem consists
of scheduling the motion of a team of autonomous
agents in order to detect intruders or important events,
e.g., see [6, 3, 7, 8]. The patrolling problem and the
problem considered in this paper significantly differ. In
fact, cameras are fixed at predetermined locations, and
their f.o.v.s must lie within the cameras visibility con-
straints. Instead, robots are usually allowed to travel
the whole environment, and are usually not subject to
visibility constraints. Consequently, algorithms devel-
oped for teams of robots are, in general, not applicable
in the present setup. Similarly, algorithms developed in
the computer science community for graph-clearing and
graph-search do not extend to our scenario [9, 10, 11].
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In this work we present algorithms for graph partition-
ing. Our graph partitioning problem differs from classi-
cal setups, e.g., see [12, 13, 14, 15]. In fact, classic graph
partitioning problems require the partitioning of the ver-
tices or edges. Instead, we formulate a continuous graph
partitioning problem, where the graph is a physical en-
tity, and the partition is obtained by partitioning each
edge among its endpoint vertices. Continuous graph par-
titioning problems arise in different application domains.
For instance, if each edge of a graph represents a task
to be accomplished by some processors, then our algo-
rithms can be used for dynamic load balancing in mul-
tiprocessor networks [16, 17].

Paper contributions. The main contributions of this
work are as follows. First, we propose the continu-
ous graph partitioning problem, where a partition of a
weighted graph is obtained by splitting the graph edges,
and the cost of a partition equals the longest length of
its parts (Section 2). We show that the continuous graph
partitioning problem is convex and non-differentiable,
and we characterize its solutions. Then, we derive an
equivalent convex and differentiable partitioning prob-
lem, which is amenable to distributed implementation.

Second, we design trajectories for networks of au-
tonomous PTZ cameras for the detection of static in-
truders (Section 4). We model the environment and the
camera network by means of a robotic roadmap, and
we formalize the worst-case detection time of intrud-
ers as performance criterium. We show that, for tree
and ring roadmaps, cameras trajectories with minimum
worst-case detection time can be designed by solving
a continuous graph partitioning problem. For general
cyclic roadmaps, our trajectories based on continuous
partitions are proved to be optimal up to a factor 2.

Third and finally, we design a distributed algorithm
for the computation of an optimal cameras trajectories
based on continuous graph partitioning. Our algorithm
relies on asymmetric broadcast communication, in which
at each iteration only one camera updates its state by
using local information from its neighboring cameras.

2 Continuous Partitions of Weighted Graphs

Graph partitioning is a classic problem in computer sci-
ence and robotics [18]. In this section we introduce a
novel graph partitioning problem, namely continuous
graph partitioning, in which each edge is partitioned in a
continuous fashion between its endpoint vertices. As we
discuss later, continuous graph partitioning finds appli-
cation in camera networks and in robotics applications.

Let G = (V, E) be an undirected weighted graph, where
V = {1, . . . , n} and E ⊆ V × V denote the vertex and
edge sets, respectively. We associate a point vi ∈ R2 with
each vertex i ∈ V, and we let [vi, vj ] denote the segment

joining vi and vj . Let `ij = ‖vi − vj‖2 be the weight
associated with the edge (i, j) ∈ E . Finally, define the
neighbors of node i as Ni = {j ∈ V : (i, j) ∈ E}.

A continuous partition of the weighted graph G is a set
P = {P1, . . . ,Pn} where, for i ∈ {1, . . . , n},

Pi =
⋃

vj∈Ni

[vi, vij ], (1)

and vij is a point along the segment [vi, vj ] defined by
the parameter αij ∈ [0, 1] as

vij =

{
vi + αij(vj − vi), if i < j,

vi + (1− αji)(vj − vi), if i > j.
(2)

Let α = [αij ] be the vector containing all parameters
αij , and notice that the partition P is entirely specified
by the vectorα. Each undirected edge (i, j) is associated
with a parameter αij . We adopt the convention

αji = 1− αij , if i < j.

For notational convenience, we sometimes identify a
partition with its parameters vector.

The length, or cost , of the continuous partition P is de-
noted as

L(P) = max{L1, . . . , Ln}, (3)

where Li is the sum of the lengths of the segments in Pi,
that is,

Li =
∑
j>i

αij`ij +
∑
j<i

(1− αji)`ij . (4)

Let L be the vector of Li.

