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Abstract—Cyber-physical systems are ubiquitous in power
systems, transportation networks, industrial control processes,
and critical infrastructures. These systems need to operate reliably
in the face of unforeseen failures and external malicious attacks.
In this paper: i) we propose a mathematical framework for
cyber-physical systems, attacks, and monitors; ii) we characterize
fundamental monitoring limitations from system-theoretic and
graph-theoretic perspectives; and ii) we design centralized and
distributed attack detection and identification monitors. Finally,
we validate our findings through compelling examples.

Index Terms—Cyber-physical systems, descriptor systems, dis-
tributed control, fault detection, geometric control, graph theory,
networks, security.

I. INTRODUCTION

C YBER-PHYSICAL systems integrate physical processes,
computational resources, and communication capabili-

ties. Examples of cyber-physical systems include transportation
networks, power generation and distribution networks, water
and gas distribution networks, and advanced communication
systems. As recently highlighted by the Maroochy water breach
in March 2000 [1], multiple recent power blackouts in Brazil
[2], the SQL Slammer worm attack on the Davis–Besse nuclear
plant in January 2003 [3], the StuxNet computer worm in
June 2010 [4], and by various industrial security incidents [5],
cyber-physical systems are prone to failures and attacks on
their physical infrastructure, and cyber attacks on their data
management and communication layer.
Concerns about security of control systems are not new, as

the numerous manuscripts on systems fault detection, isolation,
and recovery testify [6], [7]. Cyber-physical systems, however,
suffer from specific vulnerabilities which do not affect classical
control systems, and for which appropriate detection and iden-
tification techniques need to be developed. For instance, the
reliance on communication networks and standard communi-
cation protocols to transmit measurements and control packets
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increases the possibility of intentional and worst case attacks
against physical plants. On the other hand, information secu-
rity methods, such as authentication, access control, and mes-
sage integrity, appear inadequate for a satisfactory protection of
cyber-physical systems. Indeed, these security methods do not
exploit the compatibility of the measurements with the under-
lying physical process or the control mechanism, and they are
therefore ineffective against insider attacks targeting the phys-
ical dynamics [1].
Related Work: The analysis of vulnerabilities of cyber-phys-

ical systems to external attacks has received increasing attention
in the last years. The general approach has been to study the
effect of specific attacks against particular systems. For in-
stance, in [8] deception and denial of service attacks against
a networked control system are defined, and, for the latter
ones, a countermeasure based on semi-definite programming is
proposed. Deception attacks refer to the possibility of compro-
mising the integrity of control packets or measurements, and
they are cast by altering the behavior of sensors and actuators.
Denial of service attacks, instead, compromise the availability
of resources by, for instance, jamming the communication
channel. In [9], false data injection attacks against static state
estimators are introduced. False data injection attacks are
specific deception attacks in the context of static estimators.
It is shown that undetectable false data injection attacks can
be designed even when the attacker has limited resources.
In a similar fashion, stealthy deception attacks against the
Supervisory Control and Data Acquisition system are studied,
among others, in [10]. In [11], the effect of replay attacks
on a control system is discussed. Replay attacks are cast by
hijacking the sensors, recording the readings for a certain
amount of time, and repeating such readings while injecting an
exogenous signal into the system. It is shown that these attacks
can be detected by injecting a signal unknown to the attacker
into the system. In [12], the effect of covert attacks against
control systems is investigated. Specifically, a parameterized
decoupling structure allows a covert agent to alter the behavior
of the physical plant while remaining undetected from the orig-
inal controller. In [13], a resilient control problem is studied,
in which control packets transmitted over a network are cor-
rupted by a human adversary. A receding-horizon Stackelberg
control law is proposed to stabilize the control system despite
the attack. Recently, the problem of estimating the state of a
linear system with corrupted measurements has been studied
[14]. More precisely, the maximum number of tolerable faulty
sensors is characterized, and a decoding algorithm is proposed
to detect corrupted measurements. Finally, security issues of
specific cyber-physical systems have received considerable
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attention, such as power networks [15]–[19], linear networks
with misbehaving components [20], [21], and water networks
[22], [23].
Contributions: The contributions of this paper are as fol-

lows. First, we describe a unified modeling framework for
cyber-physical systems and attacks (Section II). Motivated by
existing cyber-physical systems and existing attack scenarios,
we model a cyber-physical system under attack as a descriptor
system subject to unknown inputs affecting the state and the
measurements. For our model, we define the notions of de-
tectability and identifiability of an attack by its effect on output
measurements. Informed by the classic work on geometric con-
trol theory [24], [25], our framework includes the deterministic
static detection problem considered in [9] and [10], and the
prototypical deception and denial of service [8], stealth [16],
(dynamic) false-data injection [26], replay attacks [11], and
covert attacks [12] as special cases.
Second, we show the fundamental limitations of a class of

monitors (Section III-A). This class includes the widely-studied
static, dynamic, and active monitors. We prove that 1) a cyber-
physical attack is undetectable by our monitors if and only if
the attackers’ signal excites uniquely the zero dynamics of the
input/output system, and 2) that undetectable and unidentifiable
attacks can be cast without knowing monitoring signals or the
system noise.
Third, we provide a graph-theoretic characterization of

undetectable attacks (Section III-B). We borrow some tools
from the theory of structured systems, and we identify condi-
tions on the system interconnection structure for the existence
of undetectable attacks. These conditions are generic, in the
sense that they hold for almost all numerical systems with
the same structure, and they can be efficiently verified. As a
complementary result, we extend a result of [27] on structural
left-invertibility to regular descriptor systems. Finally, with
respect to [20] and our earlier work [21], we consider con-
tinuous-time descriptor systems, and we include parameters
constraints.
Fourth, we design centralized and distributed monitors

(Section IV). Our centralized monitors and our distributed
detection monitor are complete, in the sense that they detect
and identify every (detectable and identifiable) attack. Our
centralized monitors are designed by leveraging on tools from
geometric control theory, while our distributed detection mon-
itor relies upon techniques from distributed control and parallel
computation. Additionally, we characterize the computational
complexity of the attack identification problem.
Fifth and finally, we illustrate the potential impact of our

theoretical findings through compelling examples. In partic-
ular, 1) we design an undetectable state attack to destabilize the
WSSC 3-machine 6-bus power system, 2) we characterize the
resilience to output attacks of the IEEE 14 bus system, 3) we
show the detection performance of our distributed monitor on
the IEEE 118 bus system, and 4) we use the RTS 96 network
model to illustrate that our methods are effective also in the
presence of system noise, nonlinearities, and modeling uncer-
tainties. Through these examples we show the advantages of
dynamic monitors against static ones, and we provide insight
on the design of attacks.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

