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Abstract The control of networked dynamical systems opens the possibility for new
discoveries and therapies in systems biology and neuroscience. Recent theoretical
advances provide candidate mechanisms by which a system can be driven from one
pre-specified state to another, and computational approaches provide tools to test
those mechanisms in real-world systems. Despite already having been applied to
study network systems in biology and neuroscience, the practical performance of
these tools and associated measures on simple networks with pre-specified structure
has yet to be assessed. Here, we study the behavior of four control metrics (global,
average, modal, and boundary controllability) on eight canonical graphs (including
Erdős–Rényi, regular, small-world, random geometric, Barábasi–Albert preferential
attachment, and several modular networks) with different edge weighting schemes
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(Gaussian, power-law, and two nonparametric distributions from brain networks, as
examples of real-world systems). We observe that differences in global controllability
across graph models are more salient when edge weight distributions are heavy-tailed
as opposed to normal. In contrast, differences in average, modal, and boundary con-
trollability across graph models (as well as across nodes in the graph) are more salient
when edge weight distributions are less heavy-tailed. Across graph models and edge
weighting schemes, average and modal controllability are negatively correlated with
one another across nodes; yet, across graph instances, the relation between average and
modal controllability can be positive, negative, or nonsignificant. Collectively, these
findings demonstrate that controllability statistics (and their relations) differ across
graphs with different topologies and that these differences can be muted or accentu-
ated by differences in the edge weight distributions. More generally, our numerical
studies motivate future analytical efforts to better understand the mathematical under-
pinnings of the relationship between graph topology and control, as well as efforts to
design networks with specific control profiles.

Keywords Network control theory · Brain networks · Average controllability ·
Modal controllability · Boundary controllability · Network topology

Mathematics Subject Classification 93 · 62 · 37 · 15

1 Introduction

Complex systems can be modeled as networks in which the system’s elements and
their pairwise interactions are represented, respectively, as nodes and edges in a graph
(Newman et al. 2011). Drawing on a subfield of mathematics known as graph theory,
network analysis allows for the quantification of a system’s topological organization
and offers insight into its function. Network models and associated graph represen-
tations have been adopted in a range of disciplines to successfully investigate the
structure and function of social, economic, and biological systems (Carrington et al.
2005; Schweitzer et al. 2009; Goh et al. 2007).

Complex systems are also dynamic, meaning that their elements can be associated
with internal states that evolve and fluctuate over time (Boccaletti et al. 2006; Porter
and Gleeson 2014). The state of an element is system dependent and can correspond
to any number of real-world observables, including disease status (e.g., “healthy” or
“infected”) (Newman 2002; Colizza et al. 2006), the concentration of nutrients at a
particular site (Heaton et al. 2012; Papadopoulos et al. 2016), the electrical activity
of neurons (Bettencourt et al. 2007; Teller et al. 2014; Wiles et al. 2017), or hemody-
namic activity of brain areas (Goñi et al. 2014; Honey et al. 2007). The evolution of a
system’s state over time depends upon the organization of its underlying network. For
example, in social systems, individuals become exposed to and infected by disease
through their social contacts (Ray et al. 2016). Similarly, in neural systems, activity
propagates from neuron-to-neuron or region-to-region along axonal projections and
fiber bundles (Muldoon et al. 2016).

An important question and one that has been the topic of many recent inquiries
(Liu et al. 2011; Yan et al. 2012; Sun and Motter 2013; Pasqualetti et al. 2014; Ruths
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and Ruths 2014) is whether a networked dynamical system can be controlled (Liu and
Barabási 2016). Network control refers to the prospect of selectively influencing the
evolution of a system’s state by introducing time-varying external input(s) that drive
it from one state to another along a particular trajectory. Current efforts are actively
tackling diverse challenges in developing a framework to determine whether control
is theoretically possible for a given system (Liu et al. 2011), identifying nodes and
edges that are important for efficient control (Kim et al. 2018), and proposing realistic
strategies for enacting control over complex systems (Cornelius et al. 2013).

One particularly important approach involves quantifying the contributions of con-
trol points (nodes) in driving a system through state space (Pasqualetti et al. 2014).
Based on the topological organization of a network as measured by the configura-
tion of edges, certain nodes may be predisposed to drive the system in particular
manners based on control strategies (see Fig. 1). For example, some nodes might be
better at driving the system into a multitude of different, easy-to-reach states (average
controllability),while othersmaybewell-suited for driving the system into difficult-to-
reach states (modal controllability). Still others are situated between different modules
and therefore have the capacity to regulate and control inter-modular synchronization
(boundary controllability). These measures of controllability can be made on virtually
any networked system, but have been applied most successfully to study large-scale
human brain networks (Gu et al. 2015; Tang et al. 2017). These early studies demon-
strated that brain systems that support different types of function are also characterized
by unique controllability profiles and that these profiles follow distinct trajectories
across late development. Despite their application to the study of real-world brain
networks, the behavior of average, modal, and boundary controllability measures
in practical contexts on canonical network models has not been explored. Such an
investigation would help contextualize the behavior of these measures on real-world
networks.

In this report, we study the behavior of four metrics that characterize overall con-
trollability (global) as well as distinct control strategies (average, modal, and boundary
controllability) in common graph models. We choose these models to canvas archi-
tectures that are proven benchmarks in the analysis of complex systems generally, and
also to probe architectures that are particularly relevant for neural networks in human
and non-human species, a question of critical importance in recent studies (Klimm
et al. 2014; Samu et al. 2014; Roberts et al. 2016; Henderson and Robinson 2011;
Betzel et al. 2017). This rationale motivated our study of graph ensembles drawn from
random, regular lattice, small-world, random geometric, and several modular graph
models with differingmodule size. Because many real-world networks are better char-
acterized by weighted graphs than binary graphs, including brain networks (Bassett
andBullmore 2016),we assignedweights to the edges in each of thesemodels by draw-
ing from theoretically defined distributions such as Gaussian and power-law, as well
as from empirically-measured distributions including the fractional anisotropy along
white matter tracts in the human brain, or the number of streamlines tracked between
brain regions. Our goal is to numerically describe the natural variation of controllabil-
ity across canonical graph models and to compare that variation to characteristics of
brain networks observed in previous studies; we note that a direct comparison between
any specific empirical brain network and a relevant model network is left for future
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Fig. 1 Network control theory and metrics to describe control strategies. a Controlling a network cor-
responds to taking a network from a given state (defined as a pattern of node activation magnitudes) to
another state (a different pattern of node activation) by applying a control input to a particular node (or set
of nodes) in the network. The set of states that is traversed from initial state to target state is known as the
trajectory. The target state can be either nearby or distant in energy, and control input is placed at different
nodes to effect these two different control strategies. bMetrics to quantitatively characterize different con-
trol strategies include average, modal, and boundary controllability. (Top)Average controllability identifies
nodes that can move the system into nearby easy-to-reach states with little control energy. (Middle)Modal
controllability identifies nodes that can move the system into distant, difficult-to-reach states. (Bottom)
Boundary controllability identifies nodes that can help to synchronize or desynchronize communities in the
network
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work. More generally, and beyond the narrow domain of brain networks, these choices
provide a multi-dimensional space in which to gain generic understanding for how
control strategy, graph topology, and edge weight distribution mutually depend on
one another, thereby informing future efforts to design networks with specific control
profiles.

