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Abstract— This letter investigates the problem of optimal
sensor location in network systems. We study the problem
of detecting unknown disturbances in network systems, and
we particularly focus on the case of line networks. We adopt
a measure based on the network cross-Gramian to evaluate
different sensor locations with respect to the origin of the
signal to be detected. We consider both the cases of Toeplitz
line networks, where the edge weights are specified by three
parameters, and line networks with general weights. As a
counterintuitive result we prove that, depending on the edge
weights, the sensor should be placed as far as possible in the
network from the origin of the signal. On the other hand, in
certain regions of the parameter space, the sensor should be
co-located with the signal to be detected. Our results suggest
that sensor location methods based on the network topology
alone may lead to poor detection performance in complex
cyber-physical systems, due to the intricate relation between
the system dynamics and the underlying network structure.
The findings are illustrated on a class of electronic circuits.

I. INTRODUCTION

Network systems are prone to malicious attacks and faults
against individual nodes and interconnection dynamics. Per-
turbations propagate across components and subnetworks,
and may cascade into the failure of all interconnected
parts [1]. Reliable operation of network systems relies on
the prompt detection and remedy of malfunctions.

The ability to detect perturbation in network systems
depends on the the intrinsic structure of the system, as well
as on the location of sensors and monitors. In this letter we
focus on the latter aspect, and we try to identify optimal
network locations for the detection of an unknown perturba-
tion signal. In particular, we define detection metrics based
on the static gain of the dynamical network system [2]. We
consider a class of network systems with line interconnection
structure, and we identify optimal sensor locations based on
the network weights and the origin of the perturbation signal.
Surprisingly we find that, in some cases, sensors should be
located as far as possible from the origin of the perturbation
while, in other cases, the distance between the sensors and
the origin of the perturbation should be minimized. Although
our results pertain a specific, and simple, interconnection
structure, we conjecture that a similar behavior may appear
in more complex interconnection structures, and that novel
techniques are necessary to relate the structure with the
dynamical properties of the associated network system.
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Related work The problem of selecting sensors and actua-
tors in dynamical systems has received considerable attention
in the controls community. Typically, sensors and actuators
are selected to maximize, respectively, certain observability
and controllability metrics, often quantified by Gramian
matrices [3], [4], [5]. For small-scale problems, the max-
imization of observability and controllability metrics often
relies on combinatorial procedures, which do not offer any
particular insight into the structure of the problem, and
become computationally infeasible for large problems.

Motivated by a renewed interest in network systems, and
particularly by the need for a deepened understanding of the
relation between network structure and network dynamics,
recent studies have focused on determining suitable optimiza-
tion metrics for sensor and actuator placement in large-scale
systems [6], as well as on highlighting tradeoffs and relations
between network structure and the associated Gramians [7],
[8], [9]. In a related fashion, the controllability Gramian has
been analyzed for security and synchronization problems in
network systems [10], [11]. In this letter, we continue the
work along these directions by considering the trace of the
cross-Gramian [2] as a metric for joint sensor and actuator
location in network systems, and by providing explicit results
for a class of network systems under the hypothesis that the
input attack location is a priori known (see e.g. [12]).
Contributions We define a sensor location problem for
network systems, and we use the trace of the cross-Gramian
or, equivalently for single-input single-output systems, the
system static gain, to evaluate different sensor locations
with respect to the location of a perturbation signal. We
consider network systems with tridiagonal adjacency matrix
(line networks), and we separately analyze the cases of
Toeplitz and general edge weights. For the case of Toeplitz
line networks, we uniquely identify optimal sensor locations
with respect to the edge weights. This result is obtained by
characterizing the behavior of the entries of the inverse of the
network adjacency matrix, which may increase or decrease
as a function of the network cardinality. Additionally we
prove that a similar result is achieved in certain regions of
the parameter space also for the case of line networks with
general weights. A numerical study validates our findings.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

