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Abstract—This paper addresses the problem of ensuring trust-
worthy computation in a linear consensus network. A solution to
this problem is relevant for several tasks in multi-agent systems
including motion coordination, clock synchronization, and coop-
erative estimation. In a linear consensus network, we allow for
the presence of misbehaving agents, whose behavior deviate from
the nominal consensus evolution. We model misbehaviors as un-
known and unmeasurable inputs affecting the network, and we
cast the misbehavior detection and identification problem into an
unknown-input system theoretic framework. We consider two ex-
treme cases of misbehaving agents, namely faulty (non-colluding)
and malicious (Byzantine) agents. First, we characterize the set of
inputs that allow misbehaving agents to affect the consensus net-
work while remaining undetected and/or unidentified from certain
observing agents. Second, we provide worst-case bounds for the
number of concurrent faulty or malicious agents that can be de-
tected and identified. Precisely, the consensus network needs to be
� �� (resp. ��) connected for malicious (resp. faulty) agents
to be generically detectable and identifiable by every well behaving
agent. Third, we quantify the effect of undetectable inputs on the
final consensus value. Fourth, we design three algorithms to de-
tect and identify misbehaving agents. The first and the second algo-
rithm apply fault detection techniques, and affords complete detec-
tion and identification if global knowledge of the network is avail-
able to each agent, at a high computational cost. The third algo-
rithm is designed to exploit the presence in the network of weakly
interconnected subparts, and provides local detection and identifi-
cation of misbehaving agents whose behavior deviates more than a
threshold, which is quantified in terms of the interconnection struc-
ture.

Index Terms—Autonomous agents, consensus algorithms, dis-
tributed control, fault detection, intrusion detection, multi-agent
systems, network topology, network theory (graphs), sensor net-
works.

I. INTRODUCTION

D ISTRIBUTED systems and networks have received much
attention in the last years because of their flexibility and

computational performance. One of the most frequent tasks
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to be accomplished by autonomous agents is to agree upon
some parameters. Agreement variables represent quantities
of interest such as the work load in a network of parallel
computers, the clock speed for wireless sensor networks, the
velocity, the rendezvous point, or the formation pattern for a
team of autonomous vehicles; e.g., see [1]–[3].

Several algorithms achieving consensus have been proposed
and studied in the computer science community [4]. In this
work, we consider linear consensus iterations, where, at each
time instant, each node updates its state as a weighted combi-
nation of its own value and those received from its neighbors
[5], [6]. The choice of algorithm weights influences the conver-
gence speed toward the steady state value [7].

Because of the lack of a centralized entity that monitors the
activity of the nodes of the network, distributed systems are
prone to attacks and components failure, and it is of increasing
importance to guarantee trustworthy computation even in the
presence of misbehaving parts [8]. Misbehaving agents can in-
terfere with the nominal functions of the network in different
ways. In this paper, we consider two extreme cases: that the de-
viations from their nominal behavior are due to genuine, random
faults in the agents; or that agents can instead craft messages
with the purpose of disrupting the network functions. In the first
scenario, faulty agents are unaware of the structure and state
of the network and ignore the presence of other faults. In the
second scenario, the worst case assumption is made that misbe-
having agents have knowledge of the structure and state of the
network, and may collude with others to produce the biggest
damage. We refer to the first case as non-colluding, or faulty; to
the second case as malicious, or Byzantine.

Reaching unanimity in an unreliable system is an important
problem, well studied by computer scientists interested in dis-
tributed computing. A first characterization of the resilience of
distributed systems to malicious attacks appears in [9], where
the authors consider the task of agreeing upon a binary message
sent by a “Byzantine general,” when the communication graph
is complete. In [10], the resilience of a partially connected1 net-
work seeking consensus is analyzed, and it is shown that the
well-behaving agents of a network can always agree upon a pa-
rameter if and only if the number of malicious agents is:

1) less than 1/2 of the network connectivity;
2) less than 1/3 of the number of processors.

This result has to be regarded as a fundamental limitation of
the ability of a distributed consensus system to sustain arbi-
trary malfunctioning: the presence of misbehaving Byzantine
processors can be tolerated only if their number satisfies the

1The connectivity of a graph is the maximum number of disjoint paths be-
tween any two vertices of the graph. A graph is complete if it has connectivity
�� �, where � is the number of vertices in the graph.
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above threshold, independently of whatever consensus protocol
is adopted.

We consider linear consensus algorithms in which every
agent, including the misbehaving ones, are assumed to send
the same information to all their neighbors. This assumption
appears to be realistic for most control scenarios. In a sensing
network for instance, the data used in the consensus protocol
consist of the measurements taken directly by the agents, and
(noiseless) measurements regarding the same quantity coincide.
Also, in a broadcast network, the information is transmitted
using broadcast messages, so that the content of a message is
the same for all the receiving nodes. The problem of charac-
terizing the resilience properties of linear consensus strategies
has been partially addressed in recent works [11]–[13], where,
for the malicious case, it is shown that, despite the limited
abilities of the misbehaving agents, the resilience to external
attacks is still limited by the connectivity of the network. In
[11], the problem of detecting and identifying misbehaving
agents in a linear consensus network is first introduced, and a
solution is proposed for the single faulty agent case. In [12] and
[13], the authors provide one policy that malicious agents
can follow to prevent some of the nodes of a -connected
network from computing the desired function of the initial
state, or, equivalently, from reaching an agreement. On the
contrary, if the connectivity is or more, then the authors
show that generically the set of misbehaving nodes is identified
independent of its behavior, so that the desired consensus is
eventually reached.

The main differences between this paper and the references
[12] and [13] are as follows. First, the method proposed in [12],
[13] takes inspiration from parity space methods for fault detec-
tion, while, following our early work [11], we adopt here un-
known-input observers techniques [14]. Second, we focus on
consensus networks, and we derive specific results for this im-
portant case that cannot be assessed for general linear iterations.
Third, we consider two different types of misbehaving agents,
namely malicious and faulty agents, and we provide network re-
silience bounds for both cases. Fourth, we exhaustively charac-
terize the complete set of policies that make a set of agents un-
detectable and/or unidentifiable, as opposed to [12] where only a
particular disrupting strategy is defined. Fifth, we study system
theoretic properties of consensus systems (e.g., detectability,
stabilizability, left-invertibility), and we quantify the effect of
some misbehaving inputs on the network performance. Finally,
we address the problem of detection complexity and we pro-
pose a computationally efficient detection method, as opposed
to combinatorial procedures. Our approach also differs from the
existing computer science literature, e.g., our analysis leads to
the development of algorithms that can be easily extended to
work on both discrete and continuous time linear consensus net-
works, and also with partial knowledge of the network topology.