2 Materials and Methods

2.1 Network Generation

2.1.1 Network Definition

Following commonparlance,wewill use the terms graph and network interchangeably
to refer to a set of nodes connected by edges. Mathematically, we represent a graph
G as G = (V, E), where V is the set of vertices, or nodes, and E is the set of edges
between nodes. Computationally, we represent graphs as adjacency matrices. A graph
or networkwith |V | = N , or N nodes, has an adjacencymatrix A of size N×N , where
each element Ai j denotes the connection strength, or edge weight, between node i and
node j . We study undirected graphs represented by symmetric adjacency matrices,
where Ai j = A ji , with no self-loops—connections of a given node with itself—i.e.,
for all i , Aii = 0. Finally, we distinguish between (i) a binary graph, which only
has edge weight values of 0 or 1 to denote the absence or presence, respectively, of
a connection between nodes, and (ii) a weighted graph, which can have scaled edge
weight values denoting the strength of node–node relations.

2.1.2 Network Models

Historically, the fields of graph theory and network science have found it useful to
define specificmodels of graph architectures basedon rules forwiring, rules for growth,
rules for pruning, and rules for explaining patterns of missing data. In each case, such
models provide the grounds for developing and benchmarking novel network statistics.
Here, we take a few of the most common graph models from the general literature,
as well as more specifically from the literature postulating models of the topology
observed in human brain networks (Klimm et al. 2014; Samu et al. 2014; Roberts
et al. 2016; Henderson and Robinson 2011), and use them to benchmark the behaviors
of recently definedmeasures of network controllability (Pasqualetti et al. 2014).Below,
we briefly describe the eight graph models that we chose as the basis for our analysis
of controllability.

• (WRG) Weighted Random Graph model: Arguably the most fundamental, this
graph model is a weighted version of the canonical Erdős-Rényi model. For all
pairs of N nodes, we modeled the weight of the edge by a geometric distribution
with probability of success p, the desired edge density of the graph. Each edge
weight was assigned the number of successes before the first failure (Sizemore
et al. 2017).

123



J Nonlinear Sci

• (RL) Ring Lattice model: In contrast to the random nature of the WRG, the ring
lattice model is one with strict order. We arranged N nodes on the perimeter of
a regular polygon, each with degree k, determined by the desired edge density.
We then connected each node to the k

2 nodes directly before and after it in the
sequence of nodes on the polygon. Edge weights were assigned the inverse of the
path length between the two nodes, determined by traversing the perimeter of the
polygon (Sizemore et al. 2017).

• (WS) Watts–Strogatz model: A model that bridges both the order of the RL and
the disorder of the WRG, the Watts–Strogatz graph model is a ring lattice model
in which edges are rewired uniformly at random to create a small-world network.
Following (Sizemore et al. 2017), we chose the probability r of rewiring a given
edge to maximize the small-world propensity (Muldoon et al. 2016).

• (MD2) Modular Network with 2 communities model: While the previous models
can display some local clustering structure, they lack mesoscale organization in
the form of modules or communities. In contrast, the Modular Network with 2
communities model is a graph of N nodes and K edges placed so as to form 2
communities. Pairs of nodes within communities are connected with edge density
0.8, and pairs of nodes between communities (where one node in the pair is in one
community and the other node in the pair is in a different community) are connected
to fulfill the desired total edge density p. We assigned weights to existing edges by
considering a geometric distributionwith probability of success p if the nodeswere
in the same module and 1 − p if the nodes were in different modules. Each edge
weight was assigned the number of successes before the first failure (Sizemore
et al. 2017).

• (MD4) Modular Network with 4 communities model: This model is generated in
a manner identical to that used in the MD2 graph model, with the exception that
MD4 has 4 communities.

• (MD8) Modular Network with 8 communities model: This model is generated in
a manner identical to that used in the MD2 graph model, with the exception that
MD8 has 8 communities.

• (RG) Random Geometric model: In contrast to most of the previous graph models
that were agnostic to any embedding space, theRandomGeometricmodel contains
N nodes, chosen randomly from a unit cube, and edges whose weights were equal
to the inverse of the Euclidian distance between two nodes. We kept only the K
shortest edges, in order to maintain the desired edge density p (Sizemore et al.
2017).

• (BA) Barábasi–Albert model: In our final graph model, we use software from
Klimm et al. (2014) to generate a typical BA model—a scale-free network that
exhibits preferential attachment to existing nodes of high degree—with N nodes
and K edges. Each edge weight was assigned the average degree of the two nodes
it connected.

While of course this is not an exhaustive list of the possible graph models that one
might wish to study, we focus on this set because it provides a useful assessment of
quite different topologies, and because most of these models have been suggested as
relevant benchmarks against which to compare brain networks in previous studies.

123



J Nonlinear Sci

2.1.3 Network Size

In all of the graph models described above, two parameters must be fixed a priori:
the number of nodes N in the network, and the number of edges K in the network.
We chose the number of nodes to be 128 (see Results section), and we confirmed
consistency of our findings across two other network sizes (256, or 512, nodes; see
SupplementaryMaterials).We chose the number of edges to produce network densities
thatwere consistentwith those observed empirically in large-scale humanbrain graphs.
Specifically, drawing on recently published data from 30 healthy adult individuals by
capitalizing on a 19-minute multi-band diffusion spectrum imaging sequence (Betzel
et al. 2016), we assigned the 128-node graphs an edge density of 0.2919, the 256-node
graphs an edge density of 0.2175, and the 512-node graphs an edge density of 0.1396.
For each network size, we generated 100 instantiations of each of the 8 graph models
described above.

2.1.4 Network Weighting

All of the eight graph models described above were weighted graph models (Sizemore
et al. 2017). While it is important to study weighted (as opposed to binary) graph
models to benchmark network controllability statistics that are currently being applied
to real-world weighted graphs, comparisons across models are confounded by the fact
that each model can have a very different edge weight distribution. Here, we sought
to disentangle the impact of graph model from the impact of edge weight distribution
on network controllability statistics. Practically, we therefore developed a pipeline to
reweight all of the graph models fairly, and with a fixed edge weight distribution.

We began by adding random noise on the order of 10−7 to all edge weights in
all network models; this process ensures the uniqueness of each edge weight, while
maintaining the relative weight magnitudes. Next, we sorted edges by weight and then
replaced each edge with corresponding ordered values pulled from a specific edge
weight distribution of interest, of which we defined four. The first was a Gaussian
distribution with a mean of 0.5 and a standard deviation of 0.12. The second was a
power-law distribution with a slope of -3 and a range of values from 10−5 to 105.
Both Gaussian and power-law distributions are ubiquitously found in real-world net-
works and in fact form natural benchmarks for edge weight distributions taken from
neuroimaging data. The third and fourth edge weight distributions of interest were
taken from Betzel et al. (2016) to closely model empirical weighting distributions in
large-scale human brain structural networks estimated from diffusion imaging trac-
tography. Specifically, these two distributions were streamline counts (normalized by
the geometric mean of regional volumes) and fractional anisotropy (FA). Importantly,
the reweighting scheme we describe here allowed us to use the same edge weighting
across all graphs to guarantee that differences in controllability were due to topology
and not to other properties of the graphs, like differing edge weights and scaling.

2.1.5 Network Ensembles

In summary, we study three network sizes (128, 256, or 512 nodes) for each of the
four edge weightings (Streamline Counts, FA, Gaussian, Power-Law), thus totaling
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12 sets of networks, each of which included 100 instantiations of each of the 8 graph
models. We next turn to an examination of network controllability statistics in these
12 sets of weighted graphs.