In this section we detail our setup and introduce prelim-
inary concepts that will be used throughout the rest of the
letter. Consider a network represented by an interconnection
graph G = (V, E), where V = {1, · · · , n} and E ⊆ V × V
denote the vertex and edge sets, respectively, and a weighted
adjacency matrix A ∈ Rn×n containing the weights of the
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network interconnection edges. That is, A = [aij ], where
aij = 0 if (i, j) 6∈ E , and aij equals the weight of the edge
(i, j) otherwise. Assume that a subset of vertices U ⊆ V ,
with |U| = m, is affected by an external and unknown signal
representing genuine disturbances or malicious attacks, and
that a subset of nodes Y ⊆ V , with |Y| = p, is equipped
with sensors capable of measuring the nodes activity. Let
B ∈ Rn×m be the submatrix of the n-dimensional identity
matrix with columns indexed by U , and let C ∈ Rp×n be
the submatrix of the n-dimensional identity matrix with rows
indexed by Y . Let xi ∈ R be the state associated with node i.

We assume that the network systems evolves according to
linear, continuous-time dynamics described by its weighted
adjacency matrix, that is,

ẋ(t) = Ax(t) +B u(t), y(t) = C x(t), (1)

where x = (x1, · · · , xn)T , u = (u1, · · · , um)T , and y =
(y1, · · · , yp)T are the network state vector, the unknown dis-
turbance input, and the measured output vector, respectively.

Two dual problems are of interest. On the one hand,
based on the knowledge of the network dynamics A and
sensor locations Y , an attacker aims to find optimal input
vertices U to maximally disrupt the network system while
preventing observability from the sensor nodes. Conversely,
based on the knowledge of the network dynamics A and
input locations U , the objective of a security system is to
determine the sensor nodes Y ensuring optimal detectabil-
ity of an unknown disturbance. The two problems can be
addressed independently by defining quantitative notions of
controllability and observability for the network system [3].
Yet, an approach combining both structural measures may
lead to more robust results [13]. To this aim, we adopt the
notion of cross-Gramian that was first introduced for single-
input single-output linear systems in [14], and then extended
for the multi-input multi-output case in [15]:

Definition 2.1: (cross-Gramian) For a stable network sys-
tem described by the triple (A,B,C), the cross-Gramian is
defined as

Wco =
∫∞

0
eAtBC eAt dt ,

or, equivalently, as the solution to the Sylvester’s equation

AWco +WcoA = −BC .
As shown in [14], the cross-Gramian matrix Wco carries
information about both controllability and observability of
the network. For symmetric systems, the cross-Gramian is
indeed related to the controllability and observability Grami-
ans, Wc and Wo, by the relation Wco =

√
WcWo [2], [16].

Moreover, for single-input single-output systems, the trace
of the cross-Gramian is related to the network steady-state
gain g = −C A−1B by the equation[15]

Trace (Wco) = 1
2 g . (2)

Eq. 2 suggests that Trace(Wco) can in fact be used to evaluate
the amplification or attenuation of a network signal that
is slowly varying with respect to the network dynamics.
Motivated by the above discussion, in this letter we focus
on the following problem:

Problem 2.1: (Optimal sensor placement) Given a net-
work G with adjacency matrix A, input nodes U , and
dynamics as in (1), determine the sensor locations Y , with
|Y| = p, that maximize the trace of the associated cross-
Gramian, i.e. maxY Trace(Wco), subject to |Y| = p. �
Addressing the above problem for generic networks, with
possibly multiple input nodes and with several sensors, is
a daunting task. In this letter we focus on a single-attack,
single-sensor scenario, where |U| = 1 and |Y| = 1. Under
this hypothesis, it can be shown that the trace of the cross-
Gramian becomes

Trace (Wco) = − 1
2A
−1
ij ,

where A−1
ij is (i, j)-th entry of the inverse of the adjacency

matrix A. Thus, for the single-input single-sensor case,
Prob. 2.1 can be addressed by characterizing the inverse of
the network adjacency matrix, so as to select the node i that
maximizes the element A−1

ij . This solution strategy is used
in the next section to determine optimal sensor location in
line networks, and to show that the network structure and
dynamics may enforce counterintuitive relations regarding
the location of sensors and actuators in a complex system.

