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C
yberphysical systems integrate physical processes, 
computational resources, and communication ca-
pabilities. Cyberphysical systems have permeated 
modern society, becoming prevalent in many do-
mains, including energy production, health care, 

and telecommunications. Examples of cyberphysical systems 
include sensor networks, industrial automation systems, 
and critical infrastructures such as transportation networks, 
power generation and distribution networks, water and gas 

distribution networks, and advanced manufacturing systems. 
The integration of cybertechnologies with physical processes 
increases system efficiencies and, at the same time, introduces 
vulnerabilities that undermine the reliability of critical infra-
structures. As recently highlighted by the Maroochy water 
breach in March 2000 [1], multiple recent power blackouts in 
Brazil [2], the SQL Slammer worm attack on the Davis-Besse 
nuclear plant in January 2003 [3], the StuxNet computer worm 
in June 2010 [4], and various industrial security incidents [5], 
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cyberphysical systems are prone to failures and attacks on 
their physical infrastructure and cyberattacks on their data 
management and communication layer [6], [7].

Concerns about the security of systems are not new, as 
the numerous manuscripts on systems fault detection, isola-
tion, and recovery testify [8], [9]. The literature on fault-toler-
ant control considers mainly generic or accidental faults. 
Cyberphysical systems, however, suffer from specific vul-
nerabilities that do not affect classical systems, and for which 
appropriate detection and identification techniques need to 
be developed. For instance, the reliance of cyberphysical sys-
tems on communication networks and standard communi-
cation protocols to transmit measurements and control 
packets increases the possibility of intentional and unfore-
seen attacks against physical plants. On the other hand, 
information security methods alone can only guarantee 
secure communication and code execution but may be insuf-
ficient for systems comprising physical processes. In fact, 
security methods such as authentication, access control, and 
message integrity do not exploit the compatibility of the 
measurements and data with the underlying physical pro-
cess and control architecture and are ineffective, for instance, 
against zero-day attacks [10] or insider attacks performed by 
entities with authorized access to the control platform, actu-
ators, and sensors [1]. A holistic approach is necessary to pro-
tect cyberphysical systems, where information security 
mechanisms are complemented with system-theoretic moni-
tors and security methods. 

The StuxNet attack is a concrete example of cyberattack 
targeting a physical plant [4]. In June 2010, a carefully 
designed computer worm infected certain control systems 
of a nuclear-enrichment plant in Iran. The worm, which 
spread through standard USB devices, managed to corrupt 
the centrifuges’ measurements to indicate a regular opera-
tion and, at the same time, to modify the centrifuges’ actua-
tion signals to force them to spin out of control. This 
cyberattack breached the implemented cyberprotection 
schemes, altered both the measurement and actuation sig-
nals, and caused instabilities and damage to the physical 
plant. The StuxNet examples illustrates the unique vulner-
abilities of cyberphysical systems and motivates the need 
for a holistic approach combining cyber and physical pro-
tection methods to ensure cyberphysical security.

The analysis of vulnerabilities of cyberphysical systems 
to external attacks has received increasing attention in recent 
years. The general approach has been to study the effect of 
specific attacks against particular systems. For instance, in 
[11], deception and denial of service attacks against a networked 
control system are defined, and, for the latter ones, a counter-
measure based on semidefinite programming is proposed. 
Deception attacks refer to the possibility of compromising 
the integrity of control packets or measurements and are 
carried out by altering the behavior of sensors and actuators. 
Denial of service attacks, instead, compromise the availabili-
ty of resources by, for instance, jamming the communication 