2.2 Network Controllability

2.2.1 A Linear Model of Brain Dynamics

Although the relationship of brain structural networks to the correlation structure of
spontaneous neural activity is, in general, nonlinear, a great deal of variance in that
correlation structure can, nonetheless, be explained by simple linear models (Galán
2008). Accordingly, we define brain dynamics with a noise-free, linear, discrete-time,
and time-invariant network model:

x(t + 1) = Ax(t) + BKuK(t), (1)

where x : R≥0 → R
N denotes a brain region’s state (i.e., its magnitude of electrical

or hemodynamic activity) and A is the symmetric, weighted adjacency matrix. The
input matrix, BK, which identifies control points K = {k1, . . . , km}, is defined as:

BK = [ek1 , . . . , ekm ] (2)

where ei indicates the i-th canonical vector (of length N ). The input, uK : R≥0 → R
m ,

specifies the strategy for controlling these dynamics. Note that in Eq. 1, we scaled the
elements of A by 1/(1 + λmax) (where λmax is the largest eigenvalue of unscaled A),
which ensures that the scaled version of A is Schur stable (i.e., all eigenvalues of
A are < 1 in magnitude). We note that different choices for the normalization will
accentuate versus de-emphasize different scales of dynamics, and it will be interesting
in the future to study how the choice of normalization impacts observed patterns of
controllability.

Under these dynamics, we define a series of control metrics that quantify differ-
ent intuitions of controllability (although see “Methodological Considerations” for a
discussion of other interesting metrics not studied here). Specifically, we will study
global, average, modal, and boundary controllability. Global and average controlla-
bility are defined for arbitrary A and B, while modal and boundary controllability are
defined for each node in the network.

2.2.2 Global Controllability

The first metric we will study is global controllability, which assesses whether control
(i.e., the ability to steer the system from any arbitrary network state to any other
arbitrary network state) is theoretically possible. In general, the ease or difficulty of
control is related to the structure and eigenvalues of the controllability Gramian:
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WK =
∞∑

t=0

AtBKBT
KA

t , (3)

where the eigenvalues of the inverseGramian indicate ease of control.We define global
controllability to be the smallest eigenvalue of WK. The structure of WK depends
upon both the topological organization of a network (which we assume to be fixed)
and the set of nodes assumed to be control points, i.e., BK. As in Gu et al. (2015),
we test all possible single-point control strategies (where BK is a one-dimensional
column vector), computing WK and its corresponding eigenvalues along with the
global controllability metric for each case. Accordingly, for every realization of any
graph model, we obtain N global controllability scores for each of the N nodes. We
note that in practice, we find that—for the networks that we study here—the largest
eigenvalue of the Gramian is greater than or equal to 1. Thus, the global controllability
values that we report later in the Results section are small in comparison to the largest
eigenvalue.

2.2.3 Average and Modal Controllability

In addition to global controllability, we also characterized networks using three other
node-level controllability metrics. The first, average controllability, ζ , describes the
ease with which control points in a network can move the system into nearby, easily
reachable states, and is computed as

ζ = Trace(W−1
K ). (4)

The secondmetric,modal controllability, quantifies the ease with which control points
in a network can move the system into distant, hard-to-reach states. Modal controlla-
bility is computed from the eigenvector matrix V = [vi j ] of the network adjacency
matrix A (and not from the controllability Gramian). By extension from the PBH test
(Kailath 1980), if the entry vi j is small, then the j-th mode is poorly controllable from
node i . Following (Pasqualetti et al. 2014), we define

φi =
∑

j

(1 − ξ2j (A))v2i j (5)

as a scaledmeasure of the controllability of all N modes ξ0(A), . . . , ξN−1(A) from the
brain region i—allowing the computation of regional modal controllability. Regions
with highmodal controllability are able to control all the dynamicmodes of the network
and hence to drive the dynamics toward hard-to-reach configurations.

Past studies have shown that, for a given graph, average and modal controllability
tend to be anti-correlated with one another across nodes (Gu et al. 2015; Tang et al.
2017), so that brain regions well-suited for moving the system into easy-to-reach
states are also poorly suited for moving the system into difficult-to-reach states and
vice versa.
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2.2.4 Boundary Controllability

Lastly, we also investigated boundary controllability, which describes the ease with
which control points in a network can act to decouple or connect communities
(subnetworks) within the system. To detect boundary controllers, we followed the
procedure described in Gu et al. (2015), which modified the algorithm proposed in
Pasqualetti et al. (2014). Briefly, this procedure involves iteratively bi-partitioning
the original network into progressively smaller subnetworks and, at each level, iden-
tifying nodes whose connections span both halves. In Pasqualetti et al. (2014), the
initial partition of the network into two subnetworks was generated based on the
Fiedler eigenvector of A. Here, because brain networks are composed of many dis-
tinct communities (Sporns and Betzel 2016), we initialize the algorithm instead with a
partition obtained by maximizing a modularity quality function (Newman and Girvan
2004):

Q =
∑

i j

[Ai j − Pi j ]δ(σiσ j ), (6)

where Pi j is the expected weight of the connection between nodes i and j , σi is the
subnetwork (community) assignment of node i , and δ(σi , σ j ) is the Kronecker delta
function, which equals one when σi = σ j and zero otherwise. Here, the expected
weight of connections is determined based on a null model in which nodes’ strengths
are preserved but connections are, otherwise, formed at random: Pi j = ki k j

2m , where
ki = ∑

j Ai j and 2m = ∑
i ki . This null model is commonly known as the Newman–

Girvan null model.
From this initial partition, we define boundary nodes to be nodes that maintained

supra-threshold connections to more than one subnetwork. The value of this thresh-
old, ρ = 1 × 10−5, was selected so as to—in general across graph models and
instantiations—maximize the number of unique values of boundary controllability
across nodes in a given graph. At this first level, we assign the set of N1 boundary
nodes the boundary controllability value of 1. Then, we bi-partitioned subnetworks
according to the Fiedler eigenvector, and boundary points were identified as nodes
that maintained supra-threshold connections to both subnetworks. We assign to these
boundary nodes the boundary controllability value of (N − N1)/N . Finally, we iter-
ate this process until all nodes have been assigned a boundary controllability value.
To demonstrate the reliability of our results given reasonable variations in the choice
of threshold, we also provide results for ρ = 1 × 10−3 and ρ = 1 × 10−8 in the
Supplementary Materials.

3 Results

3.1 Variation in Network Controllability Statistics Across Graph Models

We begin by examining how network controllability statistics vary over graphs
within a given ensemble and whether that variation differs as a function of graph
model. Following the procedure outlined in the Methods section, for each con-
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C D

Fig. 2 Variation in global controllability as a function of edge weighting and graph model. Global con-
trollability values were averaged over nodes in each graph model ensemble, and therefore, boxplots show
variation over graphs in the ensemble. Results are shown for four edge weighting schemes: a FA, b stream-
line counts, c Gaussian, d power-law. The eight graph models include the weighted random graph (WRG),
the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the
random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

trollability type, we took the mean of the 128 sorted controllability values across
the n nodes in each graph instance, giving us 100 controllability values averaged
over the 128 regions. For each controllability type, we used four identical edge
weight distributions corresponding to fractional anisotropy (FA) and streamline
counts (SC) from real brain data, a Gaussian distribution, and a power-law distri-
bution.

