
592 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

On Cooperative Patrolling: Optimal Trajectories,
Complexity Analysis, and Approximation Algorithms

Fabio Pasqualetti, Student Member, IEEE, Antonio Franchi, Member, IEEE, and Francesco Bullo, Fellow, IEEE

Abstract—The subject of this paper is the patrolling of an envi-
ronment with the aid of a team of autonomous agents. We consider
both the design of open-loop trajectories with optimal properties
and of distributed control laws converging to optimal trajectories.
As performance criteria, the refresh time and the latency are con-
sidered, i.e., respectively, time gap between any two visits of the
same region and the time necessary to inform every agent about
an event occurred in the environment. We associate a graph with
the environment, and we study separately the case of a chain, tree,
and cyclic graph. For the case of chain graph, we first describe a
minimum refresh time and latency team trajectory and propose a
polynomial time algorithm for its computation. Then, we describe
a distributed procedure that steers the robots toward an optimal
trajectory. For the case of tree graph, a polynomial time algorithm
is developed for the minimum refresh time problem, under the
technical assumption of a constant number of robots involved in
the patrolling task. Finally, we show that the design of a mini-
mum refresh time trajectory for a cyclic graph is NP-hard, and we
develop a constant factor approximation algorithm.

Index Terms—Algorithm design and analysis, combinatorial
mathematics, distributed algorithms, graph partition, mobile
agents, multirobot systems, network theory (graphs), patrol.

I. INTRODUCTION

THE recent development in the autonomy and the capa-
bilities of mobile robots greatly increases the number of

applications that are suitable for a team of autonomous agents.
Particular interest has been received by those tasks requiring
continual execution, such as the monitoring of oil spills [1], the
detection of forest fires [2], the track of border changes [3],
and the patrol (surveillance) of an environment [4]. The surveil-
lance of an area of interest requires the robots to continuously
and repeatedly travel the environment, and the challenging prob-
lem consists in scheduling the robots trajectories to optimize a
certain performance criteria. The reader familiar with network
location, multiple traveling salesman, or graph exploration prob-
lems may observe a close connection with the patrolling problem

Manuscript received June 6, 2011; revised September 22, 2011; accepted
November 28, 2011. Date of publication January 4, 2012; date of current ver-
sion June 1, 2012. This paper was recommended for publication by Associate
Editor N. Y. Chong and Editor J.-P. Laumond upon evaluation of the reviewers’
comments. This work was supported in part by the National Science Foundation
under Grant IIS-0904501 and Grant CPS-1035917.

F. Pasqualetti and F. Bullo are with the Center for Control, Dynamical
Systems and Computation, University of California at Santa Barbara, CA 93106
USA (e-mail: fabiopas@engineering.ucsb.edu; bullo@engineering.ucsb.edu).

A. Franchi is with the Department of Human Perception, Cognition and
Action, Max Plank Institute for Biological Cybernetics, 72076 Tubingen,
Germany (e-mail: antonio.franchi@tuebingen.mpg.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2011.2179580

we address (see, e.g., [5]–[7]). It is worth noting, however, that
these classical optimization problems do not capture the repet-
itive, and hence dynamic, aspect of the patrolling problem, nor
the synchronization issues that arise when a timing among the
visits of certain zones is required.

A precise formulation of the patrolling problem requires the
characterization of the robots capabilities, of the environment
to be patrolled, and of the performance criteria. In this paper,
we assume the robots to be identical and capable of sensing and
communicating within a certain spatial range, and of moving ac-
cording to a first-order integrator dynamics with bounded speed.
We represent the environment as a graph, in which the vertices
correspond to physical and strategically important locations, and
the edges denote the possibility of moving and communicating
between locations. We assume that, when a robot is placed at
each of the graph vertices, the union of the sensor footprints pro-
vides complete sensor coverage of the environment. Regarding
the performance criteria of a patrolling trajectory, we consider
1) the time gap between any two visits of the same region, which
is called refresh time, and 2) the time needed to inform the team
of robots about an event occurred in the environment, which
is called latency. Loosely speaking, refresh time and latency
reflect the effectiveness of a patrolling team in detecting events
in the environment and in organizing remedial actions. For both
the refresh time and latency optimization problem, we focus on
the worst case analysis, even though the average refresh time
and the average latency cases are also of interest. Notice that
for the latency to be finite, the motion of the robots needs to be
synchronized. For instance, if two robots are allowed to com-
municate only when they simultaneously occupy two adjacent
vertices of the graph, then they need to visit those vertices at the
same time in a finite latency trajectory.

The patrolling problem is receiving increasing attention be-
cause of its fundamental importance in many security applica-
tions (see, e.g., [8]–[12]). Although many solutions have been
proposed, the problem of designing minimum refresh time and
latency team trajectories for a general environment is, to date, an
open problem. Almost all traditional approaches rely on space
decomposition and traveling salesperson tour computation [13].
In [14], an empirical evaluation of existing patrolling heuristics
is performed. In [15], two classes of strategies are presented,
namely, the cyclic-based strategy and the partition-based strat-
egy. In the cyclic-based strategy, the robots compute a closed
route through the viewpoints and travel repeatedly such route
at maximum speed. Clearly, in the case of a single robot, if
the tour is the shortest possible, then the cyclic-based strategy
performs optimally with respect to the refresh time and latency
criteria. In the partition-based strategy, the viewpoints are par-
titioned into m subsets, m being cardinality of the team, and

1552-3098/$31.00 © 2012 IEEE



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 593

each robot is responsible for a different set of viewpoints. To
be more precise, each robot computes a closed tour visiting the
viewpoints for which it is responsible and it repeatedly moves
along such tour at maximum speed. Still in [15], the two classes
of strategies are compared, and it is qualitatively shown that
cyclic-based strategies are to be preferred whenever the ratio
of the longest to the shortest edge of the graph describing the
environment is small, while, otherwise, partition-based policies
exhibit better performance. In [2] and [4], an efficient and dis-
tributed solution to the perimeter patrolling problem for robots
with zero communication range is proposed. By means of some
graph-partitioning and graph-routing techniques, we extend the
results along these directions, e.g., by considering the case of a
nonzero communication range for the perimeter patrolling, and
by characterizing optimal strategies for different environment
topologies. An important variant of the patrolling problem is
known as persistent surveillance (see, e.g., [16]). Differently to
our setup, a dynamically changing environment is considered
for the persistent surveillance problem, and performance guar-
antees are offered only under a certain assumption on the rate
of change of the regions that are to be visited.

It is worth mentioning that a different approach to the design
of patrolling trajectories relies on the use of pebbles or chemical
traces to mark visited regions (see, e.g., [17]–[20]). These tech-
niques, although effective even without a global representation
of the environment, and with severe communication constraints,
do not explicitly deal with the optimality of the patrolling tra-
jectories, and they represent, therefore, a complementary area
of research with respect to this study.

The main contributions of this paper are as follows. We intro-
duce and mathematically formalize the concept of refresh time
and latency of a team trajectory, and we formally state the pa-
trolling optimization problem. We propose a procedure to build
a graph (roadmap) to represent the topological structure of the
area to be patrolled, and we study separately the case of a chain,
tree, and cyclic (not acyclic) graph. We exhaustively discuss the
case of a chain roadmap. First, we characterize a family of min-
imum refresh time and latency team trajectories, which can be
computed by optimally partitioning the chain graph among the
robots. Second, we derive a centralized polynomial time algo-
rithm to compute an optimal partition, and, ultimately, to design
an optimal team trajectory. Our partitioning procedure is based
upon a bisection method, and it is also amenable to distributed
implementation. Third, we develop a distributed procedure for
the robots to converge and synchronize along an optimal trajec-
tory to minimize the refresh time and latency criteria. Fourth
and finally, we test the robustness of our methods through a
simulation study. When the roadmap has a tree or cyclic struc-
ture, we focus on the refresh time optimization problem, and
we neither consider the latency optimization nor the design of
distributed algorithms. For the case of a tree roadmap, we re-
duce the minimum refresh time patrolling problem to a known
graph optimization problem. We show that the computational
complexity of the minimum refresh time patrolling problem is
polynomial in the number of vertices of the roadmap, and, un-
der the assumption of a fixed and finite number of robots, we
identify a polynomial time centralized algorithm to compute a

minimum refresh time team trajectory. For the case of a cyclic
roadmap, we show that the patrolling problem is an NP-hard op-
timization problem. We propose two approximation algorithms
and characterize their performance. The first approximate solu-
tion is extremely easy to compute, but its performance depends
upon the ratio between the longest and the shortest edge in
the graph representing the environment. The second approxi-
mation algorithm is based on a polynomial time path-covering
procedure, and it returns a team trajectory whose refresh time
is within a factor of 8 from the minimum refresh time for the
given environment (cf., Fig. 13 for an example). To the best
of our knowledge, this algorithm is the first constant factor ap-
proximation algorithm for the NP-hard minimum refresh time
patrolling problem.

A preliminary version of this study appeared in [21]. With
respect to the latter manuscripts, in this paper, we introduce and
solve the latency optimization problem, perform a numerical
study to analyze the robustness of our algorithmic procedures,
and improve the presentation of the results on the refresh time
optimization problem.

The rest of this paper is organized as follows. The notation
and the problem under consideration are given in Section II,
where we also show that the patrolling problem is, generally,
computationally hard. Sections III–V present our results for
the patrolling of a chain environment. We characterize a min-
imum refresh time and latency team trajectory and derive a
centralized and a decentralized algorithm for its computation.
In Section VI, we perform a simulation study to show some
robustness and reconfigurability properties of our distributed
procedure. Section VII-A presents our results for the patrolling
of a tree environment. We describe a minimum refresh time team
trajectory on a tree roadmap and characterize the complexity of
computing an optimal solution. Section VII-B deals with the
general case of cyclic environment, and it contains our approxi-
mation procedures. Our conclusion and final remarks are given
in Section VIII.