channel. In [12], false data injection attacks against static state 
estimators are introduced. False data injection attacks are 
specific deception attacks in the context of static estimators. 
It is shown that undetectable false data injection attacks can 
be designed even when the attacker has limited resources. 
In a similar fashion, stealthy deception attacks against the su-
pervisory control and data acquisition system are studied, 
among others, in [13]. Stealth attacks against legacy systems 
and possible remedial schemes are considered in [14]–[16]. In 
[17] and [18], the effect of replay attacks on a control system 
is discussed. Replay attacks are carried out by hijacking the 
sensors, recording the readings for a certain time, and re-
peating such readings while injecting an exogenous signal 
into the system. It is shown that these attacks can be detected 
by injecting a random signal unknown to the attacker into 
the system. In [19] the effect of covert attacks against control 
systems is investigated. Specifically, a parameterized decou-
pling structure allows a covert agent to alter the behavior 
of the physical plant while remaining undetected from the 
original controller. In [20], a resilient control problem is stud-
ied, in which control packets transmitted over a network are 
corrupted by a human adversary. A receding-horizon Stack-
elberg control law is proposed to stabilize the control system 
despite the attack. Recently, the problem of estimating the 
state of a linear system with corrupted measurements has 
been studied [21]. More precisely, the maximum number of 
tolerable faulty sensors is characterized, and a decoding al-
gorithm is proposed to detect corrupted measurements. Fi-
nally, security issues of specific cyberphysical systems have 
received considerable attention, such as power networks 
[22]–[27], linear networks with misbehaving components 
[28]–[30], and water networks [31]–[33]. 

This article provides a self-contained presentation of re-
cent control-theoretic approaches to cyberphysical security. 
The unified modeling framework for cyberphysical sys-
tems and attacks proposed in [34] is adopted, where cyber-
physical systems under attack are modeled as descriptor 
systems subject to unknown inputs altering the state and 
the measurements. With respect to [34], this article pro-
vides a tutorial and self-contained presentation of the nec-
essary background material, detailed modeling sections, 
and additional examples of attacks against power systems 
and water networks. The framework presented here is suf-
ficiently general to include the previously described attack 
scenarios, yet it allows for a rigorous study of the detect-
ability and identifiability of attacks, for a comprehensive 
analysis of the effects of attacks on the system, and for the 
design of monitors and attack-remedy schemes. The article 
starts with the models of cyberphysical systems, monitors, 
and attacks. For these models, the detectability and iden-
tifiability of attacks are defined as well as fundamental 
detection and identification limitations from system- and 
graph-theoretic perspectives. The article concludes by dis-
cussing the monitor design problem and a case study on 
coordinated attacks against power networks.
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MOdELS Of CYbERphYSICAL SYSTEMS, 
MONITORS, ANd ATTACkS 
Cyberphysical systems are ubiquitous in various domains, 
including power networks, water distribution networks, 
sensor networks, dynamic Leontief models of multisector 
economies, mixed gas-electricity networks, and large-scale 
industrial control systems. In this section, cyberphysical 
systems under attack are modeled as linear time-invariant 
descriptor systems subject to unknown inputs. This model-
ing framework is very general and includes most of the 
existing cyberphysical models, attacks, and faults. In fact, 
as shown in “Power Network Model and Attack Example” 

for power networks and in “Water Network Model and 
Attack Example” for water distribution networks, impor-
tant real-world cyberphysical systems contain conserved 
physical quantities, leading to differential-algebraic system 
descriptions. Additionally, most attack and fault scenarios 
can be modeled by additive inputs affecting the state and 
the measurements; see “Stealth, Replay, Covert, and Injec-
tion Attacks.” 

Model of Cyberphysical Systems and Attacks
The following linear time-invariant descriptor system is 
considered 

Power Network Model and Attack Example

Future power networks will be equipped with a sophisticated co-

ordination infrastructure to control the volatile physical dynamics 

due to renewable energy sources and deregulation of energy mar-

kets. The cyberphysical security of the future “smart grid” has been 

identified as an issue of primary concern [6], [26], and it has recently 

attracted the interest of the control and power systems communi-

ties; see [13], [22]–[27], [37], and [47].

The small-signal version of the classic structure-preserving 

power network model is adopted to describe the dynamics of 

a power network. The interested reader is referred to [37] and 

[47] for a detailed derivation from the full nonlinear structure-

preserving power network model. Consider a connected power 

network consisting of n  generators { , , }g gn1 f  and m  load bus-

es { , , } .b bn n m1 f+ +  The interconnection structure of the power 

network is encoded by a connected susceptance-weighted 

graph .G  The vertices of G are the generators gi  and the buses 

.bi  The edges of G are the transmission lines { , }b bi j  and the 

connections { , }g bi i  weighted by their susceptance values. The 

Laplacian associated with the susceptance-weighted graph is 

the symmetric susceptance matrix RL ( ) ( )n m n m! #+ +  defined by
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where generators and load buses have been labeled so that the 