In this paper, we model cyber-physical systems under attack
as linear time-invariant descriptor systems subject to unknown
inputs. This simplified model neglects system nonlinearities and
the presence of noise in the dynamics and the measurements.
Nevertheless, such a simplified model has long proven useful in
studying stability, faults, and attacks in, for instance, power net-
works, sensor networks, and water networks. It is our premise
that more detailed models are unlikely to change the basic con-
clusions of this work.
Model of Cyber-Physical Systems Under Attack: We con-

sider the descriptor system1

(1)

where , , , ,
, , , and . Here the matrix

is possibly singular, and the inputs and are unknown
signals describing disturbances affecting the plant. Besides re-
flecting the genuine failure of systems components, these dis-
turbances model the effect of attacks against the cyber-physical
system. Without loss of generality, we assume that each state
and output variable can be independently compromised by an
attacker, and we let and .
The attack signal depends upon the spe-

cific attack strategy. In particular, if is the
attack set, with , then all (and only) the entries of in-
dexed by are nonzero over time, that is, for each , there
exists a time such that , and for all
and at all times. To underline this sparsity relation, we some-
times use to denote the attack signal, that is the subvector
of indexed by . Accordingly, the pair , where

and are the submatrices of and with columns in
, denotes the attack signature. Hence, ,

and . In the absence of attacks, that is, for
, the descriptor system (1) features no external inputs.

Since the matrix may be singular, we make the following as-
sumptions on system (1):
A1) the pair is regular, that is, the determinant

does not vanish identically;
A2) the initial condition is consistent, that is,

; and
A3) the input signal is smooth.

Assumption A1) ensures the existence of a unique solution
to (1). Assumptions A2) and A3) guarantee smoothness

of the state trajectory and the measurements , [28,
Lemma 2.5]. If assumptions A2) and A3) are dropped, then
there are inconsistent initial conditions and impulsive inputs by
which a powerful attacker can avoid detection; see Remark 4.
Throughout the paper, the cardinality of the attack set, or an
upper bound, is assumed to be known.
Remark 1: (Examples of Cyber-Physical Systems Requiring

Advanced Security Mechanisms): Future power grids will com-
bine physical dynamics with a sophisticated coordination infra-

1The results stated in this paper for continuous-time descriptor systems hold
also for discrete-time descriptor systems and nonsingular systems. Moreover,
due to linearity of (1), known inputs do not affect our results.
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structure. The cyber-physical security of the grid has been iden-
tified as an issue of primary concern, see [19], [29] and [10],
[16]–[18], [30], and [31].
Mass transport networks are cyber-physical systems, such

as gas transmission and distribution networks [32], large-scale
process engineering plants [33], and water networks. Examples
of water networks include open channel flows [34] for irrigation
purposes and municipal water networks [35], [36]. The vulner-
ability of open channel networks to cyber-physical attacks has
been studied in [12], [22], and municipal water networks are
also known to be susceptible to attacks on the hydraulics [1]
and biochemical contamination threats [23].
Power networks and mass transport network under attack can

be modeled by descriptor systems with unknown inputs. For in-
stance, the small-signal version of the classical structure-pre-
serving power network model reads as [30], [31]

(2)
where and denote the generator rotor angles and frequencies,
are the voltage angles at the buses

is the network susceptance matrix, and are the diagonal
matrices of the generator inertial and damping coefficients, and
and are power injections at the generators and buses. We

refer to [35], [36] for the modeling of water networks.
Model of Monitors: A monitor is a deterministic algorithm

with access to continuous-time measurements and knowledge
of the system dynamics. In other words, for the system (1) with
attack input , the input of a monitor is

. The output of a monitor is ,
with True False , and .
In particular, the output reveals the presence of attacks,
while corresponds to the attack set.
Let be the output signal of (1) generated from the

initial state by the attack input . Then the monitoring input
equals at all times, where is the system ini-

tial state and is the attack signal of the attack set . Hence,
the monitor input
depends on the attack set , and so does the monitor output

. Since we consider deterministic
cyber-physical systems, we focus on consistent monitors, that
is:
i) True only if the attack set is nonempty
( False, otherwise);

ii) if and only if False;
iii) only if is the (unique) smallest subset

satisfying for
some initial state and at all times (

, otherwise).
Observe that, if , then there always exists an
attack signal satisfying .
Our consistency assumption ensures that false-alarms are not
triggered by our monitors. Examples of monitors can be found

Fig. 1. Block diagram illustration of prototypical attacks is here reported.
In Fig. 1(a), the attacker corrupts the measurements with the signal

. Notice that in this attack the dynamics of the system are not
considered. In Fig. 1(b), the attacker affects the output so that

. The covert attack in Fig. 1(c) is a feedback
version of the replay attack, and it can be explained analogously. In Fig. 1(d),
the attack is such that the unstable pole is made unobservable. (a) Static stealth
attack. (b) Replay attack. (c) Covert attack. (d) Dynamic false data injection.

in [10], [11], and [17]. In the interest of brevity we simply use
the terminology monitor instead of consistent monitor.
The objective of a monitor is twofold:
Definition 1: (Attack Detection and Identification): Consider

system (1) with nonzero attack , and a monitor
with input and output

. The attack is detected by
the monitor if True. The attack
is identified by the monitor if .
An attack is undetectable (respectively, unidentifiable) if no

monitor detects (respectively, identifies) the attack. Of course,
an undetectable attack is also unidentifiable, since it cannot be
distinguished from the zero attack. An attack set is unde-
tectable (respectively, unidentifiable) if there exists an unde-
tectable (respectively, unidentifiable) attack .
Model of Attacks: In this work, we consider colluding om-

niscient attackers with the ability of altering the cyber-physical
dynamics through exogenous inputs. In particular, we let the at-
tack in (1) be designed based on knowledge of
the system structure and parameters , , , and the full state

at all times. Additionally, attackers have unlimited compu-
tation capabilities, and their objective is to disrupt the physical
state or the measurements while avoiding detection or identifi-
cation. Note that specific attacks may be cast by possibly weaker
attackers.
Remark 2: (Existing Attack Strategies as Subcases): The

following prototypical attacks can be modeled and analyzed
through our theoretical framework:
i) stealth attacks defined in [16] correspond to output attacks
compatible with the measurements equation;

ii) replay attacks defined in [11] are state and output attacks
which affect the system dynamics and reset the measure-
ments;

iii) covert attacks defined in [12] are closed-loop replay at-
tacks, where the output attack is chosen to cancel out the
effect on measurements of the state attack;

iv) (dynamic) false-data injection attacks defined in [26] are
output attacks rendering an unstable mode (if any) of the
system unobservable.