II. ROBOTIC MODEL AND PRELIMINARY CONCEPTS

A. Robots on Roadmaps With Sensor Coverage and
Communication Connectivity

We will be using the standard motion planning notation;
see [22] for a comprehensive treatment of the subject. We are
given a team of m > 0 identical robots, which are capable of
sensing, communicating, and moving in a connected environ-
ment. We make the following combined assumptions on the
robot capabilities and on the environment to be patrolled.

Regarding sensing, we assume that the environment can be
completely covered by simultaneously placing a robot at each of
a set of n > m viewpoints in the configuration space. In other
words, if m = n robots were available and placed at the n
viewpoints, then the union of the sensors footprint of the robots
would provide complete sensor coverage of the environment.
We assume that each viewpoint is required for complete sensor
coverage. Finally, we assume n > m so that at least one robot
needs to visit more viewpoints for the entire environment to be
monitored over time.



594 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

Regarding communication, we associate an undirected graph
G with the environment, whose vertices are the n viewpoints,
and in which there is an edge between two vertices if two robots
placed at those viewpoints are able to communicate to each
other. We assume that G is connected. In what follows we de-
sign cooperative patrolling algorithms with sporadic communi-
cation, in the sense that two robots are required to communicate
only when they occupy adjacent vertices. The occurrence of
additional communication links can be easily incorporated into
the algorithms and cannot decrease their performance.

Regarding motion, we assume that the robots are holonomic,
i.e., they are modeled as first-order integrators and move at most
at unit speed. Additionally, we turn the graph G into a robotic
roadmap [22] and a metric weighted graph as follows: To each
pair of viewpoints that are neighbors in G, we associate a
unique path connecting them. We select these paths so that the
set of path lengths, adopted as edge weights, verify the triangle
inequality. (For example, the shortest paths between viewpoints
constitute a suitable choice.) We assume that each robot remains
always on the roadmap.

In summary, the combined assumptions on the robot capabil-
ities and the environment are that: the vertices of G provide
complete sensor coverage of the environment and each edge of
G corresponds to both a communication edge and a motion path.
Hence, we refer to G as a roadmap with sensor coverage and
communication connectivity.

B. On Suitable Roadmaps and Robots Capabilities

The problem of constructing a roadmap from an environment
is discussed here.

Example 1 (Roadmap Computation With Omnidirectional
Sensing and Communication in Known Environments): Assume
that the robots are holonomic vehicles moving at bounded speed
and equipped with an omnidirectional sensing device, and a line-
of-sight communication device. If a map of the environment is
available, then a valid roadmap is obtained by solving an art
gallery problem with connectivity [23]. A solution to the art
gallery problem with connectivity is a set of locations, which
are called guards, with the following two properties: Each point
in the environment is visible by at least one guard, and the vis-
ibility graph of the guards is connected. An example roadmap
is given in Fig. 1. (A distributed sensor-based algorithm for the
art gallery problem with connectivity is given in [24].)

Example 2 (Roadmap Computation for General Robots in an
Unknown Environment): If the environment is unknown, then an
exploration algorithm should be used to obtain a representation
of the environment (see, e.g., [18], [25], and [26]. While or af-
ter exploring the environment, a robot should select viewpoints
to provide full sensor coverage. By construction, the existence
of a path between two viewpoints is automatically guaranteed
by the exploration algorithm. Moreover, if communication be-
tween two path-connected viewpoints (i.e., vi and vj ) is not
guaranteed, then the graph may be augmented with additional
viewpoints along the path connecting vi and vj . The roadmap
resulting from these steps features sensor coverage and commu-
nication connectivity.

Fig. 1. Polygonal environment and its associated roadmap. The viewpoints are
chosen in a way that the environment is completely covered by placing a robot
at each of the 12 viewpoints. The edges of the roadmap denote the possibility for
the three robots of both moving and communicating between pair of connected
viewpoints. The weight of each edge corresponds to its length.

The following remarks are in order. First, the roadmap repre-
senting the environment is, in general, not unique, and the pa-
trolling performance depends upon the particular choice. In this
paper, we do not address the problem of choosing the roadmap
that yields optimal performance. Instead, we present efficient
algorithms for the patrolling problem, which can also be used to
compare different roadmaps on the basis of the corresponding
patrolling performance. Second, for the implementation of our
algorithms, a robot does not need to travel exactly along the
roadmap. Indeed, a robot only needs to arrive sufficiently close
to a viewpoint, or to be able to circle around it to provide sensor
coverage. A related example is given in Section VI, where the
arrival delay of a robot can be interpreted as the uncertainty in
the motion of the robots. Third, the global knowledge of the
roadmap may not be required for the execution of a patrolling
trajectory. Indeed, in general, each robot only visits a subpart
of the roadmap. Fourth and finally, collisions are prevented by
letting two robots exchange their roles every time they are about
to collide. Indeed, since no robot is assigned to a specific view-
point, if robot i is about to collide with robot j at time T ,
then, without affecting the performance of the team trajectory,
collision is avoided by redefining the ith and jth trajectory
as x̄i(t) = xj (t) and x̄j (t) = xi(t) for t ≥ T ; see the notion
of order invariant trajectory below. Communication or sensing
devices can be used to detect and prevent possible collisions.

C. Refresh Time of Team Trajectories: Definitions and a
Preliminary Complexity Result

For a team of m robots with specific capabilities, let
G = (V,E) be a robotic roadmap with sensor coverage and
communication connectivity. A team trajectory X is an ar-
ray of m continuous and piecewise-differentiable trajectories
x1(t), . . . , xm (t) defined by the motion of the robots on the
roadmap G, i.e., xi : [0, Tf ] �→ G, for i ∈ {1, . . . , m}, where
Tf ∈ R is a time horizon of interest, much larger than the time
required by a single robot to visit all viewpoints. We say that a
viewpoint v ∈ V is visited at time t by robot i if xi(t) = v. We
define the refresh time of a team trajectory X , in short RT(X),
as the longest time interval between any two consecutive visits
of any viewpoint, i.e.,

RT(X) = max
v∈V

max
(t1 ,t2 )∈Ω(v ,X )

t2 − t1



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 595

where Ω(v,X) = {(t1 , t2) ∈ [0, Tf ]2 , t1 ≤ t2 , | xi(t) �= v∀i
∈ {1, . . . , m}, t1 < t < t2}.

Remark 1 (Existence of a Minimum): We claim that there
exists a team trajectory with minimum refresh time and prove it
as follows. Without loss of generality, we restrict our attention to
team trajectories in which each robot moves at maximum speed
along the edges and stops for certain durations, possibly equal to
zero, at the viewpoints. Thus, a team trajectory can be described
as a tuple of the form (S,Δ) = {(S1 ,Δ1), . . . , (Sm ,Δm )},
where Si contains the sequence of viewpoints visited by robot
i, and Δi contains the waiting times at the visited vertices.
Notice that the time horizon Tf is finite, the length of each edge
is positive, the number of vertices is finite, and the speed of the
robots is bounded. It follows that the length of each sequence
Si is finite, and therefore, each Si takes value in a finite set.
Now, for each possible sequence of visited vertices, the refresh
time is a continuous function of only the waiting times, and
each waiting time lies in the compact interval [0, Tf ]. Because
any continuous function that is defined over a compact region
admits a point of minimum value, we conclude that there exists
a team trajectory with minimum refresh time.

Problem 1 (Team Refresh Time): Given a roadmap and a team
of robots, find a minimum refresh time team trajectory.

In Section IV, we present a different optimization problem,
which deals with the possibility for a robot to communicate,
possibly with multiple hops, with every other robot in the team.
We, now, conclude this section with our first result on the com-
putational complexity of the team refresh time problem. For a
detailed discussion of the main aspects of the computational
complexity theory, see [27]. Recall that an optimization prob-
lem is said to be NP-hard if it is, informally, as hard as the
hardest problem in the class NP, for which no polynomial time
algorithm is known to compute an optimal solution.

Theorem 2.1 (Computational Complexity): The team refresh
time problem is NP-hard.

Proof: This statement can be shown by reduction from the
traveling salesman problem [27]. In fact, if m = 1, since the
speed of the robots is bounded, then a minimum refresh time
trajectory consists of moving the robot at maximum speed along
a shortest closed tour visiting the viewpoints. The problem of
finding a shortest tour through a set of points in the plane,
which is also known as traveling salesman problem, is an NP-
hard problem [27]. Hence, by restriction, the team refresh time
problem is also NP-hard. �

Following Theorem 2.1, the minimum refresh time optimiza-
tion problem is generally computationally hard. In this paper, we
first identify two roadmap structures for which there exists an
efficient solution to the team refresh time problem, and then, we
describe two approximation algorithms to deal with the general
case.

III. MINIMUM REFRESH TIME TEAM TRAJECTORY

ON A CHAIN ROADMAP

We characterize, in this section, a minimum refresh time team
trajectory for the case of chain roadmaps.

A. Open-Loop Team Trajectory Characterization

Let Ni denote the neighbor set of the vertex i, and let |Ni |
denote the degree of i, i.e., the cardinality of the set Ni . A chain
roadmap is an undirected, connected, and acyclic roadmap, in
which every vertex has degree 2, except for two vertices which
have degree 1. Without losing generality, we assume that the
n vertices are ordered in a way that N1 = {2}, Nn = {n −
1}, and Ni = {i − 1, i + 1}, for each i ∈ {2, . . . , n − 1}. We
define a relative order of the robots according to their position
on the roadmap. A team trajectory is order invariant if the order
of the robots does not change with time, i.e., if xi(t) ≤ xi+1(t)
for each i ∈ {1, . . . , m − 1} and for every instant t ∈ [0, Tf ],
where xi(t) denotes the distance at time t on the roadmap from
the first vertex of the chain to the position of the ith robot.