first n  rows of L  are associated with the generators and the 

last m  rows of L  correspond to the load buses. The dynamic 

model of the power network is

 ,
I

M L
L

I
D L

L
P
P

0
0

0

0

0
0
0

0

0

0 0
gg gl

lllg

g g

d

~

i

d

~

i

=-

-

+ ~

i

o
o
o

> > > > >H H H H H  (S2)

where :R Rn
"d  and :R Rn

"~  denote the generator rotor an-

gles and frequencies, and :R Rm
"i  is the voltage angles at the 

buses. The matrices Mg  and Dg  are diagonal matrices of the gen-

erator inertial and damping coefficients, and the inputs :P R Rn
"~  

and :P R Rm
"i  are due to known changes in the mechanical input 

power to the generators or real power demand at the loads.

Consider the power network in Figure S1 subject to a load 

altering attack [25] at the buses b4  and .b5  Due to this attack, 

the angles 4i  and 5i  are altered by the attack signals :u R R1 "  

and : ,u R R2 "  respectively. Suppose that a monitor measures 

directly the state variables of the first generator as y1 1d=  and 

.y2 1~=  Let the system matrices be as in (S1) and (S2) with Mg =

blkdiag(. , . , . ),125 034 016  blkdiag(. , . , . ),D 125 068 048g =  and in 

the box at the bottom of the page. 

Let U1  and U2  be Laplace transforms of the attack signals 

u1  and u2  and let
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for some arbitrary nonzero signal ( ) .U sr  The attack signals u1  and 

u2  are carefully chosen by the attacker to avoid detection by a 

monitor measuring the variables 1d  and .1~  In fact, it can be veri-

fied that N  coincides with the null space of the transfer matrix be-

tween the attack at the buses b4  and b5  and the measurements 

,1d  .1~  From the analysis in the section “Fundamental Attack 

Detection and Identification Limitations,” the attack is undetect-

able by the monitor because it does not affect the measurements. 

Figure S2 shows the frequency of the network generators for a 
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(1)

 :x R Rn
"  and :y R Rp

"  are the maps describing the evolu-
tion of the system state and measurements, respectively, and 
E Rn n! # , ,A Rn n! #  ,B Rn m! #  ,C Rp n! #  and D Rp m! #  are 
constant matrices. In this article, the matrix E  is allowed 
to be singular. The case of nonsingular systems E I=^ h is 
a particular instance of this model. The inputs Bu  and Du  
are unknown signals that describe disturbances affecting 
the system state and measurements. Besides reflecting the 

genuine failure of systems components, these disturbances 
model the effect of attacks against the cyberphysical sys-
tem (see below for the attack model). Finally, it should be 
observed that the presence of known inputs affecting sys-
tem (1) is neglected because they do not affect the results 
on the detectability and identifiability of unknown input 
attacks; see [34] for a complete analysis and Figure 1 for an 
illustration of the setup. 

For notational convenience, and without affecting gen-
erality, each state and output can be independently com-
promised by an attacker. Thus, the input matrices 

specific choice of .Ur  Notice that the second and the third genera-

tors are driven unstable by the attack input, yet the first generator 

does not deviate from the nominal operating condition.

In other words, if the attack signals u1  and u2  are regarded 

as additional loads, then they are entirely sustained by the sec-

ond and third generators.

Graph-theoretic analysis methods are now applied to 

analyze the above load altering attack. The directed graph 

describing the network in Figure S1 is reported in Figure S3. 

Notice from Figure S3 that the maximum size of a linking from 

the attack vertices to the output vertices is one so that, by The-

orem 3, the attack configuration admits generically undetect-

able attacks. In other words, for every choice of numerical val-

ues for the network matrices, there exist nonzero attack modes 

u1  and u2  that are not detectable through the measurements 

y1  and .y2

 4

g2

g1

u1 u2

y

g3
b6

b2

b1

b4 b5

b3

Sensors

FiGure s1 The Western Electricity Coordinating Council 
(WECC) power system with three generators and six buses. 
The attacker modifies the power injection at the buses b4  and 
b5  via a load-altering attack. The monitor measures the rotor 
angle and frequency of the generator g1 . For some attack 
inputs u1  and u2 , the attacker compromises the generators g2  
and g3  while remaining undetected to the monitor.