The main contributions of this work are as follows. By re-
casting the problem of linear consensus computation in an un-
reliable system into a system theoretic framework, we provide
alternative and constructive system-theoretic proofs of existing
bounds on the number of identifiable misbehaving agents in a
linear network, i.e., Byzantine agents can be detected and
identified if the network is -connected, and they cannot

be identified if the network is -connected or less. Moreover,
by showing some connections between linear consensus net-
works and linear dynamical systems, we exhaustively describe
the strategies that misbehaving nodes can follow to disrupt a
linear network that is not sufficiently connected. In particular,
we prove that the inputs that allow the misbehaving agents to re-
main undetected or unidentified coincide with the inputs-zero of
a linear system associated with the consensus network. We pro-
vide a novel and comprehensive analysis on the detection and
identification of non-colluding agents. We show that faulty
agents can be identified if the network is -connected,
and cannot if the network is -connected or less. For both the
cases of Byzantine and non-colluding agents, we prove that
the proposed bounds are generic with respect to the network
communication weights, i.e., given an (unweighted) consensus
graph, the bounds hold for almost all (consensus) choices of
the communication weights. In other words, if we are given a

-connected consensus network for which faulty agents
cannot be identified, then a random and arbitrary small change
of the communication weights (within the space of consensus
weights) make the misbehaving agents identifiable with proba-
bility one. In the last part of the paper, we discuss the problem
of detecting and identifying misbehaving agents when either the
partial knowledge of the network or hardware limitations make
it impossible to implement an exact identification procedure. We
introduce a notion of network decentralization in terms of rel-
atively weakly connected subnetworks. We derive a sufficient
condition on the consensus matrix that allows to identify a cer-
tain class of misbehaving agents under local network model in-
formation. Finally, we describe a local algorithm to promptly
detect and identify corrupted components.

The rest of the paper is organized as follows. Section II
briefly recalls some basic facts on the geometric approach to
the study of linear systems, and on the fault detection and
isolation problem. In Section III, we model linear consensus
networks with misbehaving agents. Section IV presents the
conditions under which the misbehaving agents are detectable
and identifiable. In Section V, we characterize the effect of
an unidentifiable attack on the network consensus state. In
Section VI, we show that the resilience of linear consensus net-
works to failures and external attacks is a generic property with
respect to the consensus weights. In Section VII, we present
our algorithmic procedures. Precisely we derive an exact iden-
tification algorithm, and an approximate and low-complexity
procedure. Finally, Sections VIII and IX contain, respectively,
our numerical studies and our conclusion.

II. NOTATION AND PRELIMINARY CONCEPTS

We adopt the same notation as in [15]. Let , , ,
let , , and . Let the triple

denote the linear discrete time system

(1)

and let the subspaces and denote the
image space and the null space , respectively. A
subspace is a -controlled invariant if
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, while a subspace is a -conditioned
invariant if . The set of all controlled invariants
contained in admits a supremum, which we denote with ,
and which corresponds to the locus of all possible state trajec-
tories of (1) invisible at the output. On the other hand, the set
of the conditioned invariants containing admits an infimum,
which we denote with . Several problems, including distur-
bance decoupling, non interacting control, fault detection and
isolation, and state estimation in the presence of unknown in-
puts have been addressed and solved in a geometric framework
[15], [16].

In the classical fault detection and isolation (FDI) setup,
the presence of sensor failures and actuator malfunctions is
modeled by adding some unknown and unmeasurable functions

to the nominal system. The FDI problem is to design, for
each failure , a filter of the form

(2)

also known as residual generator, that takes the observables
and generates a residual vector that allows to uniquely
identify if becomes nonzero, i.e., if the failure occurred in
the system. Let be the input matrices of the failure
functions . As a result of [15], [17], the th failure can
be correctly identified if and only if

, where and are the maximal controlled and
minimal conditioned invariant subspaces associated with the
triple . It can be shown that,
under the above solvability condition, the filter (2) can be de-
signed as a dead beat device to have finite convergence time
[17]: this property will be used in Section VII for the charac-
terization of our intrusion detection algorithm. We remark that,
although the FDI problem does not coincide with the problem
we are going to face, we will be using some standard FDI tech-
niques to design our detection and identification algorithms, and
we refer the reader to [14] for a comprehensive treatment of the
subject.

III. LINEAR CONSENSUS IN THE PRESENCE OF

MISBEHAVING AGENTS

Let denote a directed graph with vertex set
and edge set , and recall that the connectivity of is
the maximum number of disjoint paths between any two vertices
of the graph, or, equivalently, the minimum number of vertices
in a vertex cutset [18]. The neighbor set of a node , i.e., all
the nodes such that the pair , is denoted with

. We let each vertex denote an autonomous agent, and
we associate a real number with each agent . Let the vector

contain the values . A linear iteration over is an
update rule for and is described by the linear discrete time
system

(3)

where the th entry of is nonzero only if . If the
matrix is row stochastic and primitive, then, independent of

the initial values of the nodes, the network asymptotically con-
verges to a configuration in which the state of the agents coin-
cides. In the latter case, the matrix is referred to as a consensus
matrix, and the system (3) is called consensus system. The graph

is referred to as the communication graph associated with the
consensus system (3) or, equivalently, with the consensus matrix

. A detailed treatment of the applications, and the convergence
aspects of the consensus algorithm is in [1]–[3], and in the ref-
erences therein.

We allow for some agents to update their state differently than
specified by the matrix by adding an exogenous input to the
consensus system. Let , , be the input associated with
the th agent, and let be the vector of the functions .
The consensus system becomes .

Definition 1 (Misbehaving Agent): An agent is misbehaving
if there exists a time such that .

In Section IV, we will give a precise definition of the dis-
tinction, made already in the Introduction, between faulty and
malicious agents on the basis of their inputs.

Let denote a set of misbehaving
agents, and let , where is the th vector
of the canonical basis. The consensus system with misbehaving
agents reads as

(4)

As it is shown in [11], algorithms of the form (3) have no re-
silience to malfunctions, and the presence of a misbehaving
agent may prevent the entire network from reaching consensus.
As an example, let , and let , being

the th row of . After reordering the variables in a way that
the well-behaving nodes come first, the consensus system can
be rewritten as

(5)

where the matrix corresponds to the interaction among the
nodes , while denotes the connection between the sets

and . Recall that a matrix is said to be Schur stable
if all its eigenvalues lie in the open unit disk.

Lemma III.1 (Quasi-Stochastic Submatrices): Let be
an consensus matrix, and let be a proper subset of

. The submatrix with entries , , , is Schur
stable.