A possible implementation of the above attacks in our model is
illustrated in Fig. 1.
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To conclude this section we remark that our modeling frame-
work captures failures and attacks against power networks and
water supply networks. Possible genuine failures include vari-
ations in demand and supply of power or water, line outages
or pipe leakages, and failures of sensors and actuators. Pos-
sible cyber-physical attacks include measurements corruption
[9], [10], [22] and attacks on the control architecture or the phys-
ical state [1], [15], [18], [19].

III. FUNDAMENTAL MONITORING LIMITATIONS

In this section, we highlight fundamental monitoring limita-
tions from system-theoretic and graph-theoretic perspectives.

A. System-Theoretic Monitoring Limitations

Following the discussion in Section II, an attack is unde-
tectable if the measurements due to the attack coincide with the
measurements due to some nominal operating condition.
Lemma 3.1: (Undetectable Attack): For the descriptor system

(1), the nonzero attack is undetectable if and
only if for some initial states
and for all .
Proof: (If) Let . Since

monitors are deterministic, the identical monitor inputs
, with , and
, with , yield the

same output . Since monitors are consistent, we have
False for the input . Hence, False also for the

input , and the attack is undetectable.
(Only if) Suppose that for

every initial states and . Then the monitor inputs
and

are not identical, and the attack is distin-
guishable from nominal operating conditions via the system
output (see Theorem 4.1 for a complete detection monitor).
Hence, the attack is detectable.
Analogous to detectability, the identifiability of an attack is

the possibility to distinguish from measurements between the
action of two distinct attacks. We measure the strength of an
attack through the cardinality of the corresponding attack set.
Since an attacker can independently compromise any state vari-
able or measurement, every subset of the states and measure-
ments of fixed cardinality is a potential attack set.
Lemma 3.2: (Unidentifiable Attack): For the descriptor

system (1), the nonzero attack is unidentifi-
able if and only if for some initial
states , , attack with and

, and for all .
A proof of Lemma 3.2 follows the same reasoning as the

proof of Lemma 3.1. We now elaborate on the above lemmas to
derive fundamental detection and identification limitations. For
a vector , let , and
let denote the number of nonzero entries.
Theorem 3.3: (Detectability of Cyber-Physical Attacks): For

the descriptor system (1) and an attack set , the following
statements are equivalent:
i) the attack set is undetectable;
ii) there exist , , and , with ,
such that and .

Moreover, there exists an undetectable attack set with
if and only if there exist and such that

.
Proof: By Lemma 3.1 and linearity of system (1), the at-

tack is undetectable if and only if there exists such that
for all , that is, if and only if system

(1) features zero dynamics. For a linear descriptor system with
smooth input and consistent initial condition, the existence of
zero dynamics is equivalent to the existence of invariant zeros
as in ii), see [28, Th. 3.2 and Prop. 3.4]. The equivalence of
statements i) and ii) follows. The last statement follows from
ii), and the fact that and .
Following Theorem 3.3, an attack is un-

detectable if it excites only zero dynamics for the dynamical
system (1). Moreover, the existence of undetectable attacks for
the attack set is equivalent to the existence of invariant zeros
for the system . For the notions of zero dy-
namics and invariant zeros we refer the reader to [25], [28]. The
following theorem shows that analogous statements hold for the
identifiability of attacks.
Theorem 3.4: (Identifiability of Cyber-Physical Attacks): For

the descriptor system (1) and an attack set , the following
statements are equivalent:
i) the attack set is unidentifiable;
ii) there exists an attack set , with and ,

, , , and , with
, such that

and .
Moreover, there exists an unidentifiable attack set with
if and only if there exists an undetectable attack set with

.
Proof: Due to linearity of the system (1), the unidenti-

fiability condition in Lemma 3.2 is equivalent to the condi-
tion , for some initial conditions

, and attack signals . The equivalence between
statements i) and ii) follows then analogously to the proof of
Theorem 3.3. Finally, the last statement follows from Theorem
3.3, and the fact that and .
Theorem 3.4 shows that the existence of an unidentifiable

attack set of cardinality is equivalent to the existence
of invariant zeros for the system , with

.
Remark 3: (Static and Active Monitors, and Noisy Dy-

namics): A particular monitor is the so-called static monitor
which verifies the consistency of the measurements without
knowledge of the system dynamics and without exploiting rela-
tions among measurements taken at discrete time instants. For
instance, the bad data detector in [9], [37] is a static monitor.
Then, an attack is undetectable by a static
monitor if and only if, for some state trajectory
and for all times it holds . Note
that state attacks are undetectable by static monitors [17].
An active monitor injects an auxiliary input to re-

veal attacks [11]. Since auxiliary inputs do not alter the invariant
zeros of system (1), active monitors share the same fundamental
limitations of our monitors.
An analogous reasoning shows that the existence of unde-

tectable attacks for a noise-free system implies the existence of
undetectable attacks for the same system driven by noise. The
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converse does not hold, since attackers may remain undetected
by injecting a signal compatible with the noise statistics.
Remark 4: (Inconsistent Initial Conditions and Impulsive At-

tacks): If the consistency assumption (A2) is dropped, then
discontinuities in the state may affect the measure-
ments . For instance, for index-one systems, incon-
sistent initial conditions lead to initial jumps for the algebraic
equations to be satisfied. Consequently, the inconsistent initial
value cannot be recovered through
measurements.
Assumption (A3) requires the attack signal to be sufficiently

smooth such that and are at least continuous. Suppose
that assumption (A3) is dropped and the input belongs to
the class of impulsive smooth distributions

, that is, loosely speaking, the class of functions given by
the linear combination of a smooth function on (denoted
by ) and Dirac impulses and their derivatives at
(denoted by ) [28]. In this case, an attacker commanding
an impulsive input can reset the initial state and evade detection.
The discussion in the previous two paragraphs can be for-

malized as follows. Let be the subspace of points
of consistent initial conditions for which there exists an input

and a state trajectory to the descriptor
system (1) such that for all . Let (respec-
tively ) be the subspace of points for which there
exists an input (respectively, ) and a state
trajectory (respectively, ) to the descriptor
system (1) such that for all . From [28, Th.
3.2 and Prop. 3.4] it is known that .
In this work, we focus on the smooth output-nulling subspace
, which is exactly space of zero dynamics identified in Theo-

rems 3.3 and 3.4. Hence, for inconsistent initial conditions, the
results presented in this section are valid only for strictly pos-
itive times. On the other hand, if an attacker injects impulsive
signals, then it can avoid detection for initial conditions in .