~1 (t) = y (t)

~2 (t)

~3 (t)

FiGure s2 The effect of the attack on the generators’ frequen-
cies discussed in “Power Network Model and Attack Example.” 
Notice that generators g2  and g3  are driven unstable by the 
attack, while generator g1  is not affected by the attack.

d2
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~2
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i2
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i6 i3 ~3

y2

y1

u1
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FiGure s3 The digraph associated with the network in Figure S1 
(the self-loops of the vertices , , ,, , ,1 1 2 32 3d d d ~ ~~" ", ,  and 

, ,1 6fi i" , are not drawn). Inputs u1  and u2  affect the buses b4  
and ,b5  respectively. The measured variables are the rotor angle 
and frequency of the first generator. Notice that there are no two 
mutually disjoint paths from the attack vertices to the output ver-
tices, and, equivalently, there are only linkings of size at most 
one between the attack vertices and the output vertices. In fact, 
the vertices 1i  and 1~  belong to every path from ,u u1 2" , to 

, .y y1 2" ,  Two sample paths from the attack vertices to the output 
vertices are depicted in red.
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Water Network Model and Attack Example

Mass transport networks are cyberphysical systems mod-

eled by differential-algebraic equations. Examples include 

gas transmission and distribution networks [48], large-scale 

process engineering plants [49], and water networks. The vul-

nerability of water networks to cyberphysical attacks has been 

shown in [31] and [19] for the case of open-channel networks 

[50] and in [1] and [32] for the case of municipal networks.

Following [51] and [52], water networks can be modeled 

as directed graphs with a vertex set consisting of reservoirs, 

junctions, and storage tanks, and with edge set given by pipes, 

pumps, and valves that are used to convey water from source 

points to consumers. The key variables are the pressure head 

hi  at each network node i  and the flows Qij  from node i  to j . 

The hydraulic model governing the network dynamics includes 

constant reservoir heads, flow balance equations at junctions 

and tanks, and pressure difference equations along all edges:
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Here, di  is the demand at junction ,i Ai  is the (constant) cross-

sectional area of storage tank ,i  and the notation j i"` _ denotes 

the set of nodes j  connected to node .i  The flow Qij  depends 

on the pressure drop h hi j-  along pipe according to the Ha-

zen-Williams equation ( ) | | | ( ),Q h h g h h h h/ .
ij i j ij i j i j

1 1 85 1 $- = - --  

where g 0>ij  is the pipe loss coefficient [51]. 

Consider the water supply network EPANET 3 [53] linear-

ized at steady state with nonzero pressure drops. The topology 

of the water network and the attack locations are illustrated in 

Figure S4. For notational convenience, let , , ,x x x1 2 3  and x4  de-

note, respectively, the pressure at the reservoir ,R2  at the res-

ervoir R1  and at the tanks , and ,T T T1 2 3  at the junction ,P2  and 

at the remaining junctions, respectively. The descriptor model 

for the EPANET 3 network is 
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where the pattern of zeros is due to the network interconnec-

tion structure, and diag , , ,M A A A1 1 2 3= ^ h corresponds to the 

dynamics of the reservoir R1  and the tanks , , and .T T T1 2 3  

The following attack is considered where the attacker’s in-

tention is to steal water from the reservoir .R2  To remain unde-

tected from the sensors measurements, the attacker simultane-

ously corrupts the measurements at sensor S1  and modifies 

the pressure at pump .P2  Formally, the attack matrices are 

[ ] and [ ],B B B D D0 0 01 2 1= =  with

 , , and .B B D
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Let the attack input be

 ,u
u
u
u

1

2

3

=> H  

where u x1 1=-  (the attacker physically subtracts water from 

),R2  ,and .u A x u x2 31 1 3 1=- =-  The dynamics of the EPANET 

3 network under attack are
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Observe that the attacker subtracts water from R2  while re-

maining undetected from the sensors measurements. In fact, 

the effect of the attack does not affect the measurements y  

because the pressure change at the reservoir R2  does not ap-

pear in the measurements .y  

Some comments are in order. First, the attack can be imple-

mented with knowledge of the submatrix A31  only, without know-

ing the whole network structure and initial state. Second, the ef-

fectiveness of the proposed attack strategy is independent of the 

sensors measuring the variables x3  and .x4  On the other hand, 

if additional sensors are used to measure the flow between the 

reservoir R2  and the pump ,P2  then the attacker would need to 

corrupt these measurements as well to remain undetected. Third 

and finally, due to the reliance on networks to control actuators in 

cyberphysical systems, the attack u2  on the pump P2  could be 

generated by a cyberattack as for the case of power grids [25].