Proposition 3.1 (Order Invariant Team Trajectory): Let X be
a team trajectory. There exists an order invariant team trajectory
X̄ such that RT(X) = RT(X̄).

Proof: Let X be a team trajectory, and consider the permu-
tation matrix P (t), that keeps track of the order of the robots
at time t, i.e., such that the (i, j)th entry of P (t) is 1 if, at
time t, the ith robot occupies the jth position in the chain of
robots, and it is 0 otherwise. Since X is continuous, anytime the
function P (t) is discontinuous, the positions of the robots di-
rectly involved in the permutation overlap. Therefore, the order
invariant team trajectory X̄ = P−1(t)X(t) is a feasible team
trajectory, and it holds RT(X̄) = RT(X). �

Let Vi ⊆ V be the set of viewpoints visited over time by the
agent i with the trajectory xi , and let the image of the team
trajectory X be the set {V1 , . . . , Vm}. Notice that different team
trajectories may have the same image. Throughout the paper, let
li = minv∈Vi

v, ri = maxv∈Vi
v, and di = ri − li . Finally, let

RT∗ = minX RT(X). A team trajectory is nonoverlapping if
Vi ∩ Vj = ∅ for all i �= j.

Proposition 3.2 (Nonoverlapping Team Trajectory): Given a
chain roadmap, there exists an order invariant and nonoverlap-
ping team trajectory with refresh time RT∗.

Proof: Let X∗ be a minimum refresh time team trajectory, and
let X be the order invariant team trajectory obtained from X∗ as
in Proposition 3.1. Clearly, RT(X) = RT∗. Let {V1 , . . . , Vm}
be the image of X , and note that V = ∪m

i=1Vi . Consider the
partition of V defined as

V̄1 = V1

V̄i = Vi \ ∪i−1
j=1Vj , i ∈ {2, . . . , m}.

For every nonempty V̄i , let l̄i = minv∈V̄ i
v, r̄i = maxv∈V̄ i

v,
and d̄i = r̄i − l̄i . Note that, by construction, the viewpoint l̄i
is visited by the robot i and, possibly, by the robots j > i. In
addition, because X is order invariant, we have xi(t) ≤ xj (t).
It follows that RT(X) ≥ 2maxi d̄i . Consider, now, the team
trajectory X̄ with image {V̄1 , . . . , V̄m}, and assume that the
robots sweep periodically at maximum speed their segment.
Then, RT(X̄) = 2maxi d̄i so that X̄ is an order invariant and
nonoverlapping team trajectory with minimum refresh time. �

Given a chain graph on the viewpoints V , let Πm =
{π1 , . . . , πm} be an m-partition of V , i.e., π1 , . . . , πm

is a collection of subsets of V such that πi ∩ πj = ∅



596 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

Fig. 2. (a) Four-partition with minimum (maximum) dimension. The dimen-
sion of this partition is v7 − v6 . (b) Four-partition with minimum (average)
dimension is obtained by removing three longest edges. The dimension of this
partition is v10 − v7 > v7 − v6 .

whenever i �= j, and V =
⋃m

i=1 πi . Additionally, let the di-
mension of the partition Πm equals the longest distance be-
tween any two viewpoints in the same cluster, i.e., dim(Πm ) =
maxi∈{1,...,m} (maxv∈πi

v − minv∈πi
v), where maxv∈πi

v −
minv∈πi

v = 0 if πi = ∅. Following Proposition 3.2, there exists
a minimum refresh time team trajectory whose image coincide
with an m-partition of V . We now show that the minimum re-
fresh time equals twice the dimension of an optimal m-partition.

Theorem 3.3 (Minimum Refresh Time): Let G be a chain
roadmap, and let m be the number of robots. Then, RT∗ =
2minΠm

dim(Πm ).
Proof: As a consequence of Propositions 3.1 and 3.2, there

exists a minimum refresh time team trajectory whose image
coincides with an m-partition Πm . Since each robot is as-
signed a different cluster, and the speed of the robots is bounded
by 1, we have RT∗ ≥ 2dim(Πm ). Consider a team trajec-
tory X in which each robot continuously sweeps at maximum
speed the cluster it is assigned to. Clearly, RT(X) = RT∗ =
2dim(Πm ). �

We have shown that a minimum refresh time trajectory con-
sists of letting the robot sweep at maximum speed a part of the
chain graph. Such a trajectory is more formally described for
the ith robot in Trajectory 1, where we only characterize the
instants of time at which robot i changes its velocity vector, and
we assume that it moves at maximum speed otherwise.

Remark 2 (Average Partition): By removing the longest edges
in the chain the average length of the clusters is minimized.
In general, such partition does not minimize the dimension of
the m-partition, and hence, it is not optimal in our sense. An
example is shown in Fig. 2.

B. Optimal m-Partition Centralized Computation

In the remaining part of the section, we describe an algorithm
to compute an optimal m-partition. For a set of viewpoints V ,
we call left-induced partition of length ρ ∈ R≥0 the partition
Πρ = {πi}, which is defined recursively as [cf., Fig. 3(a)]

πi = {v ∈ V | ai ≤ v ≤ ai + ρ}, i = 1, . . . (1)

Fig. 3. (a) Left-induced partition of length ρ4 and ρ5 , with ρ5 < ρ4 , for the
chain roadmap with vertices {v1 , . . . , v10}. The cardinalities are |Πρ4 | = 4
and |Πρ5 | = 5, respectively. (b) Cardinality |Πρ |, plotted as a function of the
length ρ. Notice that, because v2 − v1 = v10 − v9 , the function |Πρ | does
not assume the value 9.

where

a1 = v1

aj = min{v ∈ V | v > aj−1 + ρ}, j = 2, . . .

The cardinality |Πρ | corresponds to the integer j such that {v ∈
V | v > aj + ρ} = ∅. Observe that the function ρ �→ |Πρ | is
monotone, nonincreasing, and right-continuous [cf., Fig. 3(b)].
Let {ρ1 , . . . , ρn−1} ∈ R

n−1
≥0 be the discontinuity points of the

function ρ �→ |Πρ |, then, for k ∈ {1, . . . , n − 1}, we have

|Πρ | ≤ k, if ρ ≥ ρk

|Πρ | > k, if ρ < ρk . (2)

Note that two or more discontinuity points of |Πρ |may coincide
so that the function |Πρ | may not assume all the values in the
set {1, . . . , n}, e.g., in Fig. 3(b), the value |Πρ | is never equal
to 9.

Theorem 3.4 (Optimal m-Partition): Let G be a chain
roadmap. Let Πm be an m-partition of G, and let Πρ be
the left-induced partition of length ρ of G. Then

min
Πm

dim(Πm ) = min{ρ ∈ R≥0 | |Πρ | ≤ m}.

Proof: Let Πm be an m-partition, and let Πρ = {πρ
1 , . . . , πρ

k}
be the left-induced partition of length ρ of a chain roadmap G.
Let ρ∗ = minΠm

dim(Πm ). We want to show that ρ∗ is one
of the discontinuity points of the function |Πρ |, i.e., that ρ∗

verifies the conditions (2).
By contradiction, if ρ < ρ∗ and |Πρ | ≤ m, then an m-

partition with dimension smaller than the optimal would exists.
Therefore, we have |Πρ | > m if ρ < ρ∗.



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 597

Suppose that ρ ≥ ρ∗, and let Π∗
m = {π∗

1 , . . . , π
∗
m} be an m-

partition with minimum dimension. Notice that |πρ
1 | ≥ |π∗

1 |, be-
cause the cluster πρ

1 contains all the viewpoints within distance
ρ from v1 within distance ρ∗. It follows that maxπρ

1 ≥ maxπ∗
1 ,

and also that minπρ
2 ≥ minπ∗

2 . By repeating the same procedure
to the remaining clusters, we obtain that maxπρ

m ≥ maxπ∗
m ,

so that, if |Π∗| = m and ρ ≥ ρ∗, then |Πρ | ≤ m. �
Following Theorem 3.4, an optimal left-induced partition of

cardinality (at most) m is also an optimal m-partition. Notice
that for the computation of an optimal left-induced partition,
only the lengths ρ corresponding to the discontinuity points of
Πρ need to be considered. Since each discontinuity point coin-
cides with the distance between a pair of vertices, only n(n−1)

2
values need to be tested. Therefore, an optimal left-induced
partition can be computed with complexity O(n2). In what
follows we describe an ε-approximation algorithm with linear
complexity for any ε ∈ R>0 . Notice that ε-approximation al-
gorithms with linear complexity are often more convenient for
a practical implementation than exact algorithms with higher
complexity [7].

We now present our algorithm for the computation of an opti-
mal m-partition. Since the function ρ �→ |Πρ | is monotone and
continuous, a bisection method is effective for finding its discon-
tinuity points and, therefore, for determining the shortest length
of a left-induced partition of cardinality m. A bisection-based
procedure to compute an optimal left-induced partition is given
in Algorithm 2, where the function left-induced ({v1 , . . . , vn},
ρ) returns the left-induced partition defined in (1). We, next,
characterize the convergence properties of Algorithm 2.

Lemma 3.5 (Convergence of Algorithm 2): Let G be a chain
roadmap, and let Πm denote an m-partition of G. Let ρ∗ =
minΠm

dim(Πm ). Algorithm 2 with tolerance ε returns a left-
induced partition of dimension at most ρ∗ + ε and cardinality
at most m. Moreover, the time complexity of Algorithm 2 is
O(n log(ε−1)).