Proof: Reorder the nodes such that the indexes in come
first in the matrix . Let be the leading principal subma-

trix of dimension . Let , where the zeros

are such that is , and note that ,
where denotes the spectral radius of the matrix [19].
Since is a consensus matrix, it has only one eigenvalue of
unitary modulus, and . Moreover, , and

, where is such that its th entry equals the
absolute value of the th entry of , , . It is known
that , and that if equality holds, then there
exists a diagonal matrix with nonzero diagonal entries, such
that [19, Wielandt’s Theorem]. Because is
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irreducible, there exists no diagonal with nonzero diagonal
entries such that and the statement follows.

Because of Lemma III.1, the matrix in (5) is Schur stable,
so that the steady state value of the well-behaving agents in (5)
depends upon the action of the misbehaving node, and it cor-
responds to . In particular, since

, a single misbehaving agent can steer the network
towards any consensus value by choosing the constant .2

It should be noticed that a different model for the misbe-
having nodes consists in the modification of the entries of cor-
responding to their incoming communication edges. However,
since the resulting network evolution can be obtained by prop-
erly choosing the input and letting the matrix fixed, our
model does not limit generality, while being convenient for the
analysis. For the same reason, system (4) also models the case
of defective communication edges. Indeed, if the edge from the
node to the node is defective, then the message received by
the agent at time is incorrect, and hence also the state ,

. Since the values can be produced with an input
, the failure of the edge can be regarded as the th

misbehaving action. Finally, the following key difference be-
tween our model and the setup in [10] should be noticed. If the
communication graph is complete, then up to (instead of

) misbehaving agents can be identified in our model by a
well-behaving agent. Indeed, since with a complete communi-
cation graph the initial state is correctly received by every
node, the consensus value is computed after one communica-
tion round, so that the misbehaving agents cannot influence the
dynamics of the network.

IV. DETECTION AND IDENTIFICATION OF

MISBEHAVING AGENTS

The problem of ensuring trustworthy computation among the
agents of a network can be divided into a detection phase, in
which the presence of misbehaving agents is revealed, and an
identification phase, in which the identity of the intruders is dis-
covered. A set of misbehaving agents may remain undetected
from the observations of a node if there exists a normal op-
erating condition under which the node would receive the same
information as under the perturbation due to the misbehavior. To
be more precise, let ,

, denote the output matrix associated with the agent , and
let denote the measurements vector of the th
agent at time . Let denote the network state trajec-
tory generated from the initial state under the input sequence

, and let be the sequence measured by the th
node and corresponding to the same initial condition and input.

Definition 2 (Undetectable Input): For a linear consensus
system of the form (4), the input introduced by a set
of misbehaving agents is undetectable if

2If the misbehaving input is not constant, then the network may not achieve
consensus. In particular, the effect of a misbehaving input � on the network
state at time � is given by � � � ��� (see also Section V).

A more general concern than detection is identifiability of in-
truders, i.e., the possibility to distinguish from measurements
between the misbehaviors of two distinct agents, or, more gen-
erally, between two disjoint subsets of agents. Let con-
tain all possible sets of misbehaving agents.3

Definition 3 (Undetectable Input): For a linear consensus
system of the form (4) and a nonempty set , an input

is unidentifiable if there exist , with ,
and an input such that

Of course, an undetectable input is also unidentifiable, since it
cannot be distinguished from the zero input. The converse does
not hold. Unidentifiable inputs are a very specific class of inputs,
to be precisely characterized later in this section. Correspond-
ingly, we define

Definition 4 (Malicious Behaviors): A set of misbehaving
agents is malicious if its input is unidentifiable. It is
faulty otherwise.

We provide now a characterization of malicious behaviors for
the particularly important class of linear consensus networks.
Notice however that, if the matrix below is not restricted to be
a consensus matrix, then the following Theorem extends the re-
sults in [12] by fully characterizing the inputs for which a group
of misbehaving agents remains unidentified from the output ob-
servations of a certain node.

Theorem IV.1 (Characterization of Malicious Behaviors):
For a linear consensus system of the form (4) and a nonempty
set , an input is unidentifiable if and only if

for all , and for some , with , ,
and . If the same holds with , the input is
actually undetectable.

Proof: By definitions 2 and 3, an input is unidenti-
fiable if , and it is undetectable
if , for some , , and .
Due to linearity of the network, the statement follows.

Remark 1 (Malicious Behaviors are Not Generic): Because
an unidentifiable input must satisfy the equation in Theorem
IV.1, excluding pathological cases, unidentifiable signals are
not generic, and they can be injected only intentionally by
colluding misbehaving agents. This motivates our definition of
“malicious” for those agents which use unidentifiable inputs.

We consider now the resilience of a consensus network to
faulty and malicious misbehaviors. Let denote the identity ma-
trix of appropriate dimensions. The zero dynamics of the linear
system are the (nontrivial) state trajectories invis-
ible at the output, and can be characterized by means of the

pencil

3An element of � is a subset of ��� � � � � ��. For instance, � may contain all
the subsets of ��� � � � � �� with a specific cardinality.
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The complex value is said to be an invariant zero of the system
if there exists a state-zero direction , , and

an input-zero direction , such that ,
and . Also, if for all but
finitely many complex values , then the system
is left-invertible, i.e., starting from any initial condition, there
are no two distinct inputs that give rise to the same output se-
quence [20]. We next characterize the relationship between the
zero dynamics of a consensus system and the connectivity of the
consensus graph.

Lemma IV.1 (Zero Dynamics and Connectivity): Given a
-connected linear network with matrix , there exists a set of

agents , with , and a node such that the consensus
system is not left-invertible. Furthermore, there
exists a set of agents , with , and a node such that
the system has nontrivial zero dynamics.

Proof: Let be the digraph associated with , and let be
the connectivity of . Take a set of misbehaving nodes,
such that of them form a vertex cut of . Note that, since the
connectivity of is , such a set always exists. The network is
divided into two subnetworks and , which communicate
only through the nodes . Assume that the misbehaving agent

belongs to , while the observing node belongs to .
After reordering the nodes such that the vertices of come
first, the vertices come second, and the vertices of come
third, the consensus matrix is of the form

where the zero matrices are due to the fact that is a vertex
cut. Let , where is the vector containing
the values of the nodes of , and let be any arbitrary
nonzero function. Clearly, starting from the zero state, the values
of the nodes of are constantly 0, while the subnetwork
is driven by the misbehaving agent . We conclude that the
triple is not left-invertible.

Suppose now that as previously defined, and let
. Let the initial condition of the nodes of

and of be zero. Since every state trajectory generated by
does not appear in the output of the agent , the triple

has nontrivial zero dynamics.
Following Lemma IV.1, we next state an upper bound on the

number of misbehaving agents that can be detected.
Theorem IV.2 (Detection Bound): Given a -connected linear

consensus network, there exist undetectable inputs for a specific
set of misbehaving agents.