P1 P2 T3

T2

T1

S7

S1

S2

S4

S6

S5

S3

u3 u2

u1

R1

R2

FiGure s4 The structure of the EPANET water supply network 
model 3, which features three tanks ( , , ,),T T T1 2 3  two reservoirs 
( , ),R R1 2  two pumps ( , ),P P1 2  96 junctions, and 119 pipes. Seven 
pressure sensors ( , , )S S1 7f  have been installed to monitor the 
network. A cyberphysical attack to steal water from the reservoir 
R2  is reported. Notice that the cyberphysical attack features two 
state attacks ( , )u u1 2  and one output attack ( ) .u3
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, and ,B I D I0 0= =6 6@ @

are partitioned into identity and zero matrices of appropri-
ate dimensions and, accordingly, 

.u
u
u

x

y
=; E

The attack ( , ) ( , )Bu Du u ux y=  can be classified as a state attack 
( , ),Bu 0  affecting the system dynamics, or as an output attack 
( , ),Du0  corrupting directly the measurements vector. 

The attack signal :u R Rn p
"

+  depends on the attack 
strategy. In the presence of , ,k n p1 f! +" , attackers 
(likewise k  attacked variables) indexed by the attack set 

, , ,K n p1 f3 +" ,  only the entries K  of u  are nonzero over 
time. To underline this sparsity relation, let uK  denote the 
attack mode, that is the subvector of u  indexed by K . Ac-
cordingly, the pair ( , )B DK K  denotes the attack signature, 
where BK  and DK  are the submatrices of B and D  with 
columns in K . Thus, ,Bu B uK K=  and .Du D uK K=  Because 
the matrix E  can be singular, the following assumptions 
are made on system (1): 

A1)  The pair ,E A^ h is regular, that is, the determinant 
det sE A-^ h does not vanish identically. 

A2)  The initial condition ( )x 0 Rn!  is consistent, that is, 
the relation ( ( ) ( )) Im( )Ax Bu E0 0 !+  holds. 

A3) The input signal u  is smooth.
The regularity assumption A1) ensures the existence of a 
unique solution x  to (1). Assumptions A2) and A3) simplify 
the technical presentation in this article since they guaran-
tee smoothness of the state trajectory x  and the measure-
ments ;y  see [35] and [34] for further details. 

Model of Monitors
A monitor is a device to detect and identify attacks in a 
cyberphysical system. A general class of monitors is consid-
ered that has knowledge of the system dynamics and mea-
surements, that is, the monitor knows the system matrices 

, , ,E A C  and it has access to the measurements y  at all times. 
No additional constraints are imposed on monitors. 

An example of a monitor is the bad data detector [36]. 
The bad data detector takes as inputs the matrix C  and the 
measurements y  and detects an attack whenever there is 
no physical state that satisfies the measurement equation 

.y Cx=  In other words, the bad data detector detects an at-
tack whenever the residual 

 r y CC y= - @  (2)

is nonzero, where C@  denotes the Moore-Penrose pseudo-
inverse of the matrix C . Observe that the bad data detector 
detects only attacks of the form ( , )Du0  with Im( ) .Du C!Y  
Other examples of monitors can be found in [13], [24], and 
[17] and in the section “Design of Attack Detection and 
Identification Monitors.”

Model of Attackers
This article considers colluding omniscient attackers with 
the ability to alter the cyberphysical dynamics through 
exogenous inputs. In particular, the attack ( , )Bu Du  in (1) is 
designed based on knowledge of the system matrices 

, ,E A C  and the full state x  at all times. Additionally, attack-
ers have unlimited computation capabilities, and their 
objective is to disrupt the physical state or the measure-
ments while avoiding detection.