When considering global controllability for graph models constructed with Gaus-
sian and FA weighting schemes, we observed that all graph types had global
controllability values similar in range and high variance, with RL at the low end
of the range and MD4 at the high end of the range (Fig. 2a,c). For graph models
constructed with streamline counts and power-law weighting schemes, we observed
varying behaviors. The SC-weighted RL, WS, MD2, MD4, and RG graphs all had
low mean and low variance, while WRG, MD8, and BA had higher mean values and
higher variance. The power-law-weighted RL, WS, and RG graphs had lowest means
and variance, while the other graph types had higher mean and variance, with the BA
having the highest mean and variance (Fig. 2b,d). One-way ANOVAs indicated sig-
nificant effects of graph type for all of the four edge weight distributions (see Table 1).
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Fig. 3 Variation in average controllability as a function of edge weighting and graph model. Average
controllability values were averaged over nodes in each graph model ensemble, and therefore, boxplots
show variation over graphs in the ensemble. Results are shown for four edge weighting schemes: a FA, b
streamline counts, c Gaussian, d power-law. The eight graph models include the weighted random graph
(WRG), the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4,
MD8), the random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

When considering average controllability for graph models constructed with Gaus-
sian and FA weighting schemes, we observed that WRG, MD2, MD4, and MD8 all
had similarly low mean average controllability values (between 1.090 and 1.095)
with small variance (Fig. 3a,c). RG, BA, WS, and RL then followed in increasing
order of mean, and WS had the highest variance. For graph models constructed
with the power-law-weighting scheme, we observed relatively uniform behavior,
all with high controllability values, low variance, and skewed left-tailed distri-
butions toward lower controllability values (Fig. 3d). The exception was the BA
graph, which had low average controllability and low variance. The SC-weighted
graphs varied in mean value and variance, with WRG and MD8 having the low-
est mean and lowest variance and BA having the highest mean and low variance
(Fig. 3c). RG, MD2, MD4, WS, and RL then followed with increasing mean and
variance, all with slightly right-tailed distributions. One-way ANOVAs indicated
significant effects of graph type for all of the four edge weight distributions (see
Table 1).

When considering modal controllability for graph models constructed with Gaus-
sian and FA weighting schemes, we observed that WRG, RL, WS, MD2, MD4, and
MD8 all had small mean modal controllability values and low variance (Fig. 4a,c).
RG had higher mean controllability values with larger variance and outliers, while BA
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Fig. 4 Variation in modal controllability as a function of edge weighting and graph model. Modal con-
trollability values were averaged over nodes in each graph model ensemble, and therefore, boxplots show
variation over graphs in the ensemble. Results are shown for four edge weighting schemes: a FA, b stream-
line counts, c Gaussian, d power-law. The eight graph models include the weighted random graph (WRG),
the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the
random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

had the highest mean values with small variance. For graph models constructed with
the power-law-weighting scheme, we observed relatively uniform behavior, all with
low controllability values, low variance, and skewed right-tailed distributions toward
higher controllability values (Fig. 4d). The exception was the BA graph, which had
high average controllability and low variance. The SC-weighted graphs varied inmean
value (with RL and WS having the lowest mean and BA having the highest mean)
but had similar variance with slightly right-tailed distributions (Fig. 4b). One-way
ANOVAs indicated significant effects of graph type for all of the four edge weight
distributions (see Table 1).

When considering boundary controllability for graph models constructed with the
Gaussian weighting scheme, we observed that RL, WS, MD2, and MD4 all had sim-
ilarly small boundary controllability values and low variance (Fig. 5a). Then, RG
and BA had increasingly higher controllability values and variance. MD8 had higher
controllability values with small variance and a slightly left-tailed distribution of out-
liers. WRG had the highest controllability values and relatively small variance. For
graph models constructed with the FA weighting scheme, trends were similar but
the variance in the mean values for each type of graph tended to be higher and also
more right-skewed compared to those of the Gaussian-weighted graphs (Fig. 5c).
For graph models constructed with the SC-weighted graphs, we observed relatively
uniform behavior, with low mean values (ranging from 0 to 1), low variance, and
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Table 1 Effect of graph model on controllability statistics

Global

Fractional anisotropy F(7) = 16.41, p = 2.8 × 10−20

Gaussian F(7) = 23.92, p = 1.3 × 10−29

Streamline counts F(7) = 1559.39, p = 0.00

Power-law F(7) = 671.62, p = 0.00

Average

Fractional anisotropy F(7) = 79446.27, p = 0.00

Gaussian F(7) = 71074.27, p = 0.00

Streamline counts F(7) = 760.92, p = 0.00

Power-law F(7) = 11748.73, p = 0.00

Modal

Fractional anisotropy F(7) = 22830.9, p = 0.00

Gaussian F(7) = 21809.02, p = 0.00

Streamline counts F(7) = 1525.89, p = 0.00

Power-law F(7) = 11765.4, p = 0.00

Boundary

Fractional anisotropy F(7) = 10015.69, p = 0.00

Gaussian F(7) = 10968.61, p = 0.00

Streamline counts F(7) = 873.59, p = 0.00

Power-law F(7) = 5838.1, p = 0.00

Results of one-way ANOVAs assessing the effect of graph model on each controllability statistic, and each
edge weighting scheme, as shown in the boxplots in Figs. 2, 3, 4, and 5

right-tailed distributions, with the BA graph having the longest tail (Fig. 5b). The
power-law-weighted graphs had similar behavior to the SC-weighted graphs but had
higher variance overall (Fig. 5d). One-way ANOVAs indicated significant effects of
graph type for all of the four edge weight distributions (see Table 1).

To summarize, when considering trendswithin a single edgeweighting scheme, it is
important to note that because edge weight distributions were exactly the same across
each of the graph types, differences in controllability are due to network topology
rather than the effects of differing edge weights. Since each of the graph types exhibits
distinct behavior of controllability values for all types of controllability, this suggests
that the topology of a network largely influences global, average, modal, and boundary
controllability. Further, when considering trends across edge weighting schemes for
a single graph model, it is important to note that this guarantees that differences in
controllability are due to the effects of differing edge weights rather than network
topology. The similarity of trends in the controllability values between the FA and
Gaussian weighting and then between the SC and power-law weighting suggests that
the nature of edge weights influences controllability when edge weight distributions
are more normal (FA and Gaussian) versuswhen they are very skewed (SC and power-
law).
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Fig. 5 Variation in boundary controllability as a function of edge weighting and graph model. Boundary
controllability values were averaged over nodes in each graph model ensemble, and therefore, boxplots
show variation over graphs in the ensemble. Results are shown for four edge weighting schemes: a FA, b
streamline counts, c Gaussian, d power-law. The eight graph models include the weighted random graph
(WRG), the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4,
MD8), the random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models. Note
that these results are presented for ρ = 10−8; we observe consistent results across thresholds of 10−5, 10−8,
and 10−11 of edge weight distribution (see Supplement)

3.2 Relation Between Controllability Statistics Across Graphs

In prior work, we have observed that average and modal controllability, averaged over
nodes, are positively related to one another across brain networks (Tang et al. 2017).
These data suggest that brain networks that are structurally predisposed to be effective
in moving network dynamics into easy-to-reach states (via average control) are also
the brain networks that are structurally predisposed to be effective in moving network
dynamics into difficult-to-reach states (via modal control). Here, we ask whether this
positive relationship between average andmodal controllability across networks holds
in canonical graph models.

In the Gaussian weighting scheme, we observed that one of the graphs (MD4)
exhibited no correlation between average and modal controllability, while MD8 and
RG had a moderate positive correlation, and WRG and BA had nearly linear positive
correlations (Fig. 6). Indeed, across other weighting schemes, there was no consistent
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Fig. 6 Relation between average and modal controllability across graphs for the Gaussian edge weighting
scheme. Average andmodal controllability values were averaged over nodes in each graphmodel ensemble,
and therefore, scatterplots show values for each graph in the ensemble. Results are shown for the Gaussian
edge weighting scheme. The eight graphmodels include the weighted random graph (WRG), the ring lattice
(RL), theWatts–Strogatz small-world (WS), themodular graphs (MD2,MD4,MD8), the random geometric
(RG), and the Barábasi–Albert preferential attachment (BA) models

positive or negative relation between average and modal controllability (see Supple-
mentary Materials). Specifically, in the FA weighting scheme, we observed that most
graphs did not exhibit a strong correlation between average and modal controlla-
bility, except for WRG and BA, which had a moderate positive and strong positive
correlation, respectively. Interestingly, in the streamline count weighting scheme, we
observed that RL, WS, MD2, MD4, and MD8 exhibited a moderate negative corre-
lation, while WRG and RG had weak negative correlations. BA exhibited a nearly
linear, strong positive correlation. In the power-law-weighting scheme, all eight graph
models exhibited a strong negative correlation between average and modal control-
lability that was nearly linear. For Spearman ρ correlation coefficients, see Table 2;
we note that Gaussian and FA-weighted graphs were less likely to display a signifi-
cant correlation between average and modal controllability than streamline count and
power-law-weighted graphs.