III. OPTIMAL SENSOR PLACEMENT FOR LINE
NETWORKS

A. Toeplitz Line Networks

Consider a Toeplitz line network with a tridiagonal adja-
cency matrix where the coefficients a, b, c ∈ R 6=0:

A =


a b · · · 0 0
c a · · · 0 0
...

...
. . .

...
...

0 0 · · · a b
0 0 · · · c a

 . (3)

It is known that the inverse A−1 = [A−1
ij ] of a tridiagonal

Toeplitz matrix A is given by [17]:

A−1
ij =

1

θn

{
(−1)i+jbj−i θi−1 φj+1, for i ≤ j ,
(−1)i+jci−j φi+1 θj−1, for i > j ,

(4)

where the coefficients θk are obtained through the forward
iteration

θk = a θk−1 − bc θk−2 for k = 2, · · · , n , (5)

with initial conditions θ0 = 1 and θ1 = a, while the
coefficients φk are computed through the backward iteration

φk = aφk+1 − bc φk+2 for k = n− 1, · · · , 1 , (6)

with final conditions φn+1 = 1 and φn = a. It can be shown
that θn = det(A).

In this framework we are interested in characterizing the
behavior of the sequences (5) and (6) for large networks. For
this reason, even though the network cardinality is finite, we
adopt the following asymptotic definitions:

Definition 3.1: (Decreasing sequence) A sequence m(j),
with j = 1, 2, . . . , is decreasing if there exist j∗, γ ∈ R>0

and ρ ∈ (0, 1) satisfying |m(j)| ≤ γρj for j ≥ j∗. �



Definition 3.2: (Increasing sequence) A sequence m(j),
with j = 1, 2, . . . , is increasing if there exist j∗, γ ∈ R>0

and ρ ∈ R>1 satisfying |m(j)| ≥ γρj for j ≥ j∗. �
The following theorem characterizes the behavior of the
entries A−1

ij of the inverse of a tridiagonal Toeplitz matrix A.
Theorem 3.1: (Inverse of Toeplitz matrix) Let A ∈ Rn×n

be a tridiagonal Toeplitz matrix with parameters a, b, c ∈
R 6=0. Let

µ+ = −a+
√
a2 − 4bc, and µ− = −a−

√
a2 − 4bc.

As the dimension n grows, the entries A−1
ij satisfy the

following conditions:
1) For all rows i,

a) if |µ+| < 2|b| and |µ−| < 2|b|, then the sequence
A−1
ij , with j ≥ i, is increasing;

b) if |µ+| > 2|b| or |µ−| > 2|b|, then the sequence
A−1
ij , with j ≥ i, is decreasing;

2) For all rows i,
a) if |µ+| < 2|c| and |µ−| < 2|c|, then the sequence

A−1
ij , with j < i, is decreasing;

b) if |µ+| > 2|c| or |µ−| > 2|c|, then the sequence
A−1
ij , with j < i, is increasing.

Proof: To analyze the behavior of the entries of A−1,
based on (4), one can conveniently fix a row index i and
study the behavior of all column entries j by distinguishing
the cases with i ≤ j and i > j.