Let A ∈ Rn×|E| be the weighted incidence matrix of G,
where, for each edge e = (vi, vj) ∈ Ec,

Ai,e =


`ij , if i < j,

−`ij , if i > j,

0, otherwise.

(5)

Define the incidence vector b ∈ Rn as

bi =
∑
i>j

`ij , (6)

and notice that L = Aα + b. Additionally, it can be
verified that L(P) = ‖Aα+b‖∞ and, for everyα ∈ R|E|,

‖Aα+ b‖1 =
∑

(i,j)∈E

`ij .
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Let 0 and 1 be the vectors of all zeros and ones, respec-
tively. The min-max continuous partitioning problem is
stated as follows.

Problem 1 (Continuous min-max partitioning)
For a weighted graph G = (V, E), determine a continuous
partition α∗∞ satisfying

‖Aα∗∞ + b‖∞ = min
α≤α≤α

‖Aα+ b‖∞, (7)

where A and b are as in (5) and (6), for some constraints
vectors 0 ≤ α ≤ α ≤ 1.

It should be observed that (7) is a convex minimization
problem, for which efficient centralized solvers exist [19].
On the other hand, since (7) is not differentiable, dis-
tributed solvers may be difficult to implement. We next
derive an equivalent differentiable minimization prob-
lem, which is amenable to distributed implementation.
In Problem 1 the vectors α and α represent possible con-
straints on the partition as dictated, for instance, by the
visibility range of a camera as in Fig. 1.

Problem 2 (Continuous min partition) For a
weighted graph G = (V, E) determine a continuous par-
tition α∗2 satisfying

‖Aα∗2 + b‖2 = min
α≤α≤α

‖Aα+ b‖2, (8)

where A and b are as in (5) and (6), for some constraints
vectors 0 ≤ α ≤ α ≤ 1.

Observe that the minimization problem (8) is strictly
convex, so that it admits a unique minimum. Moreover,
the continuous min partition problem (8) has a unique
minimizer if and only if the matrix A has a trivial null
space or, equivalently, the graph G is acyclic [20]. We next
characterize a relation between the partitioning Problem
1 and 2.

Theorem 1 (Min-max and min partitions) Let α∗2
be a min partition solution to Problem 2. Then, α∗2 is
also a solution to Problem 1, that is,

‖Aα∗2 + b‖∞ = min
α≤α≤α

‖Aα+ b‖∞.

In order to prove Theorem 1, we introduce the
following definitions and results. For a partition
P = {P1, . . . ,Pn} with parameters vector α and length
L(P) = max{L1, . . . , Ln}, define the maximal graph
Gmax = (Vmax, Emax), where

Vmax = {vi ∈ V : Li = L(P)},

and Emax = (Vmax × Vmax) ∩ E .

Lemma 2 (Maximal graph) Letα∗ be a min partition
solution to Problem 2, and let Gmax = (Vmax, Emax) be the
maximal graph associated withα∗. Then, for all i ∈ Vmax

and j ∈ V \ Vmax with (i, j) ∈ E it holds{
α∗ij = αij , if i < j,

α∗ij = αij , if i > j,

where 0 ≤ αij ≤ αij ≤ 1 are constraints on αij.

PROOF. Let α∗ be a min partition, let L∗ = Aα∗ +
b, and let Vmax be the set of vertices satisfying L∗i =
‖L∗‖∞. Let (i, j) ∈ E with i < j and L∗j < ‖L∗‖∞, that
is, j ∈ V \ Vmax. We need to show that α∗ij = αij .

Suppose by contradiction that α∗ij > αij . Define the
partition α̂ as α̂hk = α∗hk when h 6= i and k 6= j, and
α̂ij = α∗ij−δ > αij for some δ satisfying δ`ij < (L∗i−L∗j ).
Consequently, α̂ji = 1 − α̂ij = 1 + δ − α∗ij . Notice that

L̂i = L∗i − δ`ij and L̂j = L∗j + δ`ij . We have

‖L∗‖22 − ‖L̂‖22 = (L∗i )2 − L̂2
i + (L∗j )2 − L̂2

j

= −2δ2`2ij + 2δ`ijL
∗
i − 2δ`ijL

∗
j

= 2δ`ij
(
L∗i − L∗j − δ`ij

)
> 0,

where the last inequality follows by the choice of δ. Then,
the partition α̂ achieves a lower cost than α∗, which
contradicts our assumption of α∗ being a min partition.
We conclude that α∗ij = αij . The case of α∗ij = αij is
treated analogously, and the theorem follows. �

We are now ready to prove Theorem 1.