Proof: Let , with , be the misbehaving set, and
let form a vertex cut of the consensus network. Because of
Lemma IV.1, for some output matrix , the consensus system
has nontrivial zero dynamics, i.e., there exists an initial condi-
tion and an input such that at all times.
Hence, the input is undetectable from the observations of
.

We now consider the identification problem.

Theorem IV.3 (Identification of Misbehaving Agents):
For a set of misbehaving agents , every input is
identifiable from if and only if the consensus system

has no zero dynamics for every .
Proof: (Only if): By contradiction, let and

be a state-zero direction, and an input-zero
sequence for the system . We have

Therefore,

where . Clearly, since the output sequence gener-
ated by coincide with the output sequence generated by ,
the two inputs are unidentifiable.

(If) Suppose that, for any , the system
has no zero dynamics, i.e., there exists no

initial condition and input that result in the
output being zero at all times. By the linearity of the network,
every input is identifiable.

As a consequence of Theorem IV.3, if up to misbehaving
agents are allowed to act in the network, then a necessary and
sufficient condition to correctly identify the set of misbehaving
nodes is that the consensus system subject to any set of inputs
has no nontrivial zero dynamics.

Theorem IV.4 (Identification Bound): Given a -connected
linear consensus network, there exist unidentifiable inputs for a
specific set of misbehaving agents.

Proof: Since , by Lemma IV.1 there
exist , , with , and
such that the system has nontrivial zero
dynamics. By Theorem IV.3, there exists an input and an ini-
tial condition such that is undistinguishable from to the
agent .

In other words, in a -connected network, at most (resp.
) misbehaving agents can be certainly detected (resp.

identified) by every agent. Notice that, for a linear consensus
network, Theorem IV.4 provides an alternative proof of the re-
silience bound presented in [10] and in [12].

We now focus on the faulty misbehavior case. Notice that,
because such agents inject only identifiable inputs by definition,
we only need to guarantee the existence of such inputs. We start
by showing that, independent of the cardinality of a set , there
exist detectable inputs for a consensus system , so
that any set of faulty agents is detectable. By using a result from
[21], an input is undetectable from the measurements of
the th agent only if for all , it holds
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, where is the first nonzero Markov pa-
rameter, and is the network state at time . Notice that, be-
cause of the irreducibility assumption of a consensus matrix,
independently of the cardinality of the faulty set and of the ob-
serving node , there exists a finite such that ,

so that every input is de-
tectable. We show that, if the number of misbehaving com-
ponents is allowed to equal the connectivity of the consensus
network, then there exists a set of misbehaving agents that are
unidentifiable independent of their input.

Theorem IV.5 (Identification of Faulty Agents): Given a
-connected linear consensus network, there exists no identifi-

able input for a specific set of misbehaving agents
Proof: Let , with , form a vertex cut. The net-

work is divided into two subnetworks and by the agents
. Let , with , be the set of faulty agents, and

suppose that the set belongs to the subnetwork . Let be
an agent of . Notice that, because forms a vertex cut, for
every initial condition and for every input , there ex-
ists an input such that the output sequences at the node
coincide. In other words, every input is unidentifiable.

Hence, in a -connected network, a set of faulty agents
may remain unidentified independent of its input function. It
should be noticed that Theorems IV.4 and IV.5 only give an
upper bound on the maximum number of concurrent misbe-
having agents that can be detected and identified. In Section VI it
will be shown that, generically, in a -connected network, there
exists only identifiable inputs for any set of misbe-
having agents, and that there exist some identifiable inputs for
any set of misbehaving agents. In other words, if there
exists a set of misbehaving nodes that cannot be identified by
an agent, then, provided that the connectivity of the communi-
cation graph is sufficiently high, a random and arbitrarily small
change of the consensus matrix makes the misbehaving nodes
detectable and identifiable with probability one.

V. EFFECTS OF UNIDENTIFIED MISBEHAVING AGENTS

In the previous section, the importance of zero dynamics in
the misbehavior detection and identification problem has been
shown. In particular, we proved that a misbehaving agent may
alter the nominal network behavior while remaining undetected
by injecting an input-zero associated with the current network
state. We now study the effect of an unidentifiable attack on
the final consensus value. As a preliminary result, we prove the
detectability of a consensus network.

Lemma V.1 (Detectability): Let the matrix be row sto-
chastic and irreducible. For any network node , the pair
is detectable.

Proof: If is stochastic and irreducible, then it has at least
eigenvalues of unitary modulus. Precisely, the spectrum

of contains . By Wielandt’s the-
orem [19], we have , where

, and is a full rank diagonal matrix. By multiplying both
sides of the equality by the vector of all ones, we have

, so that is the eigenvector associ-
ated with the eigenvalue . Observe that the vector has

no zero component, and that, by the eigenvector test [20], the
pair is detectable. Indeed, since is irreducible, the
neighbor set is nonempty, and the eigenvector , with

, is not contained in .
Observe that the primitivity of the network matrix is not as-

sumed Lemma V.1. By duality, a result on the stabilizability of
the pair can also be asserted.

Lemma V.2 (Stabilizability): Let the matrix be row sto-
chastic and irreducible. For any network node , the pair
is stabilizable.

Remark 2 (State Estimation via Local Computation): If a
linear system is detectable (resp. stabilizable), then a linear ob-
server (resp. controller) exists to asymptotically estimate (resp.
stabilize) the system state. By combining the above results with
Lemma III.1, we have that, under a mild assumption on the ma-
trix , the state of a linear network can be asymptotically ob-
served (resp. stabilized) via local computation. Consider for in-
stance the problem of designing an observer [15], and let

. Take , where denotes the th column of .
Notice that the matrix can be written as a block-tri-
angular matrix, and it is stable because of Lemma III.1. Finally,
since the nonzero entries of correspond to the out-neighbors4

of the node , the output injection operation only requires
local information.

A class of undetectable attacks is now presented. Notice that
misbehaving agents can arbitrarily change their initial state
without being detected during the consensus iterations, and,
by doing so, misbehaving components can cause at most a
constant error on the final consensus value. Indeed, let be a
consensus matrix, and let be the set of misbehaving agents.
Let be the network initial state, and suppose that the
agents alter their initial value, so that the network initial state
becomes , where . Recall from [19] that

, where is the vector of all ones, and is
such that . Therefore, the effect of the misbehaving set

on the final consensus state is . Clearly, if the vector
is a valid initial state, the misbehaving agents

cannot be detected. On the other hand, since it is possible for
uncompromised nodes to estimate the observable part of the
initial state of the whole network, if an acceptability region
(or an a priori probability distribution) is available on initial
states, then, by analyzing the reconstructed state, a form of
intrusion detection can be applied, e.g., see [22]. We conclude
this paragraph by showing that, if the misbehaving vector

belongs to the unobservability subspace of , for
some , then the misbehaving agents do not alter the final
consensus value. Let be an eigenvector associated with the
unobservable eigenvalue , i.e., and .
We have , and, because of the
detectability of , (cf. Lemma V.1). Hence,

. Therefore, if the attack is unobservable from any
agent, then , so that the change
of the initial states of misbehaving agents does not affect the
final consensus value.