While not previously reported in prior work, we also asked whether boundary
controllability statistics were correlated with either average or modal controllability
statistics across graphs in an ensemble, after averaging nodal values across all nodes
in each graph. In general for Gaussian weighting schemes, we observe that average
and modal controllability do not tend to be strongly correlated with boundary control-
lability across graph instances (Figs. 7 and 8). Across other weighting schemes, we
observe the same trends, for no strong relationships between boundary controllabil-
ity statistics and either average or modal controllability statistics across graphs in an
ensemble (Tables 3 and 4).
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Fig. 7 Relation between average and boundary controllability across graphs for the Gaussian edge weight-
ing scheme. Average and boundary controllability values were averaged over nodes in each graph model
ensemble, and therefore, scatterplots show values for each graph in the ensemble. Results are shown for
the Gaussian edge weighting scheme. The eight graph models include the weighted random graph (WRG),
the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the
random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

Fig. 8 Relation betweenmodal and boundary controllability across graphs for theGaussian edgeweighting
scheme.Modal andboundary controllability valueswere averagedover nodes in each graphmodel ensemble,
and therefore, scatterplots show values for each graph in the ensemble. Results are shown for the Gaussian
edge weighting scheme. The eight graphmodels include the weighted random graph (WRG), the ring lattice
(RL), theWatts–Strogatz small-world (WS), themodular graphs (MD2,MD4,MD8), the random geometric
(RG), and the Barábasi–Albert preferential attachment (BA) models
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3.3 Effect of Graph Size on Nodal Variation in Network Controllability
Statistics Across Graph Models

To assess the reliability and reproducibility of our results, we next examined the
impact of graph size (n = 128, 256, or 512) on network controllability statistics,
and their modulation by graph model for the Gaussian edge weight distribution (see
Supplementary Materials). We observed that global, average, modal, and boundary
controllability values for graphs of 256 and 512 nodes largely maintained the same
trends as for graphs with 128 nodes. However, mean global, average, and modal
controllability values tended to decrease with increasing graph size (consistent with
analytical studies), whilemean boundary controllability values tended to increase with
increasing graph size (with the exception of MD8). Variance of average and modal
controllability tended to decrease with increasing graph size. Importantly, because
size varied within the same type of controllability for the same set of graphs, this
guarantees that differences in controllability are due to the effects of differing network
size rather than network topology. The similarity of trends across graph sizes suggests
that the controllability properties are maintained in networks of different sizes but may
be accentuated through decreased spread or mean value with increasing size.

3.4 Nodal Variation in Network Controllability Statistics Across Graph Models

In the previous section, we examined how network controllability statistics varied over
graphs within a given ensemble and whether that variation differed as a function of
graph model. These questions focused on values of controllability statistics that were
calculated at each node of the network separately and then averaged over nodes in the
network. In this section, we turn to an examination of the nodal variation in network
controllability statistics and ask questions regarding how nodal variation differs across
graph models and between controllability statistics. Following the procedure outlined
in theMethods section, for each controllability typewe took themean of the 128 sorted
nodal controllability values across all 100 graphs in a given model ensemble, giving us
128 controllability values averaged over the graph instances. For each controllability
type, we used four identical edge weight distributions corresponding to fractional
anisotropy (FA) and streamline counts (SC) from real brain data, Gaussian distribution,
and power-law distribution.

When considering global controllability for graph models constructed with Gaus-
sian and FA weighting schemes, we observed that all graph models had nearly
identical right-tailed distributions with primarily low global controllability values
and low variance (Fig. 9a,c). For graph models constructed with streamline counts
and power-law-weighting schemes, we observed a similar pattern but with generally
lower variance for graphs such as RL, WS, and RG (as well as MD2 and MD4 for the
streamline count weighting) and slightly less skew toward higher values (Fig. 9b,d).
One-way ANOVAs indicated significant effects of graph type for all of the four edge
weight distributions (see Table 5).

When considering average controllability for graph models constructed with Gaus-
sian and FA weighting schemes, we observed that WRG, MD2, MD4, and MD8 all
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Fig. 9 Nodal variation in global controllability as a function of edge weighting and graph model. Global
controllability values were averaged over instances in each graph model ensemble, and therefore, boxplots
show variation over nodes in the graph. Results are shown for four edge weighting schemes: a FA, b
streamline counts, c Gaussian, d power-law. The eight graph models include the weighted random graph
(WRG), the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4,
MD8), the random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

had similar mean average controllability values with low variance (Fig. 10a,c). RL and
WS had slightly higher mean average controllability values and the lowest variance
of all the graph types. RG and BA had the lowest mean average controllability values
and highest variance, and the BA model was also most skewed, with a significant
right-tailed distribution toward higher controllability values. In contrast, the graphs
constructed with power-law and streamline count weighting schemes exhibited rela-
tively uniform behavior, all with low controllability values, low variance, and skewed
right-tailed distributions toward higher controllability values (Fig. 10b,d). One-way
ANOVAs indicated significant effects of graph type for three of the four edge weight
distributions: FA, streamline counts, and Gaussian but not power-law (see Table 5).

When considering the modal controllability for graph models constructed with
Gaussian and FA weighting schemes, we observed that WRG, RL, WS, MD2, MD4,
and MD8 all had similar mean modal controllability values and similar variance
(Fig. 11a,c). RG had a higher mean controllability value, while BA had the highest.
RL andWS had the smallest variance, while RG and BA had the largest variance. The
BA model was also the most skewed, with a significant left-tailed distribution toward
lower controllability values. In contrast, the graphs constructed with power-law and
streamline count weighting schemes exhibited nearly uniform behavior, all with high
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Table 5 Effect of graph model on nodal controllability statistics

Global

Fractional anisotropy F(7) = 16.08, p = 3.6 × 10−20

Gaussian F(7) = 23.31, p = 1.8 × 10−29

Streamline counts F(7) = 851.46, p = 0.00

Power-law F(7) = 651.08, p = 0.00

Average

Fractional anisotropy F(7) = 8.42, p = 4.9 × 10−10

Gaussian F(7) = 6.99, p = 3.7 × 10−8

Streamline counts F(7) = 7.36, p = 1.2 × 10−8

Power-law F(7) = 0, p = 1.00

Modal

Fractional anisotropy F(7) = 189.11, p = 3.9 × 10−179

Gaussian F(7) = 182.97, p = 4.6 × 10−175

Streamline counts F(7) = 1426.98, p = 0.00

Power-law F(7) = 0, p = 1.00

Boundary

Fractional anisotropy F(7) = 237.7, p = 6 × 10−209

Gaussian F(7) = 253.1, p = 1 × 10−217

Streamline counts F(7) = 48.9, p = 5 × 10−60

Power-law F(7) = 149.57, p = 2 × 10−151

Results of one-way ANOVAs assessing the effect of graph model on each controllability statistic, and each
edge weighting scheme, as shown in the boxplots in Figs. 9, 10, 11, and 12

controllability values, low variance (BA model lowest), and skewed left-tailed dis-
tributions toward lower controllability values (Fig. 11b,d). The power-law-weighted
graphs had lower variance and slightly higher mean than those of the graphs weighted
by streamline counts. One-way ANOVAs indicated significant effects of graph type
for three of the four edge weight distributions: FA, streamline counts, and Gaussian
but not power-law (see Table 5).