PROOF. Let α∗ be a min partition, let L∗ = Aα∗ +
b, and let Vmax be the set of vertices satisfying L∗i =
‖L∗‖∞. Assume by contradiction that there exists a

partition L̂ satisfying ‖L̂‖∞ < ‖L∗‖∞. Then L̂i < L∗i
for all i ∈ Vmax, and there exists at least one vertex
j ∈ V \ Vmax, with (i, j) ∈ E for some i ∈ Vmax, satisfy-

ing L̂j > L∗j . In other words, the load removed from the
vertices in Vmax must be sustained by neighboring ver-
tices in V \ Vmax. This statement contradicts Lemma 2,
and the claimed statement follows. �

Theorem 1 implies that a solution to the non-differentiable
Problem 1 can be computed by solving the differentiable
Problem 2. Hence, the distributed procedure developed
in [21] can be used to compute an optimal min-max par-
tition solution to Problem 1 (see Section 5). In the next
sections we exploit the continuous graph partitioning
problem to design of cameras trajectories.
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Fig. 1. This figure shows an environment surveilled by a
camera network. Cameras are installed at the locations
Vc = {v1, . . . , v7}. White rectangles along the edges repre-
sent cameras visibility constraints, and the parameters α de-
fine a continuous partition of G. Finally, the DF-Trajectory
associated with the partition given by α is identified by the
closed paths around the cameras.

Remark 1 (Unconstrained partitions) Consider
the unconstrained partitioning Problem 2 (α = −∞ and
α = ∞). Observe that, since the sum of all edges length
is constant and independent of the partition, the solution
to Problem 2 is obtained by enforcing an equal load for
each vertex. Define the consensus vector

L∗ =

 ∑
(i,j)∈E

`ij
n

1,

and notice that every minimizer to Problem 2, and in fact
to Problem 1 as well, can be written as

α∗ = A† (L∗ − b) +w = −A†b+w,

where A† is the Moore-Penrose pseudoinverse of A,
Aw = 0, and A†L∗ = ATL∗ = 0 due to the definitions
of the incidence matrix A [20]. Additionally, if α∗ satis-
fies 0 ≤ α∗ ≤ 1, then α∗ is a solution to the constrained
Problem 1 and 2. �

3 Setup for Camera Surveillance

In this section we describe our setup for cameras surveil-
lance and we introduce some preliminary notions. We
consider the problem of surveilling an environment by
means of a network of PTZ cameras installed at fixed
locations. In particular, we let cameras V = {1, . . . , n}
be installed at the locations {v1, . . . , vn}, and we define
the graph (roadmap) G = (V, E), where (i, j) ∈ E when-
ever the segment [vi, vj ] belongs to the environment (lo-
cations vi and vj are within line of sight). Let the weight
of the edge (i, j) ∈ E equal the length `ij = ‖vi − vj‖2,
and define

`max = max{`ij : (i, j) ∈ E}.

To simplify notation, we let cameras be installed at every
vertex of G. Our results are however more general, and
extend directly to the case where cameras are installed

only at a subset of vertices covering the whole graph
with their f.o.v..

Let xi(t) denote the position at time t of the f.o.v. of the
i-th camera. We assume that each camera has a limited
visibility range along each adjacent edge. In particular,

(A1) xi(t) ∈ [vi, vj ] at all times t ∈ R≥0 for some j ∈ Ni;

(A2) the i-th f.o.v. moves at unit or zero speed.

Our setup is illustrated in Fig. 1. 1

A cameras trajectory is a set of n continuous functions
X = {x1, . . . , xn}, where xi : R≥0 → ∪(i,j)∈E [vi, vj ]
describes the position of the i-th f.o.v. along the roadmap
G. We focus on periodic cameras trajectories, for which
there exists a finite time T ∈ R≥0 satisfying X(t+T ) =
X(t) for all t ∈ R≥0. Define the image of the i-th camera
as the set of points visited by the i-th f.o.v. in any period
of length T , that is,

Im(xi) = ∪t∈[0,T ] xi(t),

and the cameras image set as IX = {Im(x1), . . . , Im(xn)}.