B. Graph-Theoretic Monitoring Limitations

In this section, we derive detectability conditions based upon
a connectivity property of a graph associated with the dynamical
system. For the ease of notation, in this subsection we drop the
subscript from , , and . Let

be the tuple of structure matrices associated with the system (1)
[27]. We associate a directed input/state/output graph

with . The vertex set
consists of input, state, and output vertices given by

, , and ,
respectively. The set of directed edges is

, where ,
, ,
, and . In

the latter, the expression means that the th entry
of is a free parameter. For the graph , a set of mutually
disjoint and simple paths between two sets of vertices is
called linking of size from to . Finally, the matrix
is structurally non-degenerate if the determinant
for a generic realization of and , that is,

holds in the whole parameter space of elements of and with
exception of a low dimensional variety [24], [38].
Since our applications of interest—power networks, mass

transport systems, and sensor networks—feature conserved
quantities, such as energy, mass, and average information, we
depart from the classical structural analysis by constraining the
admissible parameters space. In particular, we let an admissible
realization of the structured system be
constrained in a Laplacian-type polytope defined by
1) Row constraints: for
a (possibly empty) subset of indices

, , and ;
2) Symmetry constraints: for a (possibly empty)
subset of indices , ; and

3) Sign-definiteness: and
for a (possibly empty) subset of indices ,

.
These constraints are sufficiently general to include all men-
tioned applications in Remark 1 as well as unconstrained
systems.
Example 1: (Power Network Structural Analysis):

Consider the power network illustrated in Fig. 2,
where, being the th canonical vector, we take

,
, , , and equal to the

equation shown at bottom of the page. The digraph associated
with the structure matrices is in Fig. 3,
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Fig. 2. WSSC power system with three generators and six buses. The numer-
ical value of the network parameters can be found in [30].

Fig. 3. Digraph associated with the network in Fig. 2. The self-loops of the
vertices , , and are not drawn. The in-
puts and affect, respectively, the bus and the bus . The measured
variables are the rotor angle and frequency of the first generator.

and the entries of pertaining to the network susceptance
matrix satisfy Laplacian-type constraints.
Recall from Lemma 3.1 that an attack is undetectable if

for some initial states and . In
the following result, we consider the particular case that the
system initial state is known. Hence, an attack is undetectable
if for some initial state . Equiva-
lently, the system fails to be left-invertible [25]. We say that
the structured system is structurally
left-invertible if every admissible realization
is left-invertible with exception, possibly, of a low dimensional
variety.
Theorem 3.5: (Structurally Undetectable Attack): Let the pa-

rameters space of the structured system
define a Laplacian-type polytope in for some . As-
sume that is structurally non-degenerate. The system

is structurally left-invertible if and only
if there exists a linking of size from to .
Theorem 3.5 extends the structural left-invertibility results

known for nonsingular systems to regular descriptor systems,
and its proof relies on classical concepts from structural anal-
ysis, algebraic geometry, and graph theory.
Lemma 3.6: (Polytopes and Algebraic Varieties): Let
be a polytope, and let be an algebraic variety. Then,

either the set , or the set is generic in .
Proof: Let be the algebraic variety de-

scribed by the locus of common zeros of the polynomials
, with , . Then if and

only if every polynomial vanishes identically on . Suppose
that some polynomials, say , do not vanish identically on

. Then, , and is
nowhere dense in , since its closure has empty interior [39].
Hence, is a meagre subset of , and its complement

is a generic subset of [39].
In Lemma 3.6 interpret the polytope as the admissible pa-

rameters space of a structured cyber-physical system. Then we
have shown that left-invertibility of a cyber-physical system is
a generic property even when the admissible parameters space
is a polytope of the whole parameters space. Consequently, for
a structured cyber-physical system, if the initial state is known,
either every admissible realization admits undetectable attacks,
or there is no undetectable attack for every realization, except
possibly for those lying on a low-dimensional variety.
Proof Theorem 3.5: Because of Lemma 3.6, we need to show

that, if there are disjoint paths from to , then there exists
admissible left-invertible realizations. Conversely, if there are at
most disjoint paths from to , then every admissible
realization is not left-invertible.
(If) Let , with , be an admis-

sible realization, and suppose there exists a linking of size
from to . Notice that , and select outputs on
a linking of size from to (let and be the sub-
matrices of and associated with the smaller set of out-
puts). Observe that left-invertibility of implies
left-invertibility of . For the left-invertibility of

we need

and hence we need . Notice that
corresponds to the transfer matrix of the

cyber-physical system. Since there are independent paths
from to , the matrix can be made
nonsingular and diagonal by removing some connection lines
from the network. In particular, for a given linking of size
from to , a nonsingular and diagonal transfer matrix is ob-
tained by setting to zero the entries of and corresponding
to the edges not in the linking. Notice that this construction is
possible within Laplacian-type constraints, since they can be
satisfied by assigning the value of the diagonal entries and

and without affecting the input-output linking. Then there
exist admissible left-invertible realizations, and thus the systems

and are struc-
turally left-invertible.
(Only if) Take any subset of output vertices, and let the

maximum size of a linking from to be smaller than . Let
and be such that

where and are the structured output matrices corre-
sponding to the chosen output vertices. Consider the graph

, that consists of vertices, and
an edge from vertex to if or . Notice
that a path from to in the digraph associated with the
structured system corresponds, possibly after relabeling the
output variables, to a cycle in involving input/output vertices
in . Observe that there are only such
(disjoint) cycles. Hence, there is no cycle family of length ,
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and the system fails to be structurally
left-invertible [40, Th. 1]. Since the same reasoning holds for
every set of output vertices, every realization of the pencil

has no invertible minor of size , and the claimed statement
follows.
If the system initial state is unknown, then an undetectable

attack is characterized by the existence of a pair of initial con-
ditions and such that , or, equiv-
alently, by the existence of invariant zeros for the given cyber-
physical system. We will now show that, provided that a cyber-
physical system is left-invertible, its invariant zeros can be com-
puted by simply looking at an associated nonsingular state space
system. Let the state vector of the descriptor system (1) be
partitioned as , where corresponds to the dynamic
variables. Let the network matrices , , , , and be par-
titioned accordingly, and assume that the descriptor system (1)
is given in semi-explicit form, that is, ,
where is nonsingular.2 In this case, the descriptor system
(1) reads as

(3)

Consider now the associated nonsingular state space system
which is obtained by regarding as an external input to the
descriptor system (3) and the algebraic constraint as output:

(4)

Theorem 3.7: (Equivalence of Invariant Zeros): Consider the
structurally left-invertible system . The
invariant zeros of every admissible realization (3) coincide with
those of the associated nonsingular system (4), except, possibly,
for realizations lying on a low dimensional variety of the param-
eters space.