Finally, when considering boundary controllability for graph models constructed
with a Gaussian weighting scheme, we observed that RL, WS, MD2, MD4, RG, and
BA had right-tailed distributions, with increasing variance and skewness from RL to
WS, MD2, RG, and BA. MD4 was also right-skewed and had the lowest variance.
WRG and MD8 were not skewed toward higher controllability values, had more sym-
metric distributions, and had lower variance than the other graph types. The boundary
controllability values of the graph types with FA weighting and power-law weighting
followed similar trends to those observed with the Gaussian weighting. The differ-
ences were that, for power-law weighting, the overall controllability values were an
order of magnitude smaller than those of Gaussian weighting and the MD4 graph
had higher variance. For FA weighting, RL, WS, and MD4 all had lower variance
than for Gaussian weighting. The graphs weighted by streamline counts exhibited a
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Fig. 10 Nodal variation in average controllability as a function of edgeweighting and graphmodel. Average
controllability values were averaged over instances in each graph model ensemble, and therefore, boxplots
show variation over nodes in the graph. Results are shown for four edge weighting schemes: a FA, b
streamline counts, c Gaussian, d power-law. The eight graph models include the weighted random graph
(WRG), the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4,
MD8), the random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

different trend, with low means (all between 0 and 1), low variance, and slight right-
tailed distributions, with the BA graph being the most skewed. One-way ANOVAs
indicated significant effects of graph type for all of the four edge weight distributions
(see Table 5).

To summarize, when considering trends within a single edge weighting scheme,
it is important to note that because edge weight distributions were exactly the same
across each of the graph types, this guarantees that differences in controllability are
due to network topology rather than the effects of differing edge weights. Since each
of the graph types exhibits distinct behavior of controllability values for all types
of controllability except average and modal controllability in power-law-weighted
graphs, this suggests that the topology of a network largely influences global, average,
modal, and boundary controllability, but these influences can be obfuscated in graphs
whose edge weights follow a power-law distribution.

3.5 Relation Between Controllability Statistics Across Nodes

In prior work, we have observed that average and modal controllability are inversely
related to one another across regions in brain networks, both in noninvasive human
neuroimaging data acquired in youth and adults (Gu et al. 2015; Tang et al. 2017)
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Fig. 11 Nodal variation in modal controllability as a function of edge weighting and graph model. Modal
controllability values were averaged over instances in each graph model ensemble, and therefore, boxplots
show variation over nodes in the graph. Results are shown for four edge weighting schemes: a FA, b
streamline counts, c Gaussian, d power-law. The eight graph models include the weighted random graph
(WRG), the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4,
MD8), the random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

and in tract-tracing data acquired from macaque monkeys (Gu et al. 2015). These
data suggest that regions of the brain that are structurally predisposed to be effective
in moving the brain into easy-to-reach states (via average control) are different from
the regions of the brain that are structurally predisposed to be effective in moving
the brain into difficult-to-reach states (via modal control). Here, we ask whether this
inverse relationship between average and modal controllability across nodes holds in
canonical graph models.

For graphs constructed with the Gaussian weighting scheme, we observed that
average and modal controllability were negatively correlated with one another across
all 8 graphmodels,withRLhaving theweakest andBAhaving the strongest correlation
(Fig. 13). We observed similar trends in the graphs constructed with the FA weighting
scheme, while in graphs constructed with the streamline count weighting scheme we
observed the BA graph model to have the strongest correlation, and in the power-
law-weighting scheme we observed that the relationship between average and modal
controllability was nearly perfectly linear across all graph models (see Supplementary
Materials). For Spearman ρ correlation coefficients, see Table 6.

In prior work, we have observed that average and boundary controllability are
not strongly related to one another across regions in adult human brain networks
(Gu et al. 2015). These data suggest that regions of the brain that are structurally
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Fig. 12 Nodal variation in boundary controllability as a function of edge weighting and graph model.
Boundary controllability values were averaged over instances in each graph model ensemble, and therefore,
boxplots show variation over nodes in the graph. Results are shown for four edge weighting schemes: a
FA, b streamline counts, c Gaussian, d power-law. The eight graph models include the weighted random
graph (WRG), the ring lattice (RL), theWatts–Strogatz small-world (WS), themodular graphs (MD2,MD4,
MD8), the random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models. Note
that these results are presented for ρ = 10−8; we observe consistent results across percentiles of 10−5,
10−8, and 10−11 of edge weight distribution (see Supplement)

Fig. 13 Relation between average and modal controllability across nodes for the Gaussian edge weighting
scheme. Average and modal controllability values were averaged over instances in each graph model
ensemble, and therefore, scatterplots show values for each node in the graph. Results are shown for the
Gaussian edge weighting scheme. The eight graph models include the weighted random graph (WRG),
the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the
random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models
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Fig. 14 Relation between average and boundary controllability across nodes for the Gaussian edge weight-
ing scheme. Average and boundary controllability values were averaged over instances in each graph model
ensemble, and therefore, scatterplots show values for each node in the graph. Results are shown for the
Gaussian edge weighting scheme. The eight graph models include the weighted random graph (WRG),
the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the
random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

predisposed to be effective in moving the brain into easy-to-reach states (via average
control) may sometimes (but not consistently) also be the regions of the brain that
are structurally predisposed to be effective in gating across network communities (via
boundary control). Here, we ask whether the lack of a relationship between average
and boundary controllability across nodes holds in canonical graph models. In general
for Gaussian weighting schemes, we observe that average controllability tends to be
positively correlated with boundary controllability across nodes (Fig. 14); in contrast,
boundary controllability tends to be negatively correlated with modal controllability
across nodes (Fig. 15). These relationships appear to be least salient in small-world and
modular graphs, which may explain why they were not previously observed in brain
networks (Gu et al. 2015). Across other weighting schemes, we observe consistent
trends, for average controllability to be positively related to boundary controllability,
and formodal controllability to be negatively related to boundary controllability across
nodes in a graph (Tables 7 and 8).

3.6 Effect of Graph Size on Nodal Variation in Network Controllability
Statistics Across Graph Models

To assess the reliability and reproducibility of our results, we next examined the impact
of graph size (n = 128, 256, or 512) on network controllability statistics, and their mod-
ulation by graph model for the Gaussian edge weight distribution (see Supplementary
Materials).We observed that global, average, modal, and boundary controllability val-
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Fig. 15 Relation betweenmodal and boundary controllability across nodes for theGaussian edgeweighting
scheme. Modal and boundary controllability values were averaged over instances in each graph model
ensemble, and therefore, scatterplots show values for each node in the graph. Results are shown for the
Gaussian edge weighting scheme. The eight graph models include the weighted random graph (WRG),
the ring lattice (RL), the Watts–Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the
random geometric (RG), and the Barábasi–Albert preferential attachment (BA) models