We allow for the presence of intruders along the roadmap
and we consider the design of camera trajectories for the
quickest detection of intruders. We let intruders appear
at arbitrary locations and times, and we assume that
an intruder is detected as soon as the f.o.v. of a camera
coincides with the position of the intruder.

The trajectory of an intruder is a continuous function
p : R≥0 → ∪(i,j)∈E [vi, vj ]. We focus on static intruders,
where p(t) = p0 for all t ≥ t0 and for some p0 ∈ E .
We define the worst-case detection time of a cameras
trajectory as the longest time for the detection of an
intruder. In particular, for an intruder appearing at time
t0 and location p0, and a cameras trajectory X, let 2

t∗(t0, p0, X) = min{t− t0 : t > t0, p0 ∈ X(t)}.

We define the worst-case detection time as

WDT(X) = sup
t0,p0

t∗(t0, p0, X), with

p0 ∈ [vi, vj ] and (i, j) ∈ E ,
t0 ∈ [0, T ].

(9)

To conclude this section, notice that WDT(X) < ∞ if
and only if the entire roadmap is persistently surveilled
by the cameras, that is, E ⊆ Im(X).

1 Our assumption of point-wise f.o.v. does not prevent ap-
plicability of our results to real scenarios, while being conve-
nient for the analysis. See also [22] for a detailed discussion
of our assumptions and for experimental results.
2 If p0 6∈ X(t) for all t ∈ R≥t0 , then t∗(t0, p0, X) =∞.
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Trajectory 1 DF-Trajectory for i-th camera

Input: Parameters αij and set of neighbors Ni;

Let si(t) = (tvij + (αij`ij − t)vi)/αij`ij , for t ∈ [0, αij`ij ];
Set t0 = 0;
for vj ∈ Ni do

Set vij as in Eq. (2);
xi(t) = si(t− t0), for t ∈ [t0, t0 + αij`ij ];
xi(t) = si(2αij`ij − (t − t0)), for t ∈ [t0 + αij`ij , t0 +

2αij`ij ];
t0 = t0 + 2αij`ij ;

end for

4 Camera Trajectory for Intruder Detection

We now define a particular cameras trajectory. Let αdf

define the continuous partition Pdf as in (1). The DF-
Trajectory Xdf with image set Pdf is obtained by let-
ting each camera sweep its subroadmap in, for instance,
depth-first order [20]. The DF-Trajectory is formally de-
scribed in Trajectory 1, and illustrated in Fig. 1. We next
show that cameras trajectories designed from a contin-
uous roadmap partition achieve detection performance
within a constant factor of optimal for general networks.

Theorem 3 (Worst-case detection time for DF-
Trajectory) For the roadmap G = (V, E), let P∗ be a
min partition solution to Problem 2. Let X* be the DF-
Trajectory with image set P∗. Then,

(i) WDT(X*) = 2L(P∗) , and

(ii) WDT(X*) ≤ 2 WDT∗.

PROOF. Statement (i) follows from the definition of
DF-Trajectory, because each camera sweeps its assigned
subroadmap at maximum speed along a depth-first tour.

To show statement (ii) consider a min partition α, and
let Gmax = (Vmax, Emax) be its associated maximal
graph. Define Length(Gmax) =

∑
(i,j)∈Emax ‖vi − vj‖2,

and notice that

WDT∗|Gmax ≥
Length(Gmax)

|Vmax|
, (10)

where WDT∗|Gmax denotes the smallest worst-case de-
tection time for Gmax. Indeed, since Li = Lj for each
i, j ∈ Vmax, each camera needs to sweep (at unit speed)

an path of length Length(Gmax)
|Vmax| for Gmax to be covered.

Moreover, due to Lemma 2, cameras outside Gmax can-
not visit any point in the interior of Gmax. We have

WDT∗ ≥WDT∗|Gmax ≥
Length(Gmax)

|Vmax|
=

WDT(X*)

2
,

where the first inequality follows because WDT∗ is de-
fined as the maximum detection time over all points

Algorithm 2 Asymmetric Broadcast Partitioning

Define St
i as in equation (11);

Camera i is randomly selected;
Receive St

j from all cameras j ∈ N in
i , and perform the fol-

lowing operations (other cameras perform no operations);
for j ∈ Ni do

αt+1
ij ← αt

ij − ε`ij(Lt
i − Lt

j);

if αt+1
ij < αij then αt+1

ij = αij ;

else if αt+1
ij > αij then αt+1

ij = αij ;
end if

end for
Camera i transmits St+1

i to camera j, for all j ∈ Ni.

along G, and not only Gmax, the second inequality fol-
lows from (10), and the last equality from statement (i)
and (3). This concludes the proof of statement (ii).