4The agent � is an out-neighbor of � if the ��� ��th entry of � is nonzero, or,
equivalently, if ��� �� belongs to the edge set.
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A different class of unidentifiable attacks consists of injecting
a signal corresponding to an input-zero for the current network
state. We start by characterizing the potential disruption caused
by misbehaving nodes that introduce nonzero, but exponentially
vanishing inputs.5

Lemma V.3 (Exponentially Stable Input): Let be a con-
sensus matrix, and let be a set of agents. Let
be exponentially decaying. There exists and
such that

where denotes component-wise inequality, is the vector of
all ones of appropriate dimension, and is such that .

Proof: Let and be such
that . Then, since is a nonnegative matrix,
for all , , with , we have

, and hence
. Notice that

. We now show that
, from which the theorem

follows. Let be any component of . Because
, there exist and , with , such

that . We have

so that converges to zero as approaches infinity.

Following Lemma V.3, if the zero dynamics are exponen-
tially stable, then misbehaving agents can affect the final con-
sensus value by a constant amount without being detected, if
and only if they inject vanishing inputs along input-zero direc-
tions. If an admissible region is known for the network state,
then a tight bound on the effect of misbehaving agents injecting
vanishing inputs can be provided. Notice moreover that, in this
situation, a well-behaving agent is able to detect misbehaving
agents whose state is outside an admissible region by simply
analyzing its state. Finally, for certain consensus networks, the
effect of an exponentially stable input decreases to zero with
the cardinality of the network. Indeed, let , where is
a constant row vector and denotes the cardinality of the net-
work. For instance, if is doubly stochastic, then
[19]. Then, when grows, the effect of the input ,
with , on the consensus value becomes negligible.

The left-invertibility and the stability of the zero dynamics
are not an inherent property of a consensus system. Consider

5An output-zeroing input can always be written as
���� � ���� ����� �� �� ���� � ��� �����

�� �� �� ��� � � �	�, where 
 � , ��� �� is the first

nonzero Markov parameter, � � � � ���� ����� is a projection
matrix, ���� � ������ � is the system initial state, and � ��� is
such that �� �� ��� � � [21].

for instance the graph of Fig. 1(a), where the agents are
malicious. If the network matrices are

then the system is left-invertible, but the in-
variant zeros are . Hence, for some initial condi-
tions, there exist non vanishing input sequences that do not ap-
pear in the output. Moreover, for the graph in Fig. 1(b), let the
network matrices be

It can be verified that the system is not left-in-
vertible. Indeed, for zero initial conditions, any input of the form

does not appear in the output sequence of the agent
6. In some cases, the left-invertibility of a consensus system can
be asserted independently of the consensus matrix.
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Fig. 1. In (a), the agents ��� �� are misbehaving. The consensus system
���� �� � has unstable zeros. In (b), the agents ����� are misbehaving.
The consensus system ���� �� � is not left-invertible.

Theorem V.1 (Left-Invertibility, Single Intruder Case): Let
be a consensus matrix, and let , . Then the

system is left-invertible.
Proof: Suppose, by contradiction, that is not

left-invertible. Then there exist state trajectories that, starting
from the origin, are invisible to the output. In other words, since
the input is a scalar, the Markov parameters have to be
zero for all . Notice the th component of is nonzero
if there exists a path of length from to . Because is irre-
ducible, there exists such that , and therefore the
consensus system is left-invertible.

If in Theorem V.1 one identifies the th node with a single
intruder, and the th node with an observer node, the theorem
states that, for known initial conditions of the network, any two
distinct inputs generated by a single intruder produce different
outputs at all observing nodes, and hence can be detected. Con-
sider for example a flocking application, in which the agent are
supposed to agree on the velocity to be maintained during the
execution of the task [1]. Suppose that a linear consensus itera-
tion is used to compute a common velocity vector, and suppose
that the states of the agents are equal to each other. Then no
single misbehaving agent can change the velocity of the team
without being detected, because no zero dynamic can be gener-
ated by a single agent starting from a consensus state.

We now consider the case in which several misbehaving
agents are allowed to act simultaneously. The following result
relating the position of the misbehaving agents in the network
and the zero dynamics of a consensus system can be asserted.

Theorem V.2 (Stability of Zero Dynamics): Let be a set of
agents and let be a network node. The zero dynamics of the
consensus system are exponentially stable if one
of the following is true:

1) the system is left-invertible, and there are
no edges from the nodes to ;

2) the system is left-invertible, and there are
no edges from the nodes to ; or

3) the sets and are such that .
Proof: Let be an invariant zero, and a state-zero and

input-zero direction, so that

and (6)

Reorder the nodes such that the set comes first, the set
second, and the set third. The consensus matrix
and the vector are accordingly partitioned as

Fig. 2. The stability of the zero dynamics of a left-invertible consensus system
can be asserted depending upon the location of the misbehaving agents in the
network. Let � be the observer agent, and let� be the misbehaving set. Then, the
zero dynamics are asymptotically stable if the set � separates the sets � and
� ��� ��� [cf. (a)], or if the set� separates the sets� and � ��� ���
[cf. (b)], or if the set � is a subset of � [cf. (c)].

and the input and output matrices become
and . For (6) to be verified, it has to be ,

, and

1) Case 1): Since there are no edges from the nodes to
, we have , and hence it has to be

, i.e., needs to be an eigenvalue of . We
now show that . Suppose by contradiction that ,
and that is an invariant zero, with state-zero and input-zero
direction and , respec-
tively. Then, for all complex value , the vectors and

constitute the state-zero and the input-zero direc-
tion associated with the invariant zero . Because the system is
assumed to be left-invertible, there can only be a finite number of
invariant zeros [21], so that we conclude that or that the
system has no zero dynamics. Because needs to be an eigen-
value of , and because of Lemma III.1, we conclude that the
zero dynamics are asymptotically stable.