Table 7 Relation between average and boundary controllability across nodes

128 node WRG RL WS MD2 MD4 MD8 RG BA

FA

ρ 0.7915 0.1495 0.1246 0.3393 0.4141 0.7464 0.7816 0.9939

p 0 0.0921 0.1609 0.0001 0.0000 0 0 0

SC

ρ 0.3324 −0.0475 −0.1106 0.3404 0.2763 −0.0041 0.1169 0.9935

p 0.0001 0.5944 0.2136 0.0001 0.0017 0.9634 0.1887 0

G

ρ 0.8217 0.0665 0.1727 0.3213 0.4041 0.8181 0.7871 0.9960

p 0 0.4551 0.0513 0.0002 0.0000 0 0 0

PL

ρ 0.3400 0.5281 0.5678 0.4121 0.5852 −0.1224 0.3145 0.9970

p 0.0001 0.0000 0 0.0000 0 0.1683 0.0003 0

Spearman ρ-values and corresponding p values for the correlations between average and boundary con-
trollability statistics across nodes in a graph, after averaging values across graph. Weighting schemes
are abbreviated by “FA” (fractional anisotropy), “SC” (streamline counts), “G” (Gaussian), and “PL”
(power−law). The p values stated to be zero are simply estimated to be zero
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Fig. 16 Clustering controllability features across graph models. For each graph model, we extracted the
median average, modal, boundary, and global controllability statistics for the four edge weight distributions
and graphs of 128, 256, and 512 nodes. a Matrix of controllability statistics z-scored across graph models
so that each row has a mean of zero and unit variance. bWe computed the Pearson correlation coefficient,
r , of controllability metrics for every pair of graphs and clustered that matrix, revealing graph types whose
controllability statistics were correlated across the manipulations studied in this report

ues for graphs of 256 and 512 nodes largely maintained the same trends as for graphs
with 128 nodes. However, mean global controllability values tended to decrease with
increasing graph size, and the variance of average, modal, and boundary controllability
values tended to decrease with increasing graph size. In addition, for the MD8 graph,
the mean boundary controllability decreases to close to 0 in the graph of size 512.
Importantly, because size varied within the same type of controllability for the same
set of graphs, this guarantees that differences in controllability are due to the effects
of differing network size rather than network topology. The similarity of trends across
graph sizes suggests that the controllability properties are maintained in networks of
different sizes but may be accentuated through decreased spread or mean value with
increasing size.

3.7 Similarities in Patterns of Controllability Statistics Between Graph Models

Finally, we asked whether certain graphs with similar topologies might show similar
patterns of controllability statistics across edge weighting schemes and network sizes.
To address this question, we treated average, modal, boundary, and global controlla-
bility as features of interest, and extracted their median values for each of the eight
graph models. Rather than express these statistics as raw scores which can sometimes
differ by many orders of magnitude, we standardized them across graph models and
expressed them as z-scores. We repeated this process for all combinations of edge
weight distributions and graph sizes, resulting in 48 features for each graph model
(Fig. 16a).

To assess the similarity of controllability statistics across graph models, we com-
puted the model-by-model correlation matrix of z-scored features (Fig. 16b). This
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matrix was marked by heterogeneity. Intuitively, we observed that networks with sim-
ilar topological features exhibited similar behavior in terms of their controllability
statistics. For example, the two- and four-module graphs, which both featured large,
segregated modules, displayed patterns of statistics that were highly correlated with
one another (r = 0.86, p < 10−14). Likewise, the ring lattice and the Watts–Strogatz
graphs, which featured highly regular organization, displayed patterns of statistics that
were also highly correlated (r = 0.85, p < 10−14). Not surprisingly, the Barábasi–
Albert model, which was the only model we included that had a heavy-tailed degree
(and strength) distribution, was dissimilar to the other models, on average. These find-
ings suggest that network topological properties induce similarities in the behavior of
controllability statistics across graph models.

4 Discussion

The representation of complex systems as graphs or networks has proven useful in a
wide variety of domains for the study of physical (Papadopoulos et al. 2016), tech-
nological (Tan et al. 2014), biological (Steinway et al. 2015; Baldassano and Bassett
2016), ecological (Proulx et al. 2005), and social (Ilany and Akcay 2016; Evans et al.
2016) processes. While initial work in each of these domains focused on developing
descriptive statistics to characterize the nature of the system’s graph representation,
more recent efforts have turned to developing predictions of system function and fun-
damental theories of system dynamics (Bassett and Sporns 2017). One particularly
powerful approach to both prediction and theory for these systems comes from the
emerging field of network control, which provides analytical results for the response of
a network system to internal or external perturbation (Bassett et al. 2017). The appli-
cation of these tools to neural systems has recently provided important insights into
possible mechanisms of cognitive control (Gu et al. 2015), energetic explanations for
baseline activation of the default mode system (Betzel et al. 2016), and the emergence
of diverse dynamics over the course of normative neurodevelopment (Tang et al. 2017).

Despite these initial successes, a basic understanding of the performance of these
tools ongraphswith different topologies or geometries is lacking (Bianchin et al. 2015).
Here we address this challenge by studying commonly applied network controllability
statistics assuming linear systemdynamics to several canonical graphmodels builtwith
distinct edge weight distributions. We find that both graph topology and edge weight
distribution can impact network controllability statistics estimated at single regions or
across the whole network. These data underscore the importance of assessing network
controllability statistics in one’s own data (as well as statistic–statistic relations) rather
than relying on assumptions built from other data. More importantly, the results point
to the necessity of developing analytical descriptions of the relations between topology,
geometry, and control (Kim et al. 2018).

4.1 Understanding Topological Drivers of Control

Intuitively, one might imagine that the topology of a graph should have a non-trivial
impact on the types of control strategies that the system can perform or respond to.
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A star graph, containing many nodes only (and directly) connected to a single central
node, may have quite different responses to energy injected into the central node than
to energy injected into the peripheral nodes (Pasqualetti and Zampieri 2014). More-
over, both of these responses may be quite distinct from the response of a lattice graph
to local perturbations at any of the nodes (Bianchin et al. 2015). The intuition that
topology matters for control is one that has now been supported by decades of prior
literature (Reinschke 1988) and is quantitatively demonstrated in our results, which
show that canonical graph models tend to display significantly different values for
global, average, modal, and boundary controllability, both in variations across a graph
ensemble and in variations across network nodes. This intuition has further moti-
vated both the development of controllability statistics (Pasqualetti et al. 2014) and
of intuitions for how controllability may relate to the system’s dynamics (synchroniz-
ability) and geometry (symmetry; Whalen et al. (2015)). Recent work has pinpointed
specific features of edge weight vectors associated with each node that explain the
energy expected for control (Kim et al. 2018), and this work also suggested that these
features vary in a meaningful way over species whose origins span evolutionary time
scales.

Collectively, these studies motivate the question of whether neural systems have
a characteristic graph topology that supports their specific functions as information
processing systems in organisms. Canonical graph models with simple rules spec-
ifying the existence or growth of connections have proven useful in initial forays
into this question (Klimm et al. 2014; Samu et al. 2014). While evidence suggests that
region location (Kaiser and Hilgetag 2006), spatial embedding (Samu et al. 2014), and
mechanisms for growth (Klimm et al. 2014) are important drivers of graph topology
in neural systems, most graph models offer reasonable explanations for only one or a
very few characteristic features of neural networks. Canonical graph models are there-
fore commonly used as benchmarks against which to compare real-world topologies,
rather than as exact replicas of the biological system under study. As benchmarks, it is
important to understand the expected controllability profiles of these graph models—
as we do here—so as to inform interpretations regarding the biological specificity
of control profiles observed empirically. Indeed, our observations will be useful in
determining the degree to which simple connection rules (including random, small-
world, and preferential attachment) can account for controllability statistics in neural
systems.