Proof: Algorithm 2 searches for the minimum length ρ∗ that
generates a left-induced partition of cardinality at most m.
Because of Theorem 3.4, the length ρ∗ coincides with one of
the discontinuity points of the function |Πρ |, and it holds ρ∗ ∈
(0, 2vn/m). Indeed, ρ∗ > 0 because m < n, and ρ∗ < 2vn/m,
because (2vn/m)m > vn . Recall from (2) that |Πρ | > m for
every ρ < ρ∗, and that the function ρ �→ |Πρ | is monotone.
Note that the interval [a, b], as updated in Algorithm 2, contains
the value ρ∗ at every iteration. The length of the interval [a, b] is

divided by 2 at each iteration so that, after log2(
2vn

εm ), the value
ρ∗ is computed with precision ε. Since the computation of |Πρ |
can be performed in O(n) operations, the time complexity of
Algorithm 2 is O(n log(ε−1)). �

As a consequence of Proposition 3.2 and Theorem 3.3, in
what follows we only consider team trajectories whose image
coincide with an m-partition. Therefore, for ease of notation,
we use the set {V1 , . . . , Vm} to denote both the image set of
a team trajectory and an m-partition of the chain graph. We
conclude this section with a summary of the presented results.

Theorem 3.6 (Patrolling a Chain Graph at Minimum Re-
fresh Time): Let G be a chain graph with n view-
points, and let m ≤ n be the number of robots. Let V
be an optimal m-partition of G computed by means of
Algorithm 2 with tolerance ε. Let dmax be the dimension
of V . A team trajectory with image V and minimum refresh
time 2dmax is computed as in Trajectory 1. Moreover, the time
complexity of designing such trajectory is O(n log(ε−1)).

IV. MINIMUM REFRESH TIME AND LATENCY TEAM

TRAJECTORY ON A CHAIN ROADMAP

The previous section considers the problem of designing team
trajectories with minimum refresh time on a chain graph. In a
patrolling mission, it may be important for the robots to commu-
nicate with each other in order to gather information about the
status of the entire environment. For instance, messages could
be sent by a unit to ask for reinforcement, or to spread an alarm.
Informally, we call latency of a team trajectory X , in short
LT(X), the shortest time interval necessary for a message gen-
erated by any robot to reach all the other robots. In other words,
given our communication model, the latency of a team trajectory
is a measure of how fast a message spreads to all robots. In this
section, we describe team trajectories with minimum refresh
time and latency.

We now give a more formal definition of LT(X). Recall
that, by assumption, two robots are allowed to communicate
when they lie on two adjacent viewpoints. In a chain roadmap,
for a message to reach every robot in the chain, every pair of
adjacent robots needs to communicate. For i ∈ {2, . . . , m}, let
Φi denote the union of the set of times at which the robots
i − 1 and i communicate and {0}. The up-latency of X ,
in short LTup(X), is the longest time interval between any
two consecutive communications between the robots 1, 2 and
m − 1,m. Precisely

LTup(X) = max
t2 ∈Φ2

min
tm ∈Φ̄m (t2 )

tm − t2

where Φ̄m (t2) = {tm ∈ Φm | ∃ t3 ∈ Φ3 , . . . , tm−1 ∈ Φm−1 ,
t2 ≤ t3 ≤ . . . ≤ tm} ∪ {Tf }. Analogously, we call down-
latency the quantity

LTdown(X) = max
tm ∈Φm

min
t2 ∈Φ̄2 (tm )

t2 − tm

where Φ̄2(tm ) = {t2 ∈ Φ2 | ∃ t3 ∈ Φ3 , . . . , tm−1 ∈ Φm−1 ,
t2 ≥ t3 ≥ · · · ≥ tm} ∪ {Tf }. Finally, we define the latency of



598 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

a team trajectory as

LT(X) = max{LTup(X), LTdown(X)}.
Notice that our definitions of latency hold for m ≥ 2, and that, if
m = 2, then we have LTup(X) = LTdown(X) = LT(X) = 0
for every team trajectory X . We envision that the up- and
down-latency performance criteria should be adopted when it is
of interest to report the status of the monitored area to a base
station located at one end of the chain environment. The latency
minimization problem is more appropriate for fully distributed
scenarios. In this section, we design synchronized team trajec-
tories with the following two features. First, since a minimum
refresh time trajectory is determined by an optimal partition of
the chain graph, we aim at finding team trajectories associated
with the same optimal partition.1 Second, we design synchro-
nized team trajectories with minimum up-latency (respectively,
down-latency) or latency.

A. Lower Bound and Minimum Up-Latency Team Trajectory

We start by showing a lower bound for LTup(X) and
LTdown(X). Recall that, for a partition {V1 , . . . , Vm}, we have
li = minv∈Vi

v, ri = maxv∈Vi
v, di = ri − li , and dmax =

maxi∈{1,...,m}di .
Lemma 4.1 (Up-Latency Lower Bound): Let G be a chain

roadmap, and let {V1 , . . . , Vm} be an m-partition of G. The
latency of a team trajectory with image {V1 , . . . , Vm} is lower
bounded by

∑m−1
i=2 di .

Proof: The proposition follows from the fact that the robots
speed is bounded by 1, and that the robots need to travel their
segment to communicate with the neighboring robots. �

For the up-latency of a team trajectory to equal the lower
bound in Lemma 4.1, each robot i needs to transfer a message
from robot i − 1 to robot i + 1 in time di . In order to do so,
each robot i needs to communicate with its neighbor i + 1 as
soon as xi(t) = ri .

Theorem 4.2 (Patrolling a Chain Graph at Minimum Refresh
Time and Minimum Up-Latency): Let G be a chain graph with
n viewpoints, and let m ≤ n be the number of robots. Let
V be an optimal m-partition of G computed by means of
Algorithm 2 with tolerance ε. Let dmax be the dimension of
V , and let di be the length of the ith cluster. A team trajectory
with image V , minimum refresh time 2dmax , and minimum up-
latency

∑m−1
j=2 dj is computed as in Trajectory 3. Moreover, the

time complexity of designing such trajectory is O(n log(ε−1)).
Proof: The theorem follows by observing that the trajectory is

2dmax -periodic and that no robot i waits at ri to communicate
with the neighboring robot i + 1. The up-latency equals the
lower bound in Lemma 4.1, and it is, therefore, minimum.
Regarding the computational complexity, notice that it is
determined by the computation of the optimal m-partition V ,
and hence, by Lemma 3.5, it equals O(n log(ε−1)). �

An example of a team trajectory with minimum refresh time
and minimum up-latency is shown in Fig. 4. Finally, observe

1We focus on this family of trajectories, and we leave the more general
optimization problem as the subject of future research. However, this family of
trajectories is believed to contain an (unconstrained) optimal solution.

Fig. 4. Team trajectory with minimum up-latency generated with the proce-
dure in Trajectory 3. Notice that each robot i communicates with the neigh-
boring robot i + 1 as soon as xi (t) = ri . A team trajectory with minimum
down-latency is obtained by shifting in time the trajectory of robot 1, in a way
that robot 2 communicates with robot 1 as soon as x2 (t) = l2 .

that the minimization of the down-latency can be achieved in an
analogous way.

Remark 3 (Simplifications for Clusters of Equal Length):
Let {V1 , . . . , Vm} be an optimal m-partition, and suppose
that dmax = ri − li for all i ∈ {1, . . . , m}. Then, the up-
latency and the down-latency can be made minimum and equal
to (m − 2)dmax by arranging the robots trajectories to be in
opposite phase. Specifically, for k = 0, 2, . . ., we set

xi(2kdmax) = li , xi((2k + 1)dmax) = ri

if i is odd, and

xi(2kdmax) = ri, xi((2k + 1)dmax) = li

if i is even. Because of Lemma 4.1, the above trajectory has
minimum latency. This particular case was studied in [2].

B. Lower Bound for Latency

We now consider the minimization of the latency criterion
and restrict our attention to periodic team trajectories. To be
more precise, let {V1 , . . . , Vm} be an optimal m-partition of
the environment, and let dmax denote the longest length of the
clusters. We aim at finding a 2dmax -periodic team trajectory
with image {V1 , . . . , Vm} and minimum latency. Notice that,
by imposing a periodicity of 2dmax , the refresh time of the
trajectory, if finite, is also minimized.

We start by considering the pedagogical situation in which
di + di+1 > dmax for all i ∈ {1, . . . , m − 1}. In the next
Lemma, we show that the frequency of message exchange
among the robots is limited by the periodicity of the trajectory.

Lemma 4.3 (Frequency of Message Exchange): Consider a
2dmax -periodic team trajectory, and let di + di+1 > dmax for



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 599

Fig. 5. As stated in Lemma 4.3, at most one communication sequence is
possible within each period of length 2dm ax . Here, di + di+1 > dm ax .

all i ∈ {1, . . . ,m − 1}. For any t ∈ [0, Tf − 2dmax] and for
any i ∈ {2, . . . , m − 2}, there exist no two distinct sequences
ti , ti+1 , ti+2 and t̄i , t̄i+1 , t̄i+2 , with tj , t̄j ∈ Φj , j = i, i +
1, i + 2, such that

t ≤ ti ≤ ti+1 ≤ ti+2 ≤ t + 2dmax

t ≤ t̄i ≤ t̄i+1 ≤ t̄i+2 ≤ t + 2dmax

ti+1 ≤ t̄i

ti+2 ≤ t̄i+1 .

Moreover, for any i ∈ {m, . . . , 4}, there exist no two se-
quences ti , ti−1 , ti−2 and t̄i , t̄i−1 , t̄i−2 with tj , t̄j ∈ Φj ,
j = i, i − 1, i − 2, such that

t ≤ ti ≤ ti−1 ≤ ti−2 ≤ t + 2dmax

t ≤ t̄i ≤ t̄i−1 ≤ t̄i−2 ≤ t + 2dmax

ti−1 ≤ t̄i

ti−2 ≤ t̄i−1 .