If i ≤ j, the entry A−1
ij can be factorized as

yi(j) := A−1
ij = α(i) (−1)j bjφ(j + 1) ,

where α(i) = (−1)i b−i θ−1
n θi−1. Starting from the last two

column entries, which are given by

yi(n) = α(i) (−1)n bn ,
yi(n− 1) = α(i) (−1)n−1 bn−1a ,

one can recursively obtain all other entries of the i-th row
through a backward recurrence relation that is derived below.
Consider expanding the expression of the entry yi(j − 1) as
follows: for j = n, · · · , i+ 1,

yi(j − 1) = α(i) (−1)j−1 bj−1 φ(j)
= α(i) (−1)j−1 bj−1 (aφ(j + 1)− bc φ(j + 2))
= −ab yi(j)− c

b y
i(j + 1) .

Translating of a step backward the above relation yields:
yi(j−2) = − cb yi(j)− a

b y
i(j−1), for j = n+1, · · · , i+2.

To analyze the behavior of the above difference equation,
one can define the vector state x(j) =

(
yi(j), yi(j − 1)

)T
,

whose backward evolution is described by the state form

x(j − 1) = Hφ x(j) , for j = n, · · · , i+ 2 , (7)

with Hφ =
(

0 1
−c/b −a/b

)
, and initial condition x(n) =

α(i) (−1)n(−bn+1, bna)T . Based on the expression of Hφ’s
eigenvalues, that are µ+/2b and µ−/2b, one can conclude
the following. 1-a) If |µ+| < 2 |b| and |µ−| < 2 |b|, both
eigenvalues lay inside the unit circle, the backward evolution
of the system in (7) is decreasing, while the sequence

{yi(j)}, for j = i, i + 1, · · · , n, is increasing. 1-b) If
|µ+| > 2 |b| and |µ−| > 2 |b|, at least one eigenvalue lays
outside the unit circle, the backward evolution of the system
in (7) is increasing, and the sequence {yi(j)} is decreasing.

If i > j, the entry of A−1
ij can be factorized as

yi(j) := A−1
ij = β(i) (−1)j c−j θ(j − 1) ,

where β(i) = (−1)i ci θ−1
n φi+1. Starting from the first two

column entries, yi(1) = −β(i)/c and yi(2) = β(i) a/c2,
one can recursively obtain all other entries of the i-th row
through a forward recurrence relation that is derived below.
Consider expanding the expression of the entry yi(j + 1) as
follows: for j = 2, · · · , n,

yi(j + 1) = β(i) (−1)j+1 c−j−1 θ(j)
= β(i) (−1)j+1 c−j−1 (a θ(j − 1)− bc θ(j − 2))
= −ac yi(j)− b

c y
i(j − 1) .

Translating of a step forward the above relation yields
yi(j + 2) = − bc yi(j)− a

c y
i(j + 1) for j = 1, · · · , n − 1.

One can define the vector state x(j) =
(
yi(j), yi(j + 1)

)T
and study the evolution of the state form

x(j + 1) = Hθ x(j) , for j = 1, · · · , i− 1 , (8)

with Hθ =
(

0 1
−b/c −a/c

)
, and initial condition x(1) =

β(i) (1, a)T . Based on the expression of Hθ’s eigenvalues,
that are µ+/2c and µ−/2c, one can conclude the following.
2-a) If |µ+| < 2 |c| and |µ−| < 2 |c|, both eigenvalues lay
inside the unit circle and the sequence {yi(j)}, for j = i, i+
1, · · · , n, is decreasing. 2-b) If |µ+| > 2 |c| and |µ−| > 2 |c|,
at least one eigenvalue lays outside the unit circle and the
sequence {yi(j)} is increasing.
Th. 3.1 characterizes the behavior of the sequences defined
by the entries of the rows of A−1. Fig. 1 contains graphical
illustrations of the possible trends that may occur depending
on the network parameters a, b, c. The theorem can be used to
describe an optimal sensor location, and indeed to solve for
Prob. 2.1, for tridiagonal Toeplitz networks. The following
corollary can be established under the hypothesis that the
designer has a priori knowledge of the location of the input
node (e.g., see [12]).