For a power network (see “Power Network Model and 
Attack Example”), attacks and faults modeled by additive 
inputs include the following: 

 » A change in the mechanical power input to generator 
i  is described by the attack signature ( , )B 0i  and an 
arbitrary attack mode .un i+  This attack can originate 
from a genuine loss of generation or load, a malicious 
attack via the governor control to disrupt the system 
functionality [22], or an Internet-based load-altering 
attack [25]. 

 » A line outage occurring on the line { , }r s  is modeled 
by the signature ([ ], [ ])B B 0 0r s  and an arbitrary attack 
mode [ ] ;u ur s

<  see [37]. 
 » The failure of sensor i , or the corruption of the thi  
measurement by an attacker is captured by the signa-
ture ( , )D0 n m i2 + +  and a nonzero mode ;u n m i2 + +  see [12], 
[13], [21], and [27] for examples of sensor attacks. 

Likewise, for a water network (see “Water Network 
Model and Attack Example”), faults modeled by addi-
tive inputs include leakages, sudden changes of demand, 
and failures of pumps and sensors. Possible cyberphysi-
cal attacks include compromising the flow and pressure 
measurements to divert flow and attacks on the hydraulic 
control architecture (pumps and valves). These attacks are 
modeled similarly to the power network attacks above. 

Actuator Attack

Control CenterBu Du

Ex
.
 = Ax

Plant Sensors

State Attack Data Attack

FiGure 1 Cyberphysical systems integrate physical and cyberlay-
ers and are prone to attacks on all components. The dynamics of 
cyberphysical systems can be represented as ,Ex Ax=o  and 
attacks as unknown inputs ( , ) .Bu Du  State and actuator attacks 
are modeled by an input Bu  that directly affects the system 
dynamics. Output (or data) attacks corrupt the system measure-
ments and are modeled by the input Du . State, actuator, and data 
attacks can be implemented by cyber or physical tampering with 
the system components. See the section “Models of Cyberphysi-
cal Systems, Monitors, and Attacks” for specific examples of cyber 
and physical attacks.
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fuNdAMENTAL ATTACk dETECTION ANd 
IdENTIfICATION LIMITATIONS 
In this section, system- and graph-theoretic conditions for 
the detectability and identifiability of attacks are presented. 
These conditions are fundamental, in the sense that they 
hold independently of the monitoring device.

System-Theoretic Conditions 
As discussed in the section “Models of Cyberphysical Sys-
tems, Monitors, and Attacks,” monitors exploit only the 
system dynamics and measurements to reveal attacks. 
Consequently, an attack is undetectable if the measure-
ments due to the attack are compatible with the measure-
ments without the attack, that is, they coincide with the 
measurements due to some nominal operating condition. 

On the other hand, if the measurements due to the attack 
are not compatible with the system dynamics and measure-
ments without attacks, then the attack can be detected. The 
following definitions summarize this discussion, where 

( , , )y x u t0  denotes the system measurements at time t  due to 
the attack u  and initial state .x0  

Definition 1 (Undetectable Attack) 
For the descriptor system (1) with initial state ,x0  the attack 
( , )B u D uK K K K  is undetectable if ( , , ) ( , , )y x u t y x t0K0 1=  for 
some initial state x Rn

1 ! and for all .t R 0! $

This means that if the measurements are compatible 
with the physical process, then the effect of an undetect-
able attack cannot be distinguished from regular system 
operation. A more general concern than detectability is 

Stealth, Replay, Covert, and Injection Attacks

Several attacks against cyberphysical systems have recently 

been identified and analyzed. These attacks are particular 

instances of the general framework introduced in the section 

“Models of Cyberphysical Systems, Monitors, and Attacks.”

STEALTh ATTACk [12], [23]

In a stealth attack, the attacker modifies some sensors read-

ings by physically tampering with the individual meters or by 

getting access to some communication channels. Following 

the notation in the section “Models of Cyberphysical Systems, 

Monitors, and Attacks,” stealth attacks are modeled by the ex-

ogenous input ( , ),Du0  with Im( ) Im( )D C3  and u  an arbitrary 

signal. Notice that stealth attacks modify only the measure-

ments equation so that the system dynamics become

 
,

.

Ex Ax

y Cx Du

=

= +

o
 

See Figure S5 for a block diagram representation of a stealth 

attack.