Proof: In the interest of space we omit the proof, which
follows from Theorem 3.5, [41, Prop. 8.4] and a manipulation
of the system pencil.
Following Theorem 3.7, under the assumption of structural

left-invertibility, classical results can be used to investigate the
presence of undetectable attacks in structured system with un-
known initial state; see [38] for a survey of results on generic
properties of linear systems.

IV. MONITOR DESIGN FOR ATTACK DETECTION
AND IDENTIFICATION

We now design centralized and distributed filters for attack
detection and identification.

2Interesting cyber-physical systems, such as power and mass-transport net-
works (2), are readily given in semi-explicit form.

A. Centralized Attack Detection

The output of the attack detection filters developed in this
subsection will be a residual signal . If each
monitor is equipped with such an attack detection filter and if
the attack is detectable, then the outputs of the monitor and the
filter are related as follows: True if and only if
for all . We next present a centralized attack detection
filter based on a modified Luenberger observer.
Theorem 4.1: (Centralized Attack Detection Filter): Con-

sider the descriptor system (1) and assume that the attack set
is detectable, and that the network initial state is known.
Consider the centralized attack detection filter

(5)

where and the output injection matrix
is such that the pair is regular and Hurwitz.3 Then

at all times if and only if at all
times . Moreover, in the absence of attacks, the filter
error is exponentially stable.

Proof: Consider the error between the filter (5)
and system (1). The error system with output is

(6)

where . To prove the theorem we show that the error
system (6) has no invariant zeros, that is, for all

if and only if for all . Since the
initial condition and the input are assumed to be con-
sistent (A2) and non-impulsive (A3), the error system (6) has
no invariant zeros if and only if [28, Prop. 3.4] there exists no
triple satisfying

(7)

The second equation of (7) yields . By substi-
tuting by in the first equation of (7), we obtain

(8)

Note that a solution to (8) would yield an invariant
zero, zero state, and zero input for the descriptor system (1). By
the detectability assumption, the descriptor system (1) has no
invariant zeros and the matrix pencil in (8) necessarily has full
rank. It follows that the triple is observable, can
be chosen to make the pair Hurwitz [42], and the
error system (6) is stable without zero dynamics.
Notice that, if the initial state is not available, then an ar-

bitrary initial state can be chosen. In this case, since
is Hurwitz, the filter (5) converges asymptotically,

and the residual (in the absence of attacks) becomes zero
only in the limit as . Additionally, the dynamics and
the measurements of (1) may be affected by modeling uncer-
tainties and noise with known statistics. Hence, in a practical

3For a regular pair , let
. The pair is Hurwitz if for each .
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implementation the output injection matrix should be chosen
to optimize the sensitivity of the residual to attacks versus the
effect of noise, or to optimize the transient behavior of the filter.
Statistical hypothesis testing techniques [7] can subsequently be
used to analyze the residual for sufficiently large but finite
. We remark that, attacks hiding in the transient dynamics or
attacks aligned with the noise statistics may remain undetected.
Finally, if the filter (5) is implemented only over a finite interval
of time, then the condition for all , with

, is equivalent to for all . This is due
to smoothness of and , and consistency of the system initial
condition.4

B. Distributed Attack Detection

Notice that a direct implementation of the filter (5) requires
continuous communication of measurements to a central pro-
cessor, which needs to integrate the possibly large-scale system
(5). In what follows, we will exploit the sparsity of the filter ma-
trices to develop a distributed detection filter.
Assume that control centers are geographically deployed in

a large-scale cyber-physical system to operate the whole plant
via distributed computation; see Fig. 4. Let be the
directed sparsity graph associated with the pair , where
the vertex set corresponds to the system state, and the
set of directed edges or is
induced by the sparsity pattern of and . Let be partitioned
into disjoint subsets as , with ,
and let be the th subgraph of with vertices
and edges . According to this partition, and
possibly after relabeling the states, the system matrix in (1)
can be written as

...
...

...

where , , and
. We make the following assumptions:

A4) the matrices are block-diagonal, that is,
, ,

where and ;
A5) each pair is regular, and each triple

is observable.
Given the above structure and in the absence of attacks, the de-
scriptor system (1) can be written as the interconnection of
subsystems of the form

(9)

where and are the state and output of the th subsystem
and are the in-neigh-
bors of subsystem . We also define the set of out-neighbors as

. We assume the

4For the case of state space systems with one measurement and one attacker,
the attack detectability condition implies that the system can be written in input-
output normal form [43] as the chain of integrators ,

, and . Clearly, for if and only if
for .

Fig. 4. Partition of IEEE 118 bus system into five areas. Each area is monitored
and operated by a control center. These control centers cooperate to estimate the
state and to assess the functionality of the whole network.

presence of a control center in each subnetwork with the fol-
lowing capabilities:
A6) the th control center knows the matrices , as

well as the neighboring matrices , ;
A7) the th control center can transmit an estimate of its state

to the th control center if .

Before presenting our distributed attack detection filter, we
need the following result on a decentrally stabilized filter.
Lemma 4.2: (Decentralized Stabilization of the Attack Detec-

tion Filter): Consider the descriptor system (1), and assume that
the attack set is detectable and that the network initial state

is known. Consider the attack detection filter

(10)

where and is such
that is regular and Hurwitz. Assume that

for all (11)

where denotes the spectral radius operator. Then at
all times if and only if at all times .
Moreover, in the absence of attacks, the filter error
is exponentially stable.