2) Case 2): Since there are no edges from the nodes
to , we have . We now show that
. Suppose by contradiction that

. Consider the equation , and
notice that, because of Lemma III.1, for all with , the
matrix is invertible. Therefore, if , the vector

is a state-zero direc-
tion, with input-zero direction .
The system would have an infinite number of invariant
zeros, being therefore not left-invertible. We conclude
that . Consequently, we have and

, so that .
3) Case 3): Reorder the variables such that the nodes

come before . For the existence of a zero dynamics, it
needs to hold and . Hence, .

We are left to study the case of a network with zeros outside
the open unit disk, where intruders may inject non-vanishing
inputs while remaining unidentified. For this situation, we only
remark that a detection procedure based on an admissible re-
gion for the network state can be implemented to detect inputs
evolving along unstable zero directions. Theorem V.2 is illus-
trated in Fig. 2.
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VI. GENERIC DETECTION AND IDENTIFICATION OF

MISBEHAVING AGENTS

In the framework of traditional control theory, the entries of
the matrices describing a dynamical system are assumed to be
known without uncertainties. It is often the case, however, that
such entries only approximate the exact values. In order to cap-
ture this modeling uncertainty, structured systems have been in-
troduced and studied, e.g., see [16], [23], [24]. Let a structure
matrix be a matrix in which each entry is either a fixed zero
or an indeterminate parameter, and let the tuple of structure ma-
trices denote the structured system

(7)

A numerical system is an admissible realization
of if it can be obtained by fixing the indeter-
minate entries of the structure matrices at some particular value,
and two systems are structurally equivalent if they are both an
admissible realization of the same structured system. Let be
the number of indeterminate entries altogether. By collecting the
indeterminate parameters into a vector, an admissible realiza-
tion is mapped to a point in the Euclidean space . A property
which can be asserted on a dynamical system is called struc-
tural (or generic) if, informally, it holds for almost all admis-
sible realizations. To be more precise, following [24], we say
that a property is structural (or generic) if and only if the set of
admissible realizations satisfying such property forms a dense
subset of the parameters space.6 Moreover, it can be shown that,
if a property holds generically, then the set of parameters for
which such property is not verified lies on an algebraic hyper-
surface of , i.e., it has zero Lebesgue measure in the param-
eter space. For instance, left-invertibility of a dynamical system
is known to be a structural property with respect to the param-
eters space .

Let the connectivity of a structured system be
the connectivity of the graph defined by its nonzero parameters.
In what follows, we assume , and we study the zero dy-
namics of a structured consensus system as a function of its con-
nectivity. Let the generic rank of a structure matrix be the
maximal rank over all possible numerical realizations of .

Lemma VI.1 (Generic Zero Dynamics and Connectivity):
Let be a -connected structured system. If the
generic rank of is less than , then almost every numerical
realization of has no zero dynamics.

Proof: Since the system is -connected and
the generic rank of is less than , there are disjoint
paths from the input to the output [25]. Then, from Theorem 4.3
in [25], the system is generically left-invertible.
Additionally, by using Lemma 3 in [13], it can be shown that

has generically no invariant zeros. We conclude
that almost every realization of has no nontrivial
zero dynamics.

Given a structured triple with nonzero el-
ements, the set of parameters that make a con-

6A subset � � � � is dense in � if, for each � � � and every � � �,
there exists � � � such that the Euclidean distance ��� �� � �.

sensus system is a subset of , because the matrix needs
to be row stochastic and primitive. A certain property that holds
generically in needs not be valid generically with respect to
the feasible set . Let be structure matrices, and
let be the set of parameters that make
a consensus system. We next show that the left-invertibility and
the number of invariant zeros are generic properties with respect
to the parameter space .

Theorem VI.1 (Genericity of Consensus Systems): Let
be a -connected structured system. If the

generic rank of is less than , then almost every consensus
realization of has no zero dynamics.

Proof: Let be the number of nonzero entries of the
structured system . From Theorem VI.1 we know
that, generically with respect to the parameter space , a nu-
merical realization of has no zero dynamics. Let

be the subset of parameters that makes
a consensus system. We want to show that the absence of zero
dynamics is a generic property with respect to the parameter
space . Observe that is dense in , where and
is the dimension of . Then [26], [27], it can be shown that,
in order to prove that our property is generic with respect to ,
it is sufficient to show that there exist some consensus systems
which have no zero dynamics. To construct a consensus system
with no zero dynamics consider the following procedure. Let

be a nonnegative and irreducible linear system with
no zero dynamics, where the number of inputs is strictly less
that the connectivity of the associated graph. Notice that,
following the above discussion, such system can always be
found. The Perron–Frobenius Theorem for nonnegative ma-
trices ensures the existence of a positive eigenvector of
associated with the eigenvalue of largest magnitude [19].
Let be the diagonal matrix whose main diagonal equals ,
then the matrix is a consensus matrix [28]. A
change of coordinates of using yields the system

, which has no zero dynamics. Finally,
the system is a -connected con-
sensus system with, generically, no zero dynamics. Indeed, if
there exists a value , a state-zero direction , and an input-zero
direction for the system , then the
value , with state direction and input direction , is an
invariant zero of , which contradicts
the hypothesis.

Because a sufficiently connected consensus system has gener-
ically no zero dynamics, the following remarks about the robust-
ness of a generic property should be considered. First, generic
means open, i.e., some appropriately small perturbations of the
matrices of the system having a generic property do not destroy
this property. Second, generic implies dense, hence any con-
sensus system which does not have a generic property can be
changed into a system having this property just by arbitrarily
small perturbations. We are now able to state our generic re-
silience results for consensus networks.

Theorem VI.2 (Generic Identification of Misbehaving
Agents): Given a -connected consensus network, generically,
there exist only identifiable inputs for any set of mis-
behaving agents. Moreover, generically, there exist identifiable
inputs for every set of misbehaving agents.
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Proof: Since , by Lemma VI.1 the con-
sensus system with any set of has generically no
zero dynamics. By Theorem IV.3, any set of mali-
cious agents is detectable and identifiable by every node in the
network. We now consider the case of faulty agents. Let be
the set of nodes, and , , with ,
be two disjoint sets of faulty agents. Let . We need to
show the existence of identifiable, i.e., faulty, inputs. By using
a result of [25] on the generic rank of the matrix pencil of a
structured system, since the given consensus network is -con-
nected and , it can be shown that the system

, for all , is left-invertible, which
confirms the existence of identifiable inputs for the current net-
work state. By Definition 4, we conclude that the faulty set
is generically identifiable by any well-behaving agent.

In other words, in a -connected network, up to
(resp. ) malicious (resp. faulty) agents are generically iden-
tifiable by every well behaving agent. Analogously, it can be
shown that generically up to misbehaving agents are gener-
ically detectable. In Section VII, we describe three algorithms
to detect and identify misbehaving agents.