Corollary 3.1: (Optimal sensor placement for Toeplitz
networks) Consider a Toeplitz line network as in (1). If the
input is located at node j, then the sensor node i such that
A−1
ij is largest is determined as follows:
1) If 1-a and 2-a hold, then i = j, that is, the sensor is

co-located with the input node;
2) if 1-b and 2-a hold, then i = 1, that is, the sensor is

located at the first node;
3) if 1-a and 2-b hold, then i = n, that is, the sensor is

located at the last node of the line;
4) if 1-b and 2-b hold, then i = h, where h is the nearest

between 1 and n to vertex j, i.e.,

h =

{
1 if j ≤ n

2 ,

n if j > n
2 ,

h =


1 if j ≤

⌊
n
2

⌋
,

n if j >
⌈
n
2

⌉
,

1 or n if j =
⌈
n
2

⌉
.

(if n is even) (if n is odd)
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Fig. 1. Heat maps of the matrix log(|A−1|) for different tridiagonal Toeplitz matrix A ∈ R30×30 (brighter colors indicate entries with larger absolute
values). Referring to Th. 3.1, (a) and (b) satisfy conditions 1-b and 2-a so that, for each row, the sequence of entries is decreasing, (c) satisfy conditions
1-a and 2-b so that, for each row, the sequence of entries is increasing, and (d) satisfy conditions 1-b and 2-b so that the sequence of entries is decreasing
for j ≥ i and increasing for j < i. Notice that all matrices A are Hurwitz.

Proof: The proof trivially follows from Th. 3.1.
Remark 3.1: (Stability of the network matrix) It should

be observed that the stability of a tridiagonal Toeplitz matrix
A does not imply the convergence or divergence of the
entries of its inverse A−1. In fact, Th. 3.1 shows that, even
for stable matrices, the rows of the inverse of the network
matrix may contain convergent or divergent sequences of
entries. See Sec. IV for an example. �

B. General Line Networks

Let us now focus on the case of general line networks
described by tridiagonal adjacency matrices of the form:

A =


a1 b1 · · · 0 0
c1 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · an−1 bn−1
0 0 · · · cn−1 an

 , (9)

with coefficients ak, bk, ck ∈ R 6=0 for all k. The formula for
the entries of the inverse A−1 = [A−1

i,j ] is generalized as
follows [17]:

A−1
ij =

1

θn

{
(−1)i+j bi · · · bj−1 θi−1 φj+1, for i ≤ j ,
(−1)i+j cj · · · ci−1 φi+1 θj−1, for i > j ,

where the coefficients θk and φk are obtained respectively
through the forward and backward iterations:

θk = ak θk−1 − bk−1ck−1 θk−2 , for k = 2, · · · , n ,
φk = ak φk+1 − bkck φk+2 , for k = n− 1, · · · , 1 ,

with initial conditions respectively given by θ0 = 1, θ1 = an,
and φn+1 = 1, φn = an.

A complete characterization of the behavior of the in-
verse A−1 of a general tridiagonal matrix A is not immediate,
and in fact involves conditions that cannot be easily verified.
However, a conservative yet useful analysis test can be
derived, based on lower and upper approximations of A by
suitable tridiagonal Toeplitz matrices. This fact is shown in
the following theorem.

Theorem 3.2: (Inverse of tridiagonal matrix) Let A ∈
Rn×n be a tridiagonal matrix with parameters ai, bi, ci ∈

R 6=0. Let a, b, c, ā, b̄, c̄ ∈ R>0. Assume that

(ā2 − 4 b c) (ā2 − 4 b c̄) > 0 ,
(a2 − 4 b̄ c̄) (a2 − 4 b̄ c) > 0 ,

(10)

and, for all indices i,

a ≤ |ai| ≤ ā, b ≤ |bi| ≤ b̄, c ≤ |ci| ≤ c̄.

Let ν1 = ā+
√
ā2 − 4 b c, and ν2 = a−

√
a2 − 4 b̄ c̄.