Proof: The error obeys the dynamics

(12)

A reasoning analogous to that in the proof of Theorem 4.1 shows
the absence of zero dynamics. Hence, for at all times

if and only if at all times .
To show stability of the error dynamics in the absence of at-

tacks, we employ the small-gain approach to large-scale systems
and rewrite the error dynamics (12) as the closed-loop intercon-
nection of the two subsystems

and . When regarded as input–output
systems with respective input/output pairs and , both
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and are causal and internally stable. Hence, by [44, Th.
4.11], the overall error dynamics (12) are stable if the loop
transfer function satisfies the spectral radius con-
dition for all . The latter condition is
equivalent to (11).
An implementation of the decentrally stabilized filter (10)

under assumptions A1)–A7) requires the input and
hence continuous communication among control centers. To
overcome this continuous communication obstacle we rely on
waveform relaxation methods [45], [46] developed for parallel
numerical integration. The Gauss–Jacobi waveform relax-
ation applied to the filter (10) yields the waveform relaxation
iteration

(13)

where denotes the iteration index, is the
integration interval for some uniform time horizon ,
and is a trajectory with initial condition

for each . Notice that (13) is a descriptor
system with state , and known input , since the
value of at iteration is used. The iteration (13) is ini-
tialized with an initial profile .
The iteration (13) is said to be (uniformly) convergent if

(14)

where is the solution of the non-iterative dynamics (10). In
order to obtain a distributed detection scheme, we use the wave-
form relaxation iteration (13) to iteratively approximate the de-
centralized filter (10).
Theorem 4.3: (Distributed Attack Detection Filter): Consider

the descriptor system (1) and assume that the attack set is de-
tectable, and the network initial state is known. Let the
assumptions A1) through A7) be satisfied and consider the dis-
tributed attack detection filter

(15)

where , for some , for
all , and is such that the pair

is regular, Hurwitz, and

for all (16)

Then at all times if and only if

at all times .
Proof: Since , it follows from [46, Th. 5.2]

that the solution of the iteration (15) converges, as ,
to the solution of (10) if

for all (17)

where , is the least upper bound on the real
part of the spectrum of , and is such that the signal

, , and all its derivatives exist
and are bounded. Since the pair is Hurwitz and
is smooth by assumptions A2) and A3), we have that ,

and the convergence condition (17) equals condition (16).

Hence, we have uniform convergence (in the sense of (14)) of
the solution and output of the distributed filter
(15) to the solution and output of the decentrally
stabilized filter. Due to the detectability assumption, it follows
from Lemma 4.2 that at all times

if and only if at all times .
The waveform relaxation iteration (13) can be implemented

in the following distributed fashion. Assume that control center
is able to numerically integrate the descriptor system

(18)
over a time interval , with initial condition

, measurements , and the neighboring filter states

as external inputs. Let be an initial guess of the signal .
Each control center performs the following operations assuming

at start:
1) set , and compute the signal by integrating
the local filter (18);

2) transmit to the th control center if ;
3) update the input with the signal received from the th
control center, with , and iterate.

Following Theorem 4.3, for sufficiently large, the local resid-
uals can be used to detect attacks. A related
large-scale example is given in Section V-C.
Remark 5: (Implementation of Distributed Attack Detection

Filter): When implementing the distributed attack detection
filter (15) in the interval , control center needs to transmit
the signal with at each iteration . In practice,
only an approximation or a finite basis representation
can be transmitted. We refer to [47] for a detailed discussion
of implementation aspects, convergence rates, and error bounds
for finite horizon and finite number of waveform iterations.

C. Complexity of the Attack Identification Problem

In this subsection, we study the problem of attack identifica-
tion, that is, the problem of identifying from measurements the
state and output variables corrupted by the attacker. We start our
discussion by showing that this problem is generally NP-hard.
For a vector-valued signal , let

, and consider the following cardinality minimiza-
tion problem: given a descriptor system with matrices ,

, and and ameasurement signal ,
find the minimum cardinality input signals and

and an arbitrary initial condition that
explain the data , that is,

subject to

(19)

Lemma 4.4: (Problem Equivalence): Consider the system (1)
with identifiable attack set . The optimization problem (19)
coincides with the problem of identifying the attack set given
the system matrices , , , and the measurements , where

.
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Proof: Due to the identifiability of , the attack identifica-
tion problem consists of finding the smallest attack set capable
of injecting an attack that generates the given
measurements for the given dynamics , , , and some
initial condition; see Lemma 3.2. The statement follows since

and in (1), so that
.

As it turns out, the optimization problem (19), or equivalently
our identification problem, is generally NP-hard [48].
Corollary 4.5: (Complexity of the Attack Identification

Problem): Consider the system (1) with identifiable attack set
. The attack identification problem given the system matrices
, , , and the measurements is NP-hard.
Proof: Consider the NP-hard [49] sparse recovery problem

, where and are given
and constant. In order to prove the claimed statement, we show
that every instance of the sparse recovery problem can be cast
as an instance of (19). Let , , , and
at all times. Notice that and

. The problem (19) can be written as

(20)

where . Notice that there exists a minimizer to
problem (20) with for all . Indeed, since

, problem (20)
can be equivalently written as .

By Corollary 4.5 the general attack identification problem is
combinatorial in nature, and its general solution will require
substantial computational effort. In the next subsection we pro-
pose a complete identification algorithm.

D. Centralized Attack Identification

The identification of the attack set requires a combinatorial
procedure, since, a priori, is one of the possible attack
sets. The following centralized attack identification procedure
consists of designing a residual filter to determine whether a
predefined set coincides with the attack set. Analogously to the
attack detection filter developed in Sections IV-A and IV-B, the
output of the attack identification filter for the attack set will
be a residual signal . If each monitor is equipped with such an
attack identification filter and if the attack is identifiable, then
the outputs of the monitor and the filter are related as follows:

if and only if for all .
The design of this residual filter consists of three steps: an

input–output transformation, a state transformation, and an
output injection and definition of a specific residual. We start
by showing that the identification problem can be carried out
for a modified system without corrupted measurements.
Lemma 4.6: (Attack Identification With Safe Measurements):

Consider the descriptor system (1) with attack set . The attack
set is identifiable for the descriptor system (1) if and only

if it is identifiable for the following descriptor system without
corrupted measurements:

(21)

Proof: Due to the identifiability hypothesis, there exists no
attack set with and , , ,

, and such that

(22)

where we added an additional (redundant) output equation (see
Theorem 3.4). A multiplication of (22) from the left by the

projectors yields

The variable can be eliminated in the first redundant (cor-
rupted) output equation according to