Proof: Since di+1 + di+2 > dmax , it follows max{di+1 ,
di+2} > dmax/2. Let di+1 > dmax/2. By contradiction, if
two distinct sequences ti , ti+1 , ti+2 and t̄i , t̄i+1 , t̄i+2 ex-
ist, with t ≤ ti ≤ ti+1 ≤ ti+2 ≤ t + 2dmax , t ≤ t̄i ≤ t̄i+1 ≤
t̄i+2 ≤ t + 2dmax , ti+1 ≤ t̄i and ti+2 ≤ t̄i+1 , then the (i +
1)th robot travels its cluster four times. Since the speed of the
robots is bounded by one, robot i + 1 cannot travel its cluster
four times in a period of 2dmax (cf., Fig. 5). The second part of
the theorem follows from an analogous reasoning. �

Notice that in the aforementioned Lemma, the index i be-
longs to the set {2, . . . ,m − 2} (respectively, {m, . . . , 4})
because we consider three consecutive communication instants,
and because Φi denotes the sequence of times at which robots
i − 1 and i communicate. Because of Lemma 4.3, in a 2dmax -
periodic team trajectory with di + di+1 > dmax , only one mes-
sage can be passed from robot i to robot i + 3 in a period of
time of 2dmax . This limitation determines a lower bound on
the latency of a periodic trajectory. Notice that eventual com-
munication instants tj ∈ Φi , with t ≤ tj ≤ ti ≤ ti+1 , do not
influence the latency, since all information can be transmitted at
time ti without affecting the latency performance.

Lemma 4.4 (Latency Lower Bound, Simple Case): Let X be
a 2dmax -periodic team trajectory with di + di+1 > dmax for
all i ∈ {1, . . . , m − 1}. Then

min
X

LT(X) ≥ (m − 2)dmax .

Proof: Because of Lemma 4.3, a message can be transferred
from robot i to robot i + 3 in at most 2dmax instants of
time, by traveling the clusters Vi+1 and Vi+2 . Without losing
generality, we let dmax be the time to pass a message from i + 1
to i + 2 and from i + 2 to i + 3. Notice that the same reasoning
holds also for the time to transfer a message from i + 3 to i.
Therefore, the latency is lower bounded by (m − 2)dmax . �

We now consider the situation in which an optimal m-
partition does not verify the constraint di + di+1 > dmax for all
i ∈ {1, . . . , m − 1}. Intuitively, for what concerns the latency,
two consecutive clusters with length di and di+1 may be re-
garded as one single cluster of length di + di+1 . Therefore, in
order to use Lemma 4.3 and Lemma 4.4, we partition the clus-
ters {V1 , . . . , Vm} into groups such that the sum of the length of
the clusters of two consecutive groups is greater than dmax . In
other words, let V̄r = {r̄1 , . . . , r̄m̄} be the set of right-extreme
viewpoints of the partition {V1 , . . . , Vm} defined recursively
as

r̄0 := l1

r̄i := max
j∈{1,...,m}

⎧
⎨

⎩
rj |

j∑

k=pi

dk ≤ dmax

⎫
⎬

⎭
, i = 1, . . . , m̄

where pi = min{1, . . . , m} such that lpi
≥ r̄i−1 . Let V̄l =

{l̄1 , . . . , l̄m̄} be the set of left-extreme viewpoints defined recur-
sively as

l̄1 := l1

l̄i := min
j∈{1,...,m}

{lj | lj ≥ r̄i−1}, i = 2, . . . , m̄.

Additionally, define the set of aggregated clusters V̄ =
{V̄1 , . . . , V̄m̄}, where V̄i contains all the clusters within l̄i
and r̄i , and let d̄i be the sum of the length of the clusters in V̄i .

Lemma 4.5 (Latency Lower Bound, General Case): Let X
be a 2dmax -periodic team trajectory with image {V1 , . . . , Vm},
and let m̄ be the number of aggregated clusters. Then

min
X

LT(X) ≥ (m̄ − 2)dmax + (d̄1 − d1) + (d̄m̄ − dm ).

Proof: Consider the clusters defined by the right extreme
viewpoints, and notice that they verify di + di+1 > dmax . Then,
the theorem follows from Lemma 4.4, and from the fact that
the minimum latency on the image {V̄1 , . . . , V̄m̄} equals the
minimum latency on the image {V1 , . . . , Vm}. The terms d̄1 −
d1 and d̄m̄ − dm are due to the fact that we are interested in
delivering a message from robot 1 to robot m in the original
configuration, and not on the aggregated chain. �

C. Minimum Latency Team Trajectory

A team trajectory with minimum refresh time and minimum
latency is formally presented in Trajectory 4, where we specify
the instants of time at which a robot changes its velocity, and we
assume that it moves at maximum speed otherwise. An example
is reported in Fig. 6, and here we give an informal description.
Let {V1 , . . . , Vm} be an optimal m-partition of a chain graph,
and let {V̄1 , . . . , V̄m̄} be the set of aggregated clusters. Recall



600 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

Fig. 6. Team trajectory with minimum refresh time (2dm ax ) and minimum
latency ((m̄ − 2)dm ax + d1 + d2 − d1 + d3 − d3 = d2 ) is here reported. A
message with delivery time equal to d2 is reported in red. The right-extreme
viewpoints are {r̄1 , r̄2}, the left-extreme viewpoints are {l̄1 , l̄2}, and m̄ = 2.
The represented team trajectory has minimum refresh time (2dm ax ) and min-
imum latency ((m̄ − 2)dm ax + (d1 + d2 ) − d1 + d3 − d3 = d2 ). A mes-
sage with delivery time equal to d2 is reported in red.

that V̄i is a subset of {V1 , . . . , Vm}, and that the sum of the
length of two consecutive elements is larger than dmax . The
procedure in Trajectory 4 (see lines 6–11 and 18–23) is such that
the robots in the same group behave as a single robot assigned
to the whole set of viewpoints. In other words, the motion of
the robots in the same group is determined by a token passing
mechanism, in which robot i + 1 moves toward ri+1 only
when xi(t) = ri and xi(t−) �= ri , and, analogously, robot i
moves toward li only when xi(t) = li and xi(t−) �= li . Instead,
lines 1–5 and 12–17 in Trajectory 4 guarantee the transfer of one
message in a period of 2dmax between three consecutive groups
and, consequently, the minimization of the latency. Indeed, since
the sum of the length of two consecutive groups is larger than
dmax , because of Lemma 4.3, no more than one message can
be transferred between three consecutive groups in a period of
2dmax .

Theorem 4.6 (Patrolling a Chain Graph at Minimum Refresh
Time and Minimum Latency): Let G be a chain graph with n
viewpoints, and let m ≤ n be the number of robots. Let V be an
optimal m-partition of G computed by means of Algorithm 2
with tolerance ε. Let dmax be the dimension of V , and let
d1 (respectively, dm ) be the length of the first (respectively,
last) cluster in V . Let m̄ be the number of aggregated clus-
ters, and let d̄1 (respectively, d̄m̄ ) be the length of the first
(respectively, last) aggregated cluster. A team trajectory with
image V , minimum refresh time 2dmax , and minimum la-
tency (m̄ − 2)dmax + d̄1 − d1 + d̄m̄ − dm is computed as in
Trajectory 4. Moreover, the time complexity of designing such
trajectory is O(n log(ε−1)).

Proof: By inspection, the team trajectory described in
Trajectory 4 is 2dmax -periodic, and therefore, it has minimum
refresh time. Moreover, by construction, the communications at
the extreme viewpoints happen every 2dmax instants of time
so that the latency is equal to (m̄ − 2)dmax + d̄1 − d1 + d̄m̄ −
dm , and hence, by Lemma 4.5, minimum. Regarding the com-
putational complexity, notice that it is determined by the compu-
tation of the optimal m-partition V , and hence, by Lemma 3.5,
it equals O(n log(ε−1)). �

V. DISTRIBUTED SYNCHRONIZATION ALGORITHM

ON A CHAIN ROADMAP

In the previous sections, we have shown that, for the compu-
tation of a minimum refresh time and latency team trajectory,
first an optimal m-partition of the roadmap needs to be found,
and, then, a synchronization of the motion of the robots needs
to be achieved to ensure communication between neighboring
robots. The distributed computation of an optimal m-partition
follows directly from Algorithm 2, by letting the robots com-
pute the left-induced partition of length l in a distributed way.
A simple solution consists of the following three operation:

1) the robots gather at the leftmost viewpoint, and
2) determine the cardinality of the team and elect a leader;
3) the leader computes an optimal left-induced partition and

assigns a different cluster to each robot.
Notice that, by only assuming the capability of detecting the

viewpoints in the roadmap (in particular, the leftmost and right-
most viewpoint), the robots can distributively compute an opti-
mal partition. Indeed, the leader can simply travel the roadmap
and evaluate if, for a given length ρ, the cardinality of the cor-
responding left-induced partition is greater, equal, or smaller
than the cardinality of the team. We believe that, by simple
programming operations, the aforementioned procedure can be



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 601

improved to handle reconfigurations due to addition or removal
of robots in the team. In this section, we focus instead on the
design of a distributed feedback law to synchronize the motion
of the robots so as to guarantee the minimization of the latency
of the trajectory.