As the dimension n grows, the entries A−1
ij satisfy the

following conditions:
1) For all rows i,

a) if |ν2| > 2 b̄, then the sequence A−1
ij , with j ≥ i,

is decreasing;
b) if |ν1| < 2 b, then the sequence A−1

ij , with j ≥ i,
is increasing.

2) For all rows i,
a) if |ν1| < 2 c, then the sequence A−1

ij , with j < i,
is decreasing;

b) if |ν2| > 2 c̄, then the sequence A−1
ij , with j < i,

is increasing.
Proof: As in Th. 3.1 one can conveniently fix a row

index i and study the behavior of all column entries j for
i ≤ j and i > j.

If i ≤ j, the entry A−1
ij can be factorized as

yi(j) := A−1
ij = α′(i) (−1)j bi · · · bj−1 φ(j + 1),

where α′(i) = (−1)i θ−1
n θi−1. The entry A−1

i,j−1 can be
rewritten as follows:

yi(j − 1) = −α′(i) (−1)j bi · · · bj−2 φ(j) =
= − aj

bj−1
yi(j)− cj

bj−1
yi(j + 1) ,

and thus, after translating of a step backward, the following
difference equation is obtained:

yi(j − 2) = − cj
bj−1

yi(j)− aj
bj−1

yi(j − 1) ,

for j = n+ 1, · · · , i+ 2. One obtains the following column-
dependent, backward state form that generalizes (7):(

yi(j − 1)
yi(j − 2)

)
=

(
0 1

− cj
bj−1
− aj
bj−1

)(
yi(j)

yi(j − 1)

)
, (11)



for j = n − 1, · · · , 2, and whose dynamic matrix has the
following column-dependent eigenvalues

λ
(j)
1,2 = 1

2 bj−1

(
−aj ±

√
a2
j − 4 bj−1 cj

)
.

If i > j, the entry A−1
ij can be factorized as

yi(j) := A−1
ij = β′(i) (−1)j cj · · · ci−1 θ(j − 1) ,

where β′(i) = (−1)i θ−1
n φi+1, and one obtains the following

column-dependent state form that generalizes (8):(
yi(j + 1)
yi(j + 2)

)
=

(
0 1

− bj−1

cj
−ajcj

)(
yi(j)

yi(j + 1)

)
, (12)

for j = 1, · · · , i − 1, and whose dynamic matrix has the
following column-dependent eigenvalues

µ
(j)
1,2 = 1

2 cj

(
−aj ±

√
a2
j − 4 bj−1 cj

)
.

Under the conditions in (10), it is possible to find the
following upper and lower bounds for the modules of the
eigenvalues λ

(j)
1,2 and µ

(j)
1,2: |ν2|

2 b̄
≤ |λ(j)

1,2| ≤ |ν1|
2 b

, |ν2|2 c̄ ≤
|µ(j)

1,2| ≤ |ν1|2 c . As in Th. 3.1, when both eigenvalues λ(j)
1,2 lay

inside the unit circle, for all j, the backward dynamics in (11)
is decreasing and the forward sequence {yi(j)} is increasing,
while, when both eigenvalues µ(j)

1,2 lay inside the unit circle,
for all j, the dynamics in (12) is decreasing and the same
holds for the sequence {yi(j)}. This reasoning explains the
conditions in the statement of the theorem.

As for the case of Toeplitz line networks discussed in
Th. 3.1, Th. 3.2 provides guidelines for the selection of
sensor nodes with respect to the input location and the
network parameters.

IV. NUMERICAL EXAMPLES

In this section we validate our findings with two nu-
merical examples. In particular, in Sec. IV-A we fix the
diagonal entries of the network matrix, and plot the regions
of the parameter space yielding decreasing and increasing
behaviors of the entries of the network inverse matrix. In
Sec. IV-B we present an electronic network whose dynamics
is described by a tridiagonal matrix, and we analyze its
steady-state behavior as a function of the network elements
and the locations of the input and sensor nodes.