In Theorem 3 we show that the continuous graph par-
titioning problem can be effectively used to design
constant factor optimal cameras trajectories. It can be
shown that optimality is in fact achieved for tree and
ring roadmaps, and for other particular topologies.

5 A Distributed Partitioning Algorithm

In this section we design a distributed algorithm for
the continuous min-max partitioning problem. Given
an optimal partition, cameras organize along a DF-
Trajectory as in Trajectory 1. We assume each camera
to be equipped with a wireless sensor device. Let

St
i = {αt

ij : j ∈ Ni} (11)

be the state of camera i at iteration t ∈ N. Finally, let
α0
ij = αij for all (i, j) ∈ E with i < j.

We assume an asymmetric broadcast communication
protocol. In particular, at each iteration only one cam-
era updates its state by using local information from its
neighboring cameras. In order to guarantee the conver-
gence of the algorithm, we assume the existence of a fi-
nite duration τ ∈ R>0 such that, for all t ∈ R≥0, ev-
ery camera is selected at least once in the time interval
[t, t+ τ) (partial asynchronism assumption [21]). The t-
th iteration of this algorithm is detailed in Algorithm 2.

Theorem 4 (Asymmetric Broadcast Partition-
ing) For the roadmap G, let A and b be as in (5) and (6),
respectively. Let τ be the partial asynchronism constant,
and let 0 < ε < (K(1 + τ + τ |Ec|))−1, where K ∈ R>0 is
the Lipschitz constant of α → AT (Aα + b). Then, the
Asymmetric Broadcast Partitioning algorithm in Algo-
rithm 2 asymptotically converges to α∗AB = limt→∞α

t.
Moreover,

min
α≤α≤α

‖Aα+ b‖2∞ = ‖Aα∗AB + b‖2∞,
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where α and α denote the cameras constraints.

PROOF. The algorithm update follows the gradient of
α→ 1

2‖Aα+ b‖22. Because of the partial asynchronism

assumption and the fact that αt ∈ [0, 1]Ec is such that
α ≤ αt ≤ α for all t ∈ N, the statement follows from [21,
Section 7, Proposition 5.3] and Theorem 1. Note that
the bound for the stepsize ε depends on the Lipschitz
constant K, the time horizon τ and the number of edges
connecting the cameras [21]. �

6 Conclusion

In the first part of this note we introduce and solve the
continuous graph partitioning problem, where each edge
is partitioned in a continuous fashion among its end-
point vertices, and where the cost function is given by
the largest load of each vertex. In the second part of the
paper we show how the continuous graph partitioning
problem can be used to design surveillance trajectories
for a network of autonomous PTZ cameras for the quick-
est detection of intruders. We only consider the case of
static intruders and we leave the case of dynamic intrud-
ers as the subject of future research. We conclude with
a distributed algorithm for the design of cameras trajec-
tories based on continuous graph partitioning.

References

[1] D. Borra, F. Pasqualetti, and F. Bullo. Continu-
ous graph partitioning for camera network surveil-
lance. In IFAC Workshop on Distributed Estimation
and Control in Networked Systems, pages 228–233,
Santa Barbara, CA, USA, September 2012.

[2] Eds. B. Bhanu, C. Ravishankar, A. Roy-
Chowdhury, H. Aghajan, and D. Terzopoulos. Dis-
tributed Video Sensor Networks. Springer, 2010.

[3] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and
L. Schenato. Distributed perimeter patrolling and
tracking for camera networks. In IEEE Conf. on
Decision and Control, pages 2093–2098, Atlanta,
GA, USA, December 2010.

[4] R. Carli, A. Cenedese, and L. Schenato. Distributed
partitioning strategies for perimeter patrolling. In
American Control Conference, pages 4026–4031,
San Francisco, CA, USA, June 2011.

[5] M. Spindler, F. Pasqualetti, and F. Bullo. Dis-
tributed multi-camera synchronization for smart-
intruder detection. In American Control Confer-
ence, pages 5120–5125, Montréal, Canada, June
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