Recall that xi(t) denotes the position on the chain of the
robot i at time t. Moreover, let the ith cluster of an optimal
m-partition be delimited by li and ri . Let diri ∈ {−1, 0, 1}
denotes the direction of motion of robot i. Let c-time denotes
the current time of simulation, and let a-time be the time at
which a robot arrives at his right extreme. Let n-meet(i,j) be a
function that returns the number of times that the robots i and
j have communicated. Let Timer(δ) be a function that returns 1
after a time interval of length δ. An algorithm for the robots to
distributively converge to a minimum refresh time and latency
team trajectory is in Algorithm 5. It should be noticed that the
algorithm assumes the knowledge of an optimal partitioning of
the chain graph, and of the left- and right-extreme sets.

Algorithm 5 is informally described as follows. First, the
velocity of a robot changes only when its position coincides
with the leftmost or the rightmost of the assigned viewpoints.
When a robot reaches an extreme viewpoint, it waits until a
communication with the neighboring robot happens (see lines
7 and 8). This mechanism determines the feedback behav-
ior of our procedure. The behavior of a robot after a com-
munication is determined by the lines 9–21, which reproduce
the optimal behavior described in Trajectory 4. To be more
precise, the function Token( i, j) coordinates the motion of
the robots in the same group (see Section IV-C) so that they
move as if there was a single robot sweeping the viewpoints
in the same group. The function Timer( δi), instead, ensures
the maximum frequency of messages exchange between con-
secutive groups, so as to minimize the latency of the resulting
trajectory.

Theorem 5.1 (Optimal Team Trajectory): Let X be the team
trajectory generated by Algorithm 5. There exists a finite time
after which X has minimum refresh time and latency.

Proof: Let {V1 , . . . , Vm} be an optimal m-partition, let
V̄r = {r̄1 , . . . , r̄C ∗} be the set of right-extreme viewpoints, and
let V̄l = {l̄1 , . . . , l̄C ∗} be the set of left-extreme viewpoints.
Let R denote the set of robots patrolling a viewpoint between
l̄i and r̄i , where l̄i and r̄i are as previously defined. First,
notice that robot 1 (respectively, m) sets ẋ1(t) = 1 (re-
spectively, ẋm (t) = −1) as soon as x1(t) = l1 (respectively,
xm (t) = rm ). Second, the function Token(i, j) guarantees that,
when i, j ∈ R communicate, exactly one robot among i, j
maintains a zero velocity and in an alternate way. Therefore,
after a finite time Ti , independent of the initial robots motion di-
rection, the velocities of the robots in R are such that, upon com-
munication, ẋi(t) = ẋi−1(t−) and ẋi−1(t) = 0. In other words,
after Ti , the robots in R behave as a single robot sweeping the
segments between l̄i and r̄i . Finally, the function Timer(τ)
and the parameter τ guarantee that the communications at the
extreme viewpoints happen every 2dmax instants of time. We
conclude that the trajectory generated by Algorithm 5 converges
in finite time to a team trajectory with minimum refresh time and
latency. �

It should be observed that, differently from the team trajec-
tories presented in the previous sections, Algorithm 5 contains
a feedback procedure to synchronize the motion of the robots.
Our algorithm is independent of the initial configuration, and,
as it is shown in the next section, it is robust to a certain class
of robot failures.

VI. CASE STUDY

Given the theoretical nature of this study, in this section, we
propose a simulation study to show the effectiveness of our pro-
cedures. For our simulations, we use the MATLAB simulation
environment and model the robots as holonomic vehicles of zero
dimension. The communication edges and the motion paths are
described by a given roadmap.

Consider the chain roadmap with 30 viewpoints in Fig. 7.
Suppose that ten robots are assigned to the patrolling task. In
order to obtain a team trajectory with minimum refresh time, an
optimal ten-partition of the roadmap is computed (cf., Fig. 7).
Additionally, to obtain a minimum latency team trajectory, each
robot is assigned to a different cluster, its initial position is
chosen randomly inside its cluster, and its velocity is initialized
randomly. The motion of each robot is, then, determined by
Algorithm 5. The resulting team trajectory is shown in Fig. 8,



602 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

Fig. 7. Robotic roadmap with sensor coverage and communication connectiv-
ity of a two-floor building. Crossing edges corresponds to corridors at different
floors. A ten-partition of the roadmap is here reported. The dashed edges are
not traveled by any robot.

Fig. 8. For the roadmap of Fig. 7, the team trajectory obtained with
Algorithm 5 is reported here. The dashed lines denote a communication among
two neighboring robots. At time t = 200, the robots have synchronized their
motion, and from that moment up to time t = 300, the team trajectory has
minimum refresh time and latency. From time t = 300 up to time t = 400,
robot 7 undergoes a temporary failure, causing all the other robots to lose syn-
chronization. The team of robots synchronizes again when robot 7 resume its
motion. At time t = 620, the failure of robot 7 is detected by the remaining
robots, which compute and synchronize on a new partition.

where the team of robots synchronize on a minimum refresh
time and latency team trajectory after a finite transient.

We now test the robustness of our synchronization procedure.
As a first case study, we consider a temporary stopping failure,
in which a robot stops for a certain time interval. For instance,
suppose that robot 7 stops from time 300 up to time 400 (cf.,
Fig. 8). Notice that, after the failure, each robot j, with j < 7,
gathers at rj , and each robot k, with k > 7, gathers at lk waiting
for a communication with the corresponding neighboring robot.
As soon as robot 7 resumes its functionalities, the team of robots
recover the desired synchronization. Notice that the transient
failure of robot 7 can be easily detected by its neighbors by
means of a timer mechanism with a predefined threshold.

As a second case study, we let the robots actuation be affected
by noise so that the speed of the robots becomes a random

Fig. 9. For the roadmap in Fig. 7, 100 team trajectories have been generated
with Algorithm 5 for each value of σ2 . The average refresh time and the average
latency are plotted as continuous lines in Fig. 9(a) and (b), respectively. The
bars indicate the minimum and the maximum value of the refresh time and
the latency, respectively. Notice that the average team trajectory performance
degrade gracefully with the noise variance.

variable with a certain distribution.2 Precisely, let ẋi = diri +
wi be the equation describing the dynamics of robot i, where wi

is a zero mean Gaussian variable with variance σ2 [(m/s)2 ]. We
let σ2 ∈ {0, 0.02, . . . , 0.5}, and we run 100 simulations for each
possible value of σ2 on the roadmap in Fig. 7. The refresh time
and the latency of the team trajectories obtained with Algorithm
5 are plotted in Fig. 9(a) and (b), respectively, as a function of
σ2 . Note that the performance degrade gracefully with the noise
magnitude.

As third and final case study, we consider the situation in
which a robot definitively stops.3 The remaining robots need to
compute a new optimal partition and to synchronize in order
to guarantee an optimal patrolling of the environment. Notice
that for the computation of such a partition by Algorithm 2, the
chain graph and the number of the robots are required. Suppose
that the failure of the robot 7 is detected at time 620 by the
well-behaving robots, and assume that each robot knows the
chain roadmap and the number of operative robots. Algorithm
2 and Algorithm 5 allow the team to synchronize on a new team
trajectory with minimum refresh time and latency. Notice that
the initial and the final partitions do not coincide.

VII. APPROXIMATION ALGORITHMS AND HEURISTICS FOR

GENERAL ROADMAPS

The problem of designing minimum refresh time and latency
team trajectories on a chain roadmap has been discussed. In
this section, we consider the more general cases of tree and
cyclic roadmap, characterize the computational complexity of
determining optimal trajectories, and describe two approxima-
tion methods with performance guarantees. The results we are
going to present are intended for a team of more than one robot.
Indeed, if only one robot is assigned to the patrolling task, then a
minimum refresh time trajectory follows from the computation
of the shortest tour through the viewpoints, for which efficient
approximation algorithms already exist [28].

A. Minimum Refresh Time Team Trajectory on a Tree Roadmap

Let T = (V,E) denote an undirected, connected, and acyclic
roadmap (tree). Recall that a vertex path is a sequence of

2The case in which a robot fails at seeing a neighboring robot for a certain
interval of time can be modeled analogously.

3The case of additional robots joining the team is handled in a similar way.



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 603

Fig. 10. Two examples of tree roadmap. For the roadmap in (a), the family of
cyclic-based trajectories does not contain a minimum refresh time team trajec-
tory. Instead, for the roadmap in (b), the family of partitioned-based trajectories
does not contain a minimum refresh time team trajectory.

TABLE I
VISITING ORDER FOR THE ROADMAP OF FIG. 10(b)

vertices such that any pair of consecutive vertices in the se-
quence are adjacent. A tour is a vertex path in which the start
and end vertices coincide, and in which every vertex of T ap-
pears at least once in the sequence. A depth-first tour of T is
a tour that visits the vertices V in a depth-first order [29]. Let
DFT (T ) denote the length of a depth-first tour of T . Notice
that the length of a depth-first tour of a connected tree equals
twice the sum of the length of the edges of the tree, and that any
depth-first tour is a shortest tour visiting all the vertices. We now
show that, for the case of tree roadmap, the set of cyclic-based
and partition-based trajectories described in [15] does not con-
tain, in general, a minimum refresh time trajectory. Recall that
in a cyclic-based strategy, the robots travel at maximum speed
and equally spaced along a minimum length tour visiting all the
viewpoints. Consider the tree roadmap of Fig. 10(a), and sup-
pose that two robots are assigned to the patrolling task. Clearly,
the minimum refresh time is 2ε, while the refresh time of a
cyclic strategy equals 1 + ε. Consider now the tree roadmap in
Fig. 10(a), where the edges have unit length, and assume that
two robots are in charge of the patrolling task. Observe that any
partition of cardinality 2 contains a chain of length 2 so that,
since only one robot is assigned to each cluster, the minimum
refresh time that can be obtained is 4. Suppose, instead, that the
robots visit the vertices of the roadmap as specified in Table I,
where x(t) denotes the position of a robot at time t. Since the
refresh time of the proposed trajectory is 3, we conclude that
neither the cyclic-based strategy nor the partition-based strategy
may lead to a minimum refresh time team trajectory on a tree
roadmap.