VII. INTRUSION DETECTION ALGORITHMS

In this section, we present three decentralized algorithms to
detect and identify misbehaving agents in a consensus network.
Although the first two algorithms require only local measure-
ments, the complete knowledge of the consensus network is nec-
essary for the implementation. The third algorithm, instead, re-
quires the agents to know only a certain neighborhood of the
consensus graph, and it allows for a local identification of mis-
behaving agents. As it will be clear in the sequel, the third al-
gorithm overcomes, under a reasonable set of assumptions, the
limitations inherent to centralized detection and identification
procedures.

Our first algorithm is based upon the following result.
Theorem VII.1 (Detection Filter): Let be the set of misbe-

having agents. Assume that the zero dynamics of the consensus
system are exponentially stable, for some . Let

denote the columns of the matrix . The filter

(8)

with , , and , is such that,
in the limit for , the vector is nonzero
only if the input is nonzero. Moreover, if , then
the filter (8) asymptotically estimates the state of the network,
independent of the behavior of the misbehaving agents .

Proof: Let , and consider the estimation error
.

Notice that , and hence
. Consequently,

. By using Lemma III.1, it
is a straightforward matter to show that is Schur
stable. If , then converges to zero.
Suppose now that . The reachable set of , i.e., the min-
imum invariant containing , coincides with .

Indeed, . Since by construc-
tion, the vectors and converge to zero.

By means of the filter described in the above theorem, a
distributed intrusion detection procedure can be designed, see
[11]. Here, each well-behaving agent only implements one
detection filter, making the asymptotic detection task compu-
tationally easy to be accomplished. We remark that, since the
filter converges exponentially, an exponentially decaying input
of appropriate size may remain undetected (see Lemma V.3 for
a characterization of the effect of exponentially vanishing in-
puts on the final consensus value). For a finite time detection of
misbehaving agents, and for the identification of misbehaving
components, a more sophisticated algorithm is presented in
Algorithm 1.

Theorem VII.2 (Complete Identification): Let be a con-
sensus matrix, let be the set of misbehaving agents, and let
be the connectivity of the consensus network. Assume that:

1) every agent knows the matrix and ;
2) , if the set is faulty, and if the set is

malicious.
Then the Complete Identification algorithm allows each well-
behaving agent to generically detect and identify every misbe-
having agent in finite time.

Proof: We focus on agent . Let , and let be
the set containing all the combinations of ele-
ments of . For each set , consider the system

, and compute7 a set of residual generator
filters for . If the connectivity of the communication graph
is sufficiently high, then, generically, each residual function is
nonzero if and only if the corresponding input is nonzero. Let

be the set of misbehaving nodes, then, whenever ,
the residual function associated with the input becomes
zero after an initial transient, so that the agent is rec-
ognized as well-behaving. By exclusion, because the residuals
associated with the misbehaving agents are always nonzero, the
set is identified.

By means of the Complete Identification algorithm, the detec-
tion and the identification of the misbehaving agents take place
in finite time, because the residual generators can be designed
as dead-beat filters, and independent of the misbehaving input.
It should be noticed that, although no communication overhead
is introduced in the consensus protocol, the Complete Identifi-
cation procedure relies on strong assumptions. First, each agent

7We refer the interested reader to [17] for a design procedure of a dead beat
residual generator. Notice that the possibility of detecting and identifying the
misbehaving agents is, as discussed in Sections IV and VI, guaranteed by the
absence of zero dynamics in the consensus system.
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needs to know the entire graph topology, and second, the number
of residual generators that each node needs to design is propor-
tional to . Because an agent needs to update these filters
after each communication round, when the cardinality of the
network grows, the computational burden may overcome the ca-
pabilities of the agents, making this procedure inapplicable.

In the remaining part of this section, we present a computa-
tionally efficient procedure that only assumes partial knowledge
of the consensus network but yet allows for a local identification
of the misbehaving agents. Let be a consensus matrix, and
observe that it can be written as , where ,

, and is block diagonal with a consensus matrix
on each of the diagonal blocks. For instance, let ,
and let be the subsets of agents associated with the
blocks. Then the matrix can be defined as:

1) if , and , , ;
2) ;
3) otherwise.

Moreover, , and
. Note that, if is “small,” then the agents belonging to

different groups are weakly coupled. We assume the groups of
weakly coupled agents to be given, and we leave the problem
of finding such partitions as the subject of future research, for
which the ideas presented in [29], [30] constitute a very relevant
result.

We now focus on the th block. Let be the set of
misbehaving agents, where , and . Assume
that the set is identifiable by agent (see Section IV).
Then, agent can identify the set by means of a set of residual
generators, each one designed to decouple a different set of

inputs. To be more precise, let , and consider the
system

(9)

and the system

(10)

where the quadruple (resp. )
describes a filter of the form (2), and it is designed as in [17].
Then the misbehaving agents are identifiable by agent be-
cause is the only set such that, for every , it holds

and whenever . It should be noticed
that, since is block diagonal, the residual generators to iden-
tify the set can be designed by only knowing the th block
of , and hence only a finite region of the original consensus
network. By applying the residual generators to the consensus
system with misbehaving agents we get

and

where

Because of the matrix and the input , the residual
is generally nonzero even if . However, the misbehaving
agents remain identifiable by if for each we have

for all .
Theorem VII.3 (Local Identification): Let be the set of

agents, let be the set of misbehaving agents, and let
be a consensus matrix, where is block diagonal, ,
and . Let each block of be a consensus matrix
with agents , and with connectivity . There
exists and , such that, if each input signal ,

, takes value in ,8

then each well-behaving agent identifies in finite time
the faulty agents by means of the Local Identification
algorithm.

Proof: We focus on the agent , and, without loss
of generality, we assume that , and that the residual
generators have a finite impulse response. Let , and
note that time steps are sufficient for each agent to
identify the misbehaving agents. Let denote the input se-
quence up to time . Let , , and observe that

,
where and denote the impulse response from and

respectively, and denotes the convolution operator. We
now determine an upper bound for each term of . Let
the misbehaving inputs take value in

. By using the triangle inequality on the im-
pulse responses of the residual generator, it can be shown that

,

where denotes the impulse response form to of the
system (9), and is a finite positive constant independent of .
Moreover, it can be shown that there exist two positive constant

and such that

and

. Analogously, for the residual generator asso-
ciated with the well-behaving agent , we have

,

and hence . Let

, and

let be such that . Then a
correct identification of the misbehaving agents takes place if

, and hence if .
Notice that the constant in Theorem VII.3 can be computed

by bounding the infinity norm of the impulse response of the

8The norm ��� is intended in the vector sense at every instant of time. The
misbehaving input is here assumed to be nonzero at every instant of time.
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residual generators. An example is in Section VIII-B. A proce-
dure to achieve local detection and identification of misbehaving
agents is in Algorithm 2, where denotes the th block of

, and the corresponding threshold value. Observe that in
the Local Identification procedure an agent only performs local
computation, and it is assumed to have only local knowledge of
the network structure.