A. Map of decreasing and increasing parameters

Consider a line network as in Fig. 2, where an input
affects the i-th node whose effect is measured from the
j-th node. Let the network cardinality be n = 30 and
the network’s diagonal elements be a = −0.3. In Fig. 3
we report the parameter space regions corresponding to
decreasing and increasing entries of the network’s inverse
matrix (see Th. 3.1). We now fix the network weights and
assume that i = 1 and the signal injected into the network is
a white noise with zero mean and unit variance. Fig. 3 again
shows how the input signal is amplified at different nodes of
the network, depending on the network weights. Results are
consistent with the predictions from Th. 3.1.

a1

1 c1

b1 ni

u(t) y(t)

j

ai

bi
ci

anan�1

bn�1

cn�1

b2
c2

a2 aj

bj

cj

Fig. 2. Line network with n nodes. The i-th node is affected by an attack,
and the j-th node represents the optimal sensor placement.
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Fig. 3. Line network features: (left) convergence/divergence map for
a = −0.3 and −2 ≤ b, c ≤ 2 (blue and red indicate regions where
the sequence A−1

ij is decreasing and increasing, respectively; white regions
indicate unstable networks; the axes b = 0 and c = 0 are excluded
since A not invertible); (right) simulation runs with two networks having a
decreasing and increasing metric, respectively; the former is with b = 0.57
and c = −1.37 and has the input maximum amplification at node where
it is applied, while the latter is with b = 0.1 and c = 0.25 maximally
amplifies at the furthest node.

B. An electronic network yielding tridiagonal dynamics

Consider the electronic circuit in Fig. 4, which represents
a multistage amplifier [18], and consists of a chain of RC
elements connected by voltage-feedback transconductance
amplifiers. The i-th part of the system, for i = 1, · · · , n,
includes a resistor Ri, a capacitor Ci, and the elements of
the local amplifier’s equivalent circuit. Each amplifier Ai
comprises an input resistance, ρi, an output resistance, δi,
and a controlled generator Gi injecting a current linearly
depending on the capacitor Ci’s voltage through a gain
coefficient ki. Let xi(t) be the voltage at time t of the
capacitor Ci. Then, the current injected by Gi is ki xi(t),
where ki > 0 if the amplifier works in non-inverting
configuration, and ki < 0 if the amplifier is in inverting
configuration. The electronic circuit is controlled through
an input signal v(t) that is applied at the first RC-branch,
while a short circuit is imposed at the last branch. We aim
to characterize the propagative properties of a disturbance
signal u(t) that is applied at the i-th node.

To this aim, we first determine a dynamical model of the
system. By applying Kirchhoff’s current law, we obtain the
following balance equations:

iRi(t)− iCi(t)− iρi − iGi(t)− iδi − iRi+1(t) = 0 ,

for i = 1, 2, · · · , n, which can be written in terms of the
system’s state by exploiting Kirchhoff’s voltage law:

1
Ri

(xi−1(t)− xi(t))− Ci ẋi(t)− 1
ρi
xi(t)− ki xi(t)+

− 1
δi
xi(t)− 1

Ri+1
(xi(t)− xi−1(t)) = 0 .



i Ri [⌦] Ci [F] ki

1 1 · 100 1.33 · 100 �6.67 · 10�2

2 3.75 · 100 3.56 · 10�1 �1.78 · 10�2

3 1.41 · 101 9.48 · 10�2 �4.74 · 10�3

4 5.27 · 101 2.53 · 10�2 �1.26 · 10�3

5 1.98 · 102 6.74 · 10�3 �3.36 · 10�4

6 7.42 · 102 1.8 · 10�3 �8.86 · 10�5

7 2.78 · 103 4.79 · 10�4 �2.26 · 10�5

8 1.04 · 104 1.28 · 10�4 �5.06 · 10�6

9 3.91 · 104 3.41 · 10�5 �3.71 · 10�7

10 1.47 · 105 9.09 · 10�6 8.79 · 10�7

a = �1 b = 0.2 c = 0.75
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i Ri [⌦] Ci [F] ki