We now introduce some definitions. Let X be a team
trajectory on the tree roadmap T . We say that the edge
(vj , vz ) ∈ E is used by X if there exists i ∈ {1, . . . , m} and
(t1 , t2) ∈ [0, RT(X)]2 such that xi(t1) = vj and xi(t2) = vz ,
and it is unused otherwise. Note that, because in a tree there ex-
ists only one path connecting two vertices, the aforementioned
condition ensures that the edge (j, z) is traveled by the ith
robot. Let Ē denote the set of unused edges, and let FT be the
forest obtained from T by removing the edges Ē from E, i.e.,
the collection of vertex-disjoint subtrees {T1 , . . . , Tk}, with
Ti = (Vi, Ei), such that V = ∪k

i=1Vi and Ei ⊆ E, for each

i ∈ {1, . . . , k}. Let mi be the number of robots that visit at least
one vertex of Ti in the interval [0, RT(X)], and note that mi > 0
in a finite refresh time trajectory. Let M = {m1 , . . . ,mk}. No-
tice that the same subtree collection can be associated with dif-
ferent team trajectories. We say that a team trajectory is efficient
if its refresh time is the smallest among all the team trajectories
that are associated with the same subtree collection.

Theorem 7.1 (Efficient Team Trajectory): Let (FT ,M) be
the subtree collection associated with the team trajectory X
on the tree roadmap T , where FT = {T1 , . . . , Tk}, and M =
{m1 , . . . ,mk}. Then, X is efficient if

RT(X) = max
j∈{1,...,k}

DFT(Tj )/mj .

Proof: Let i ∈ {1, . . . , k}, and let mi be the number of
robots assigned to Ti . Notice that the robots in Ti travel, in
total, at least DFT(Ti) to visit all the vertices. Since the speed
of the robots is bounded by 1, the smallest refresh time for the
vertices of Ti is DFT(Ti)/mi . �

An efficient team trajectory, can be computed with the fol-
lowing procedure. See Table I for an example.

Lemma 7.2 (Efficient Team Trajectory Computation): Let
(FT ,M) be a subtree collection of a tree roadmap, where
FT = {T1 , . . . , Tk}, and M = {m1 , . . . ,mk}. An efficient
team trajectory is as follows: For each i ∈ {1, . . . , k},

1) compute a depth-first tour τi of Ti ,
2) equally space mi robots along τi , and
3) move the robots clockwise at maximum speed on τi .
Proof: Since every vertex of Ti ∈ FT appears at least once in

a depth-first tour τi of Ti , and the robots move with maximum
speed and equally spaced along τi , every vertex is visited at
most every DFT(Ti)/mi . The statement follows. �

Let P (m) be the partition set of m, i.e., the set of all the
sequences of integers whose sum is m. The following problem
is useful to characterize the complexity of designing minimum
refresh time trajectories on a tree roadmap.

Problem 2 (Optimal Subtree Collection): Let T be a tree
roadmap, and let m be the number of robots. Find a subtree col-
lection (FT ,M) that minimizes maxj∈{1,...,|FT |}DFT(Tj )/mj

subject to M ∈ P (m) and |FT | = |M |.
Lemma 7.3 (Equivalent Problem): For the case of a tree

roadmap, the team refresh time problem and the optimal subtree
collection problem are equivalent.

Proof: As a consequence of Theorem 7.1, the minimum
refresh time on a tree roadmap T can be written as
min(FT ,M )maxj∈{1,...,k}DFT(Tj )/mj , where (F,M) is a sub-
tree collection of T , and |M | = |FT | = k ≤ m. It follows that
a solution to Problem 1 can be derived in polynomial time from
a solution to Problem 2 by using the procedure described in
Lemma 7.2. Suppose, now, we have a solution to Problem 1.
Then, an optimal subtree collection follows from the identifica-
tion of the unused edges. We conclude that the two optimization
problems are equivalent. �

We now state our main result on the design of minimum
refresh time team trajectory on a tree roadmap.

Theorem 7.4 (Computing a Minimum Refresh Time Team
Trajectory on a Tree): Let T be a tree roadmap with n vertices,



604 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

Fig. 11. Chain roadmap associated with the cyclic roadmap of Fig. 1. Notice
that the cycles in Fig. 1 have been broken. Moreover, three vertices (three edges)
of Fig. 1 are repeated twice in the chain.

and let m be the number of robots. A minimum refresh time
team trajectory on T can be computed in O((m − 1)!n) time.

Proof: Recall from [30] that an optimal subtree collection can
be computed in O((m − 1)!n). Then, by using Lemma 7.3 and
Lemma 7.2, the claimed statement follows. �

As a consequence of Theorem 7.4, the problem of designing
minimum refresh time team trajectories on a tree roadmap is
computationally easy for any finite number of robots. In our
design procedure, we first compute an optimal subtree collec-
tion of the given tree and, then, schedule the robots trajectory
according to Lemma 7.2.

B. Minimum Refresh Time Team Trajectory
on a Cyclic Roadmap

In this section, we propose two approximation methods for the
team refresh time problem in the case of a cyclic, i.e., not acyclic,
roadmap. These solutions are obtained from a transformation of
the cyclic roadmap into an acyclic roadmap.

Let G = (V,E), with |V | = n, be an undirected and con-
nected roadmap. Note that there exists an open tour τ with at
most 2n − 4 edges that visits all the vertices.4 We construct
a chain roadmap Γ from τ by doubling its repeated vertices
and edges so that Γ has at most 2n − 3 vertices and at most
2n − 4 edges, and such that the length of the ith edge of Γ
equals the length of the ith edge of τ (cf., Fig. 11). Our first
approximation method consists of applying Algorithm 5 to an
optimal m-partition of Γ.

Theorem 7.5 (Performance Ratio): Let G be a connected
roadmap, let n be the number of vertices of G, and let γ be
ratio of the longest to the shortest length of the edges of G. Let
RT∗ be the minimum refresh time on G. Let τ be an open tour
with 2n − 4 edges that visits all the n vertices, and let Γ be
the chain roadmap associated with τ . Let RT∗

Γ be the minimum
refresh time on Γ. Then

RT∗
Γ ≤

(
n − 2

n

)

8γRT∗.

Proof: Let w be the shortest length of the edges of G, and
note that the length of Γ is upper bounded by 2(n − 2)γw. It

4An open tour with at most 2n − 4 edges that visits all the vertices can be
constructed starting from a leaf of a spanning tree of G.

Fig. 12. Tree roadmap and two corresponding chain roadmaps. If the number
of robots is 4, then the performance ratio RT∗

Γ /RT∗ grows with ε−1 .

follows that RT∗
Γ ≤ 4(n−2)γw

m . Since m < n by assumption,
some robots need to move along G for all the viewpoints to be
visited. Because each robot can visit only a vertex at a time, at
least

⌈
n
m − 1

⌉
steps are needed to visit all the vertices of G,

and therefore, RT∗ ≥
⌈

n
m − 1

⌉
w ≥ 1

2
n
m w. By taking the ratio

of the two quantities, the statement follows. �
It should be noted that when γ grows, the performance of

our procedure might degrade. For instance, suppose that the
roadmap is as in Fig. 12, and suppose that four robots are as-
signed to the patrolling task. As long as ε < 1, a minimum
refresh time strategy requires one robot to patrol the view-
points {v1 , v2}, while the second, third, and fourth robot stay
on the viewpoints v3 , v4 , and v5 , respectively. It follows that
RT∗ = 2ε. On the other hand, an optimal m-partition of any
chain graph associated with a tour that visits all the viewpoints
has dimension at least 1. Consequently, the refresh time of the
team trajectory obtained with Algorithm 5 equals 2, and the
ratio RT∗

Γ/RT∗ grows proportionally to ε−1 .
We next describe a polynomial time constant factor approxi-

mation algorithm for the minimum refresh time problem. Given
a roadmap G = (V,E) and a positive integer k < |V |, we
define a path cover of cardinality k as the collection of paths
{p1 , . . . , pk} such that V ⊆

⋃k
i=1 pi . Let the cost of a path

equals the sum of the lengths of its edges. The min–max path
cover problem asks for a minimum cost path cover for the input
graph, where the cost of a cover equals the maximum cost of a
path in the cover. The following result is known.

Theorem 7.6 (Min–Max Path Cover [7]): There exists a four-
approximation polynomial algorithm for the NP-hard min–max
path cover problem.

Following Theorem 7.6, given a graph G, there exists a
polynomial time algorithm that computes a path cover of G
with cost at most four times greater than the cost of any path
cover of G. We now state our approximation result for the
NP-hard team refresh time problem.

Lemma 7.7 (Eight-Approximation Refresh Time): There exists
an eight-approximation polynomial algorithm for the NP-hard
team refresh time problem.

Proof: Let {p1 , . . . , pm} be a four-approximation path cover
of the graph G. Note that the length of each path is within 4RT∗.
Indeed, in a minimum refresh time team trajectory starting at
time 0 and with unitary velocity, every vertex is visited within
time RT∗. Let X be a team trajectory obtained by letting robot i
sweep at maximum speed the path pi . Clearly, RT(X) ≤ 8RT∗.
Because of Theorem 7.6, the team trajectory X can be computed
in polynomial time. �



PASQUALETTI et al.: ON COOPERATIVE PATROLLING 605

Fig. 13. Trajectories of seven robots for the patrolling of a part of the UCSB
campus. The viewpoints (red circles) are chosen so as to provide sensor coverage
of the whole area. For the design of the patrolling trajectory, a roadmap is first
constructed as described in Section II. Then, a path covering of cardinality 7 is
computed with the procedure in [7], and each robot is assigned a different path.
Finally, the trajectory of each robot consists in sweeping at maximum speed the
tour obtained by shortcutting the assigned path. The refresh time of the proposed
team trajectory is proven to be within a factor of 8 of the minimum refresh time
for the given roadmap.