Thus, has no solution, where is

The statement follows.
The second design step of our attack identificationmonitor re-

lies on the concept of conditioned invariant subspace. We refer
to [24], [25], [28], [50] for a comprehensive discussion of geo-
metric control theory. Let be the conditioned invariant sub-
space associated with the system , that is, the
smallest subspace of the state space satisfying

(23)

and let be an output injection matrix satisfying

(24)

Notice that the conditioned invariant and an output injec-
tion satisfying (23) and (24) always exist (for instance, take

). We transform the descriptor system (21) into a set of
canonical coordinates representing and its orthogonal com-
plement. For a nonsingular system such an equivalent
state representation can be achieved by a nonsingular transfor-
mation of the form . However, for a singular
system different transformations need to be applied in the do-
main and codomain such as for nonsingular
and .
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Lemma 4.7: (Input Decoupled System Representation): For
system (21), let and be as in (23) and (24), respectively.
Define the unitary matrices and

. Then

The attack set is identifiable for the descriptor system (1) if
and only if it is identifiable for the descriptor system

(25)

Proof: Let and . Notice that
by the invariance property of [28], [50]. It

follows that and are a pair of right deflating subspaces for
thematrix pair [51], that is,
and . The sparsity pattern in the descriptor
and dynamic matrices and of (25) arises by construction of
the right deflating subspaces and [51, Eq. (2.17)], and the
sparsity pattern in the input matrix arises due to the invariance
properties of containing . The statement follows be-
cause the output injection , the coordinate change ,
and the left-multiplication of the dynamics by does not af-
fect the existence of zero dynamics.
For the ease of notation and without affecting generality, the

third and final design step of our attack identification filter is
presented for the preconditioned system (25).
Theorem 4.8: (Attack Identification for Attack Set ): Con-

sider the preconditioned system (25) associated with the de-
scriptor system (1). Assume that the attack set is identifiable,
the network initial state is known, and the assumptions A1)
throughA3) are satisfied. Consider the attack identification filter
for the attack signature

with

(26)

where , and is such that
is Hurwitz. Then for all times if

and only if coincides with the attack set.
Proof: Let , where obeys

Consider the filter error , and notice that

where . Notice that is
not affected by the input , so that, since due
to , the residual is identically zero when
is the attack set. In order to prove the theorem we are left to

show that for every set , with and ,
every attack mode results in a nonzero residual . From
Theorem 3.4 and the identifiability hypothesis, for any ,
there exists no solution to

A projection of the equation onto
the image of and its orthogonal complement yields

(27)

Due to the identifiability hypothesis the set of equations (27)
features no solution with .
Observe that, for every and , there exists

such that the third equation of (27) is sat-
isfied. Furthermore, for every and , there exist

and such that the first equation of
(27) is satisfied. Indeed, since and

, the invariance of implies that
, or equivalently in new

coordinates, . Finally note that
is of full row rank due to the con-

trollability of the subspace [28]. We conclude that there exist
no vectors and such that
and and the statement
follows.
The design of the attack identification filter (26) is summa-

rized as follows:
1) from system (1) define the system (21);
2) compute and for system (21) as in (23) and (24), and
apply , , and as in Lemma 4.7 leading to system (25);

3) for system (25), define and apply the output injection
as in (26).

Remark 6: (Literature Comparison): Our identification
filter extends classical results concerning the design of un-
known-input fault detection filters. In particular, our filter
generalizes the construction of [6] to descriptor systems with
direct feedthrough matrix. Additionally, we guarantee the ab-
sence of invariant zeros in the residual dynamics. By doing so,
our attack identification filter is sensitive to every identifiable
attack strategy. Notice that classical fault detection filters, for
instance those presented in [6], are guaranteed to detect and
isolate signals that do not excite exclusively zero dynamics.
Finally, an equivalent attack identification filter for nonsingular
or index-one systems is presented in our previous work [17].
Remark 7: (Complexity of Centralized Identification): Our

centralized identification procedure assumes the knowledge of
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Fig. 5. We show that there is no linking of size 2 from the input to the output
vertices. Indeed, the vertices and belong to every path from to

. Two input to output paths are depicted in red.

the cardinality of the attack set, and it achieves identifica-
tion by constructing a residual generator for possible at-
tack sets. Thus, our procedure constructs filters. If only
an upper bound on the cardinality of the attack set is avail-
able, identification can be achieved by constructing fil-
ters, and by intersecting the attack sets generating zero residuals.
In Section IV-C we show that this non-polynomial complexity
is inherent to the identification problem.

V. ILLUSTRATIVE EXAMPLES

A. An Example of State Attack Against a Power Network

Consider the power network model analyzed in Example 1
and illustrated in Fig. 2. We consider a load altering attack [18]
affecting the power demand at the load buses 4 and 5. As-
sume that the variables and are affected by the unknown
and unmeasurable signals and . Suppose that a monitoring
unit measures the state variables of the first generator, that is,

and .
Notice from Fig. 5 that the maximum size of a linking from

the failure to the output vertices is 1, so that, by Theorem 3.5,
there exists a structural vulnerability. In other words, for every
choice of the network matrices, there exist nonzero and
that are not detectable through the measurements.5

We now consider a numerical realization of this system. Let
the input matrices be and , the mea-

5When these ouput-nulling inputs , are regarded as additional loads,
then they are entirely sustained by the second and third generator.

Fig. 6. Velocities and are driven unstable by the inputs and , which
are undetectable from the measurements of and .

surement matrix be , and the system matrix be
as in Remark 1 with ,

, and as shown in the equation at the
bottom of the page. Let and be the Laplace trans-
form of the attack signals and , and let

for some arbitrary nonzero signal . Then it can be verified
that the attack cannot be detected through the measurements .
In fact, the transfer matrix mapping to coincides with
the null space of the input/output transfer matrix. An example
is in Fig. 6, where the second and the third generator are driven
unstable by the attack, but the first generator does not deviate
from its nominal operating condition.
Suppose now that the rotor angle of the first generator and

the voltage angle at the sixth bus are measured, that is,
. Then, there exists a linking of size 2 from to ,

and the system is left-invertible. Following The-
orem 3.7, the invariant zeros of the power network can be com-
puted by looking at its reduced system, and they are

and . Consequently, if the network
state is unknown at the failure time, there exists vulnerabili-
ties that an attacker may exploit to affect the network while re-
maining undetected. Finally, we remark that such state attacks
are entirely realizable by cyber attacks [18].