1 1 · 1010 1 · 10�9 1.33 · 10�6

2 8.33 · 108 1.2 · 10�8 1.34 · 10�6

3 6.94 · 107 1.44 · 10�7 1.38 · 10�6

4 5.79 · 106 1.73 · 10�6 1.85 · 10�6

5 4.82 · 105 2.07 · 10�5 7.55 · 10�6

6 4.02 · 104 2.49 · 10�4 7.6 · 10�5

7 3.35 · 103 2.99 · 10�3 8.97 · 10�4

8 2.79 · 102 3.58 · 10�2 1.08 · 10�2

9 2.33 · 101 4.3 · 10�1 1.29 · 10�1

10 1.94 · 100 5.16 · 100 1.55 · 100

a = �1 b = 1.2 c = 0.1
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Fig. 4. Electronic network yielding tridiagonal Toeplitz structure: (top row)
scheme of the chain of n voltage-feedback transconductance amplifiers;
(second and third rows) parameters and heat maps of log(|A−1|), with
A ∈ R10×10, for two networks satisfying conditions 1-b and 2-b, and
conditions 1-a and 2-b, of Th. 3.1, respectively. Accordingly, in the former,
the sequence of entries is decreasing for j ≥ i and increasing for j < i,
while in the latter, they are increasing for all rows. Note that all network
matrices are Hurwitz stable.

The electronic circuit can then be modeled as a network
system in Fig. 2 with dynamic equation:

ẋi(t) = ci xi−1(t) + ai xi(t) + bi xi+1(t) , (13)

where ai = −bi− ci− 1
ρi Ci

− 1
δi Ci

+ ki
Ci

, bi = 1
Ri+1Ci

> 0,
and ci = 1

RiCi
> 0. for i = 1, · · · , n, x0 = u and xn+1 = 0.

We now study two numerical instances of the above
electronic circuit with n = 10. For simplicity, we let all input
and output resistances of the amplifiers have equal value, that
is, ρi = ρ = 1 · 106 Ω and δi = δ = 3 · 106 Ω. By choosing
the other circuit parameters as in the upper table in Fig. 4,
the network parameters are such that the network matrix A is
Toeplitz and satisfies the conditions 1-b and 2-b in Th. 3.1.
Thus, the sequences A−1

ij , for j ≥ i (respectively j < i),
show a decreasing (respectively increasing) behavior. Instead,
for the circuit parameters reported in the lower table of Fig. 4,
the network matrix A satisfies the conditions 1-a and 2-b
in Th. 3.1, so that the sequences A−1

ij are increasing for all
rows i. A graphical illustration of the behaviors of the entries
of the inverse of the network matrix is reported in Fig. 4.
Accordingly, for the first set of parameters, a disturbance is
mostly visible close to the signal source, while for the latter
it is greatest at the right extreme of the circuit.

V. CONCLUSION AND FUTURE WORK

In this letter we studied the problem of selecting sensor
nodes for optimal signal detection in network systems. We

adopt the trace of the cross-Gramian or, equivalently for
SISO systems, the static gain of the network system, to
evaluate different sensor positions with respect to the origin
of a signal to be detected. For line networks with Toeplitz or
general weights, we show that the entries of the inverse of the
network matrix can exhibit drastically different behaviors.
Consequently, to maximize the detection performance, the
sensor should either be co-located with the origin of the
signal, or as far as possible from it, depending on the
network parameters. We illustrate our findings through a
synthetic example and a class of electronic circuits. Several
problems are left as the subject of future research, including
the extension to multi-input multi-sensor scenarios, and the
study of different network topologies.
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