Remark 3: It is a nontrivial fact that the misbehaving agents
become locally identifiable depending on the magnitude of .
Indeed, as long as , the effect of the perturbation on
the residuals becomes eventually relevant and prevents, after a
certain time, a correct identification of the misbehaviors [29].

VIII. NUMERICAL EXAMPLES

A. Complete Detection and Identification

Consider the network of Fig. 3(a), and let be a randomly
chosen consensus matrix. In particular, let

The network is 3-connected, and it can be verified that for any
set of 3 misbehaving agents, and for any observer node ,
the triple is left-invertible. Also, for any set of
cardinality 2, and for any node , the triple has
no invariant zeros. As previously discussed, any well-behaving
node can detect and identify up to 2 faulty agents, or up to
1 malicious agent. Consider the observations of the agent 1,
and suppose that the agents inject a random signal into
the network. As described in Algorithm 1, the agent 1 designs
the residual generator filters and computes the residual func-
tions for each of the possible sets of misbehaving nodes,
and identify the well-behaving agents. Consider for example the
system ,
and suppose we want to design a filter of the form (2) which

is only sensible to the signal . The unobservability subspace
, is

and a possible choice for the matrices of the residual generator
is

and

It can be checked that, independent of the initial condition of
the network, the residual function associated with the input 4 is
zero, as in Fig. 3(b), so that the agent 4 is regarded as well-be-
having. Agents 3, 7, instead, have always nonzero residual func-
tions, and are recognized as misbehaving. If the misbehaving
nodes are allowed to be malicious, then no more than 1 misbe-
having node can be tolerated. Indeed, because of Theorem IV.1,
there exists a set of 4 misbehaving agents such that the system

exhibits nontrivial zero dynamics. For instance, let
, and note that if the initial condition be-

longs to

then the input ,9 where

9The malicious agents need to know the entire state to implement this feed-
back law. The case in which only local feedback is allowed is left as a direction
for future research, for which the result in [12] is meaningful.
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Fig. 3. In (a) a consensus network where the nodes 3 and 7 are faulty. In (b)
the residual functions computed by the agent 1 under the hypothesis that the
misbehaving set is ��� �� ��.

is such that for all . Therefore, the two sys-
tems and , with initial condi-
tions and , and inputs

have exactly the same output dynamics, so that the two sets
and are indistinguishable by the agent 1.

B. Local Detection and Identification

Consider the consensus network in Fig. 4(a), where
, , , and

Let be the set of misbehaving agents, let
, at each time , and let . Consider

the agent 1, and let and be
the residual generators as in (9) and (10), respectively, where

and

Fig. 4. In (a) a consensus network with weak connections. In (b) the solid line
corresponds to the largest magnitude of the residual associated with the well-be-
having agent 3, while the dashed line denotes the smallest magnitude of the
residual associated with the misbehaving agent 2, both as a function of the pa-
rameter �. If � � � , then there exists a threshold that allows to identify the
misbehaving agent 2.

Let (resp. ) be the impulse response from the input
(resp. ) to , and let (resp. ) denote the input signal

(resp. ) up to time 1. Note that the misbehaving agent can
be identified after 2 time steps, and that the residual associated
with the agent 3 is

where denotes the convolution operator. After some compu-
tation we obtain

and, analogously,

Recall that the agent 1 is able to identify the misbehaving
agent 2 if, independent of and , there exists a threshold

such that , and . The
behavior of and as a function of
is in Fig. 4(b). Note that for we have

. For instance, if , then
it can be verified that , and .
It follows that a threshold allows the agent 1 to
identify the misbehaving agent 2. On the other hand, if

, then , and ,
so that the misbehaving agent 2 may remain unidenti-
fied. Indeed, if ,

, then and
, so that the agent 3 is recognized as

misbehaving instead of the agent 2.
As a final remark, note that the larger the consensus network,

the more convenient the proposed approximation procedure be-
comes. For instance, consider the network presented in [31],
and here reported in Fig. 5(a). Such a clustered interconnection
structure, in which the edges connecting different clusters have
a small weight, may be preferable in many applications because
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Fig. 5. In (a) a consensus network partitioned into 3 areas. Each agent identifies
the neighboring misbehaving agents by knowing only the topology of the sub-
network it belongs to. In (b) the smallest magnitude of the residual associated
with a misbehaving agent (dashed line) and the largest magnitude of the residual
associated with a well-behaving agent (solid line) are plotted as a function of �.
If � is sufficiently small, then local detection and identification is possible.

much simpler and efficient protocols can be implemented within
each cluster. Assume the presence of a misbehaving agent in
each cluster, and consider the residuals computed after 5 steps
of the consensus algorithm. Let be the weight of the edges
connecting different clusters. Fig. 5(b) shows, as a function of
, the smallest magnitude of the residual associated with a mis-

behaving agent (dashed line) versus the largest magnitude of
the residual associated with a well-behaving agent (solid line).
If is sufficiently small, then our local identification method
allows each well-behaving agent to promptly detect and iden-
tify the misbehaving agents belonging to the same group, and
hence to restore the functionality of the network. For instance,
if , then, following Theorem VII.3, if the misbehaving
input take value in , then a misbehaving
agent is correctly detected and identified by a well-behaving
agent.

IX. CONCLUSION

The problem of distributed reliable computation in networks
with misbehaving nodes is considered, and its relationship with
the fault detection and isolation problem for linear systems is
discussed. The resilience of linear consensus networks to ex-
ternal attacks is characterized through some properties of the
underlying communication graph, as well as from a system-the-
oretic perspective. In almost any linear consensus network, the
misbehaving components can be correctly detected and identi-
fied, as long as the connectivity of the communication graph is
sufficiently high. Precisely, for a linear consensus network to
be resilient to concurrent faults, the connectivity of the com-
munication graph needs to be , if Byzantine failures are
allowed, and , otherwise. Finally, for the faulty agents
case, good performance can be obtained even if the agents do
not know the entire network topology, and they are subject to
memory or computation constraints.

Interesting aspects requiring further investigation include a
characterization of the gain between the inputs of a set of misbe-
having agents and the observations of an agent . Depending on
the magnitude of such gain, some undetectable behaviors may
not be feasible for a set of misbehaving agents. The resilience
properties of specific consensus protocols, e.g., those resulting
from an optimization process, should also be studied. Finally,
the clustering of a large network into smaller parts is crucial for
the performance of the proposed local identification procedure,
and it requires additional research.
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