4.2 Non-trivial Impact of Edge Weight Distributions on Controllability of
Weighted Networks

An important contribution of our work stems from the fact that we do not study binary
graph models but instead examine graphs that have been weighted by drawing from
statistical and empirical functional forms for edge weight distributions. Our choice
to focus on weighted graph models was motivated by recent work, demonstrating
that assessing binary versions of weighted graphs can provide inaccurate intuitions
regarding a network’s architecture, and by extension its function (Bassett andBullmore
2016). For example, quite dense graphs can appear to lack small-world architecture
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if studied as a binary matrix but display strong small-world architecture when edge
weights are taken into account (Muldoon et al. 2016). This discrepancy can be under-
stood when considering the fact that weighting schemes tell us about the geometry
(weight distribution and weight location) of a network (Bassett et al. 2012). Impor-
tantly, edge weights can have a direct impact on the potential to control and on the
energy required for control of neural systems (Kim et al. 2018). Here, we observe that
edge weight distributions can either enhance or obfuscate differences in controllabil-
ity profiles across graph models, either in variations across a graph ensemble and in
variations across network nodes. These findings suggest that it is wise to be cautious
about inferring the controllability profile of a graph model independent of knowledge
regarding its edge weight distribution. They also suggest interesting future directions
for network design, particularly in cases where the graph architecture is fixed by exter-
nal constraints but where the edge weights can be varied with the goal of enhancing
or decrementing control.

4.3 Relations Between Controllability Statistics Prescribed By Graph Topology

Initial efforts focused on a narrow class of graphs showed that average and modal
controllability were positively correlated with one another across graphs instances
(Tang et al. 2017), and negatively correlated with one another across nodes (Gu et al.
2015), while average and boundary controllability were not significantly correlated
with one another across nodes. Here we show that only one of these observations holds
true across both graph models and edge weight distributions: that average and modal
controllability are correlated with one another across nodes. In contrast to prior work
in brain graphs, we show that average and modal controllability can be positively,
negatively, or nonsignificantly correlated with one another across graph instances in
an ensemble and that boundary controllability tends to be positively correlated with
average controllability (and negatively correlated with modal controllability) across
nodes in a graph. These data suggest that the relationship between controllability
statistics depends strongly on the graph model’s topological architecture and on the
observed edge weight distribution. These findings are interesting because they suggest
the possibility of designing networks with different strengths for one type of control
versus another or for specific relationships between control profiles. Such a possibility
is further bolstered by the fact that we observe in a hierarchical clustering procedure
that certain graphmodels share greater similarity in their entire profile of controllability
statistics (across the dimensions of size, edge weight distribution, etc. studied here) to
some graph models than to other graph models.

4.4 Methodological Considerations

There are several methodological considerations that are pertinent to this work. First,
we note that the network controllability statistics that we study are based fundamen-
tally on a linear model of dynamics (Pasqualetti et al. 2014). Such a model is clearly
appropriate for linear systems, but its application to systems characterized by nonlin-
ear dynamics must be considered carefully. Practically speaking, linear models can
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provide excellent predictive power for a system in the neighborhood of the operating
point (Leith and Leithead 2000). In the context of neural systems, linear models of
dynamics have proven useful both at the ensemble level and at the large-scale regional
level in predicting intrinsic dynamics (Galán 2008; Honey et al. 2009). Moreover, lin-
ear predictions of response to control input have been validated in nonlinear models
of cortical columns (Muldoon et al. 2016). These studies support the investigation
of linear control in neural systems, but do not preclude future studies of explicitly
nonlinear control (Cornelius et al. 2013; Motter 2015), which could also prove useful
in understanding neural systems (Tang and Bassett 2017).

A second important consideration relates to the control strategies that we study:
global, average, modal, and boundary controllability. While these notions have proven
useful both in man-made (Pasqualetti et al. 2014) and natural (Gu et al. 2015) systems,
they are by no means an exhaustive list of the sorts of measures that may be interesting
to study in canonical graph models. We chose them for their prior application to
brain networks, which have motivated the choices of edge weight distributions in
this study. However, other interesting approaches include the identification of driver
nodes (Liu et al. 2011), the estimate of control energy used for specific types of
state transitions (Betzel et al. 2016; Gu et al. 2017), the susceptibility of the system
to compensatory perturbations (Cornelius et al. 2013), as well as the measurement
of the controllability radius (Menara et al. 2018), structural permeability (Lo Iudice
et al. 2015), edge controllability (Pang et al. 2017), and others.Moreover, in addition to
these previously definedmeasures, it is intuitively plausible that other as-yet-undefined
control strategies may also prove relevant. Indeed, the definition of control metrics for
complex networks has received increasing attention in recent years (Pasqualetti et al.
2014), and future work is likely to develop a wider battery of statistics.

A third important consideration relates to limitations of the data that we used to
construct our empirical edge weight distributions. Diffusion imaging is a powerful
noninvasive neuroimaging technique (Wiegell et al. 2000), which has only recently
become commonplace in the construction of human (and non-human) connectomes
(Hagmann et al. 2010; Johansen-Berg and Rushworth 2009). The technique is rel-
atively new, and tractography algorithms applied to the data continue to be refined
(Jbabdi and Johansen-Berg 2011; Pestilli et al. 2014). It will be important in future
work to evaluate other empirically estimated edge weight distributions as they become
available.

A fourth point is that we chose a specific normalization factor for our matrices
to ensure stability. However, we note that different choices of normalization may
accentuate versus de-emphasize different scales of dynamics, and it will be interesting
in the future to study how the choice of normalization impacts observed patterns of
controllability.

A fifth point is that we study controllability from a single node only. However,
methods do exist for studying multi-point control (Betzel et al. 2016; Gu et al. 2017),
and an important future direction for research is to understand how graphmodels differ
in their capacities formulti-point control. Indeed, the global and average controllability
metrics (though not the modal and boundary controllability metrics) that we study
here are defined for arbitrary A and B and therefore are amenable to studies of both
single-point andmulti-point control. Here, our focus on single-node control is justified
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because we are interested in node variability, and not on specific controllability values
per say. However, it is fair to say that we do not yet know whether the intuitions that
we gain from single-point control are relevant for multi-point control because, even
though the dynamics are linear, the effects of multi-point control are not generally a
linear function of the corresponding single-node controllability measures.

A sixth point is that the computation of the controllability Gramian is intrinsically
difficult because its smallest eigenvalue is in fact very small. Here we report the
estimated numerical values and statistics and only interpret differences in ensembles
of graphs, and not differences between pairs of graphs. We also acknowledge that
variations of the controllability values are often small and that the importance of this
variation likely depends on the specific application domain. Indeed, ongoing work
outside of the scope of this study is addressing questions of appropriate normalization
depending on the network size, the distribution of edge weights, and the number of
control points being examined. Nevertheless, the numerical results highlight important
trends and dependencies, which are independent of the actual numerical value.

A final important consideration relates to the set of graph models that we study.
While we cover many of the canonical models that are frequently studied in network
science, and especially those more frequently studied in the context of human and
non-human brain networks (Klimm et al. 2014; Sizemore et al. 2017), the set is in no
way exhaustive. It would be interesting in future work to further develop biologically
motivated growthmodels that maymore accurately take into account the neurophysio-
logical processes of cell migration, synaptic plasticity and pruning, and other mutually
trophic influences on neural development.

5 Conclusion

In conclusion, we here examine a set of statistics that characterize diverse control
strategies of networked systems whose dynamics (at least in a particular regime) can
be approximated by a linear, noise-free, discrete-time, and time-invariant model. We
apply these statistics to graph models whose edge weights are drawn from both empir-
ical and statistically defined functional forms. We show that controllability metrics,
and their relations to one another, differ across graph models, and that those relations
can be either elucidated or clouded by the distribution of edge weights in the graph.
We observe that modular graph models show the most positively correlated patterns
of controllability values across network size, controllability statistic, and edge weight
distribution, while theWatts–Strogatz small-world model and Barábasi–Albert prefer-
ential attachment model show themost negatively correlated patterns. Our study offers
intuitions for how controllability statistics behave in common graph models used as
benchmarks for studies of brain networks in both human and non-human species.More
generally, it suggests interesting future directions in designing networks to display a
pattern of controllability statistics (and relations between them), particularly when the
graph architecture is fixed by external constraints but the edge weights can be varied
to enhance or decrement control.
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