Following Lemma 7.7, for any given roadmap and any number
of robots, a team trajectory with refresh time within a factor of
8 of the optimal refresh time can be constructed by computing a
path covering of the roadmap, and by assigning a different path
to each robot. An example is given in Fig. 13, a movie of which
is included in the multimedia material.

Remark 4 (Improving the Team Trajectory): Several exist-
ing heuristics can be used to improve upon the trajectories in
Fig. 13. For instance, since the robots move in a metric space,
shortcutting techniques may be applied [31]. Because these
heuristics do not guarantee an improvement of the optimality
gap of our trajectories, they are not considered in this paper, and
they are left as the subject of future investigation.

VIII. CONCLUSION AND FUTURE WORK

The design of team trajectories to cooperatively patrol an en-
vironment has been discussed. After defining the problem and
the performance criteria, we analyze the computational com-
plexity of the design problem as a function of the shape of the
environment to be patrolled. For the case of a chain environ-
ment, we describe a polynomial algorithm to compute mini-
mum refresh time and latency team trajectories. For the case of
a tree environment, under the technical assumption of a constant
number of robots, we identify a polynomial time algorithm to
compute minimum refresh time team trajectories. Finally, the
general case of cyclic environment is shown to be NP-hard,
and two approximation algorithms with performance guaran-
tees have been proposed.

Interesting aspects requiring further investigation include a
throughout study of the latency optimization problem for cyclic
roadmaps, the development of more efficient approximation al-
gorithms, and the introduction of a more general communica-
tion framework, in which the robots are allowed to communicate

while traveling the edges of the roadmap. The study of average
performance criteria and the extension to dynamically changing
environments are also of interest.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
thoughtful and constructive remarks.

REFERENCES

[1] J. Clark and R. Fierro, “Mobile robotic sensors for perimeter detection
and tracking,” ISA Trans., vol. 46, no. 1, pp. 3–13, 2007.

[2] D. B. Kingston, R. W. Beard, and R. S. Holt, “Decentralized perimeter
surveillance using a team of UAVs,” IEEE Trans. Robot., vol. 24, no. 6,
pp. 1394–1404, Dec. 2008.

[3] S. Susca, S. Martı́nez, and F. Bullo, “Monitoring environmental boundaries
with a robotic sensor network,” IEEE Trans. Control Syst. Technol.,
vol. 16, no. 2, pp. 288–296, Mar. 2008.

[4] Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realistic model of
frequency-based multi-robot polyline patrolling,” in Proc. Int. Conf. Au-
ton. Agents, Estoril, Portugal, May 2008, pp. 63–70.

[5] B. C. Tansel, R. L. Francis, and T. J. Lowe, “Location on networks:
A survey. Part I: The p-center and p-median problems,” Manage. Sci.,
vol. 29, no. 4, pp. 482–497, 1983.

[6] T. Bektas, “The multiple traveling salesman problem: An overview of
formulations and solution procedures,” Omega, vol. 34, no. 3, pp.
209–219, 2006.

[7] E. M. Arkin, R. Hassin, and A. Levin, “Approximations for minimum
and min-max vehicle routing problems,” J. Algorithms, vol. 59, no. 1,
pp. 1–18, 2006.

[8] M. Batalin and G. S. Sukhatme, “The design and analysis of an efficient
local algorithm for coverage and exploration based on sensor network
deployment,” IEEE Trans. Robot., vol. 23, no. 4, pp. 661–675, Aug.
2007.

[9] N. Agmon, S. Kraus, and G. A. Kaminka, “Multi-robot perimeter patrol
in adversarial settings,” in Proc. IEEE Int. Conf. Robot. Autom., Pasadena,
CA, May. 2008, pp. 2339–2345.

[10] F. Amigoni, N. Basilico, and N. Gatti, “Finding the optimal strategies for
robotic patrolling with adversaries in topologically-represented environ-
ments,” in Proc. IEEE Int. Conf. Robot. Autom., Kobe, Japan, May 2009,
pp. 2005–2010.

[11] A. Marino, L. Parker, G. Antonelli, and F. Caccavale, “Behavioral con-
trol for multi-robot perimeter patrol: A finite state automata approach,”
in Proc. IEEE Int. Conf. Robot. Autom., Kobe, Japan, May 2009, pp.
3350–3355.

[12] D. A. Anisi, P. Ögren, and X. Hu, “Cooperative minimum time surveillance
with multiple ground vehicles,” IEEE Trans. Automat. Control, vol. 55,
no. 12, pp. 2679–2691, Dec. 2010.

[13] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V.
Corruble, and Y. Chevaleyre, “Recent advances on multi-agent pa-
trolling,” in Advances in Artificial Intelligence—SBIA. vol. 3171, New
York: Springer, 2004, pp. 474–483.

[14] A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul, “Multi-agent
patrolling: An empirical analysis of alternative architectures,” in Multi-
Agent-Based Simulation II (ser. Lecture Notes in Computer Science). New
York: Springer, 2003, pp. 155–170.

[15] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling prob-
lem,” in Proc. IEEE/WIC/ACM Int. Conf. Intell. Agent Technol., Beijing,
China, Sep. 2004, pp. 302–308.

[16] S. L. Smith and D. Rus, “Multi-robot monitoring in dynamic environments
with guaranteed currency of observations,” in Proc. IEEE Conf. Decis.
Control, Atlanta, GA, Dec. 2010, pp. 514–521.

[17] R. E. Korf, “Real-time heuristic search: New results,” in Proc. Nat. Conf.
Artif. Intell., San Paul, MN, Aug. 1988, pp. 139–144.

[18] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration
as graph construction,” IEEE Trans. Robot. Autom., vol. 7, no. 6, pp.
859–865, Dec. 1991.

[19] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan, “The
power of a pebble: Exploring and mapping directed graphs,” Inf. Comput.,
vol. 176, no. 1, pp. 1–21, 2002.



606 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

[20] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “Efficiently search-
ing a graph by a smell-oriented vertex process,” Ann. Math. Artif. Intell.,
vol. 24, no. 1, pp. 211–223, 1998.

[21] F. Pasqualetti, A. Franchi, and F. Bullo, “On optimal cooperative pa-
trolling,” in Proc. IEEE Conf. Decis. Control, Atlanta, GA, Dec. 2010,
pp. 7153–7158.

[22] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

[23] J. O’Rourke, Art Gallery Theorems and Algorithms. London, U.K.:
Oxford Univ. Press, 1987.

[24] K. J. Obermeyer, A. Ganguli, and F. Bullo, “Multi-agent deployment for
visibility coverage in polygonal environments with holes,” Int. J. Robust
Nonlinear Control, vol. 21, no. 12, pp. 1467–1492, 2011.

[25] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “MAC vs. PC:
Determinism and randomness as complementary approaches to robotic
exploration of continuous unknown domains,” Int. J. Robot. Res., vol. 19,
no. 1, pp. 12–31, 2000.

[26] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli, “The sensor-based
random graph method for cooperative robot exploration,” IEEE/ASME
Trans. Mechatronics, vol. 14, no. 2, pp. 163–175, Apr. 2009.

[27] M. R. Garey and D. S. Johnson, Computers and Intractability. New
York: Springer, 1979.

[28] S. Arora, “Polynomial-time approximation schemes for the Euclidean TSP
and other geometric problems,” J. ACM, vol. 45, no. 5, pp. 753–782, 1998.

[29] D. Peleg, Distributed Computing. A Locality-Sensitive Approac, (ser.
Monographs on Discrete Mathematics and Applications). Philadelphia,
PA: SIAM, 2000.

[30] H. Nagamochi and K. Okada, “A faster 2-approximation algorithm for the
minmax p-traveling salesmen problem on a tree,” Discrete Appl. Math.,
vol. 140, no. 1–3, pp. 103–114, 2004.

[31] V. V. Vazirani, Approximation Algorithms. New York: Springer, 2001.

Fabio Pasqualetti (S’07) received the Laurea degree
(summa cum laude) in computer engineering and the
Laurea Magistrale degree (summa cum laude) in au-
tomation engineering from the University of Pisa,
Pisa, Italy, in 2004 and 2007, respectively. He is cur-
rently working toward the Ph.D. degree in mechanical
engineering with the University of California, Santa
Barbara.

His main research interests include secure control
systems, with applications to multiagent networks,
distributed computing, and power networks. His re-

search interests also include vehicle routing and combinatorial optimization,
with applications to distributed area patrolling and persistent surveillance.

Antonio Franchi (M’10) received the Laurea degree
“summa cum laude” in electronic engineering in 2005
and the Ph.D. degree in control and system theory in
2009, both from “La Sapienza” University of Rome,
Italy.

He is a Research Scientist with the Max Planck In-
stitute for Biological Cybernetics. His main research
interests are in autonomous systems and robotics, in-
cluding cooperative control and estimation, human-
robot bilateral shared control, and distributed plan-
ning for multi-robot systems.

Francesco Bullo (F’10) received the Laurea degree
(summa cum laude) in electrical engineering from the
University of Padova, Padua, Italy, in 1994, and the
Ph.D. degree in control and dynamical systems from
the California Institute of Technology, Pasadena, in
1999.

From 1998 to 2004, he was an Assistant Professor
with the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign. He is currently a
Professor with the Mechanical Engineering Depart-
ment and the Center for Control, Dynamical Systems

and Computation, University of California, Santa Barbara.
Dr. Bullo is a recipient of the 2003 ONR Young Investigator Award and the

2008 Outstanding Paper Award for the IEEE Control Systems Magazine.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