B. Example of Output Attack Against a Power Network

Consider the IEEE 14 bus power network (Fig. 7) modeled
as a descriptor system as in Section II. Following [9], let the
measurements be given by the real power injections
at all buses, of the real power flows of all branches, and one
generator rotor angle (or one bus angle). We assume that an
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Fig. 7. For the IEEE 14 bus system in Fig. 7, if the voltage angle of one bus is
measured exactly, then a cyber attack against the measurements data is always
detectable by our dynamic detection procedure. In contrary, as shown in [9], a
cyber attack may remain undetected by a static procedure if it compromises as
few as four measurements.

attacker can compromise all the measurements, independently
of each other, except for one referring to the rotor angle.
Let be the cardinality of the attack set. It is known

that an attack undetectable to a static detector exists if
[9]. In other words, due to the sparsity pattern of , there exists
a signal , with (the same) four nonzero entries at all times,
such that at all times. Hence, the attack set
remains undetected by a static detector through the attack

input . On the other hand, following Theorem 3.3, it can be
verified that, for the same output matrix , and independent of
the value of , there exists no undetectable (output) attacks for
a dynamic monitor. It should be noticed that this result relies
on the fact that the rotor angle measurement is known to be
correct, because, for instance, it is protected using sophisticated
and costly security methods [29]. Since the state of the IEEE 14
bus system can be reconstructed by means of this measurement
only (the system turns out to be observable by measuring one
generator rotor angle), the output attack is easily identified
as , where is the reconstructed system state
at time .

C. Example of Distributed Detection

The IEEE 118 bus system shown in Fig. 4 is composed of
118 buses and 54 generators, and its parameters can be found in
[52]. Following Section II, a linear continuous-time descriptor
model of the system under attack takes the form (1).
For estimation and detection purposes, we partition the IEEE

118 system into 5 disjoint areas, we assign a control center to
each area, and we implement our detection procedure via the
filter (15); see Fig. 4 for a graphical illustration. Suppose that
each control center continuously measures the angle of the gen-
erators in its area, and suppose that an attacker compromises
the measurements of all the generators of the first area. In par-
ticular, starting at time 30 s, the attacker compromises all mea-
surements in area 1 by adding a signal . It can be verified
that the attack set is detectable, see Theorem 3.3. According
to assumption (A3), the attack signal needs to be continuous
to guarantee a continuous state trajectory (since the associated
descriptor model is of index 1). To show the robustness of our

Fig. 8. Distributed detection of an output attack in the IEEE 118 system: The
attacker compromises the measurements of all generators in area 1 from time
30 s with a signal uniformly distributed in the interval [0, 0.5]. The residuals in
Fig. 8 show that the attack is correctly detected, because the residual functions
do not decay to zero. For the simulation, we run iterations of the attack
detection method.

Fig. 9. The plot in Fig. 9 represents the error of our waveform relaxation based
filter (15) with respect to the corresponding decentralized filter. As predicted by
Theorem 4.3, the error is convergent.

detection filter (15), we let be discontinuous and randomly
distributed in the interval .
The control centers implement the distributed attack detec-

tion procedure described in (15), with . It can be
verified that the pair is Hurwitz stable, and that

for all . As predicted
by Theorem 4.3, our distributed attack detection filter is con-
vergent; see Fig. 8. For completeness, in Fig. 9 we illustrate the
convergence rate of our waveform relaxation-based filter as a
function of the number of iterations . Notice that the number
of iterations directly reflects the communication complexity of
our detection scheme.

D. Example of Detection and Identification in the Presence of
Noise and Model Uncertainties

We apply our centralized attack detection and identification
methods to the IEEE RTS96 power network [53]. In particular,
we first consider the nominal case, in which the power network
dynamics evolve as linear time-invariant descriptor system, as
described in Section II. Second, we consider the case of addi-
tive state and measurement noise, and we show the robustness
of the attack detection and identification monitors. Third, we
consider the case of nonlinear differential-algebraic power net-
work dynamics and show the effectiveness of our methods in
the presence of unmodeled nonlinear dynamics.
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Fig. 10. We report our simulation results for the case of linear network dynamics without noise and for the proposed detection monitor (5) and identification
monitor (26), respectively. The state trajectory consists of the generators angles and frequencies. The detection residual becomes nonzero after time 15 s, and
it reveals the presence of the attack. The identification residual is identically zero even after time 15 s, and it reveals that the attack set is .
The identification residual is nonzero after time 15 s, and it reveals that is not the attack set. In (b), we report our simulation results for the case of linear
network dynamics driven by state and measurements noise. For this case, we choose the output injection matrices of the detection and identification filters as
the corresponding optimal Kalman gain. Due to the presence of noise, the residuals deviate from their nominal behavior reported in (a). Although the attack is
clearly still detectable and identifiable, additional statistical tools such as hypothesis testing [7] may be adopted to analyze the residuals , , and . In (c), we
report our simulation results for the case of nonlinear network dynamics without noise. For this case, the detection and identification filters are designed for the
nominal linearized dynamics with output injection matrices as the corresponding optimal Kalman gain. Despite the presence of unmodeled nonlinear dynamics,
the residuals reflect their nominal behavior reported in (a). (a) Nominal linear system dynamics. (b) Linear and noisy system dynamics. (c) Nonlinear and noisy
system dynamics.

For our numerical studies, we assume the angles and frequen-
cies of every generator to be measured. Additionally, we let the
attacker affect the angles of the generators with a
random signal starting from time 15 s. Since the considered
power network dynamics are of index one, the filters are imple-
mented using the nonsingular Kron-reduced system representa-
tion [17]. The results of our simulations are in Fig. 10(a)–(c),
respectively. In conclusion, our centralized detection and iden-
tification filters appear robust to state and measurements noise
and unmodeled dynamics.

VI. CONCLUSION

We have analyzed fundamental monitoring limitations for
cyber-physical systems under attack modeled by linear time-
invariant descriptor systems with exogenous inputs. In partic-
ular, i) we have characterized undetectable and unidentifiable
attacks from system-theoretic and graph-theoretic perspectives,
ii) we have designed centralized and distributed monitors, and
iii) we have provided illustrative examples. Future and ongoing
work includes i) a detailed analysis of the convergence of our
distributed monitors, ii) the design of distributed identification
monitors, and iii) the design of monitors robust to system noise
and unmodeled dynamics.
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