Stealth attacks have three important features. First, they can 

be formulated without knowing or tampering with the system 

dynamics. Second, they are undetectable by bad data detec-

tors (see the section “Models of Cyberphysical Systems, Moni-

tors, and Attacks”). To see this, notice that the residual of the 

bad data detector r y CC y= - @  is identically zero for a stealth 

attack, because ( ) ( )Im ImD C3  (the measurements y  are 

compatible with the measurement matrix C ). Third and finally, 

stealth attacks may be detectable by the monitor (6) because 

such a monitor verifies the compatibility of the measurements 

with the system dynamics, and not only with the measurements 

equation. See [24] for a discussion of the detectability of at-

tacks via static and dynamic monitors.

REpLAY ATTACk [17]

In a replay attack, the attacker performs three main actions. 

First, the system output corresponding to a nominal operating 

condition is recorded. Second, the sensor measurements are 

modified to replicate previously recorded measurements cor-

responding to a nominal operating condition. Third, a control 

signal is injected to disrupt the system functionality. Replay at-

tacks can be modeled by the input ( , ),Bu Cx Cx- + u  where x  

and xu  are the state trajectories of the system under attack and 

without the attack, respectively. In other words, x  and xu  satisfy 

the differential equations

 
,

,

Ex Ax Bu

Ex Ax

= +

=

o
uo u

 

x(0)
x

y

u
Du

C

D

(sE - A)-1 +

FiGure s5 A block diagram of a stealth attack. The attacker cor-
rupts the measurements y  with the signal ( ) .ImDu C!  Notice 
that stealth attacks can be carried out by tampering with the sen-
sors measurements and without knowing the system dynamics. 
In fact, stealth attacks do not alter the system dynamics.

x(0)

x
~

(0)

x
y

Du
Bu

C

C

(sE - A)-1

(sE - A)-1 +

+

-

FiGure s6 A block diagram of a replay attack. The attacker 
corrupts the system dynamics and the measurements. In par-
ticular, the attacker resets the measurements to reflect a prere-
corded nominal operating condition ( )x 0u  and to hide the effect 
of the state attack on the system dynamics. Replay attacks can 
be carried out with access to all sensors, and without knowing 
the system dynamics.
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identifiability of attacks, that is, the possibility for a moni-
tor to distinguish between two distinct sets of attackers. 
Recall that attackers can independently compromise any 
state variable or measurement. 

Definition 2 (Unidentifiable Attack) 
For the descriptor system (1) with initial state ,x0  the attack 
( , )B u D uK K K K  is unidentifiable if ( , , ) ( , , )y x u t y x u tK R0 1=  for 
some initial state ,x Rn

1 !  attack ( , )B u D uR R R R  with | | | |R K#  
and ,R K!  and for all .t R 0! $

Thus, an attack K  is not identifiable if it cannot be dis-
tinguished from another attack R  corrupting equally many 
or fewer variables | | | |R K# . Here, the attack set K  is com-
pared only with other attack sets R  with | | | |R K#  because 
sufficiently large attack sets can always be designed to 

be unidentifiable, for instance, by corrupting sufficiently 
many sensors. 

Following Definition 1, an attack set is undetectable if it 
can result in undetectable attacks. Likewise, an attack set 
is unidentifiable if it can result in unidentifiable attacks. 
Observe that, due to the linearity of (1), the detectability 
condition in Definition 1 can be equivalently rewritten: 
for the descriptor system (1) with initial state ,x0  the attack 
( , )B u D uK K K K  is undetectable if and only if ( , , )y x u t 0K2 =  
for some initial state x Rn

2 !  (namely x x x2 0 1= -  for some 
x Rn

1 ! ) and for all .t R 0! $  The relation ( , , )y x u t 0K2 =  can 
be satisfied at all times if and only if the attack uK  excites 
only the zero dynamics of the input/output dynamical sys-
tem; see “Invariant Zeros and Zero Dynamics” and [38], 
[35], and [39]. Thanks to this interpretation and the notion 

and Cxu  are the measurements corresponding to the system 

without attack. The system dynamics with replay attack are

 
,

.

Ex Ax Bu

y Cx

= +

=

o
u

 

See Figure S6 for a block diagram representation of a replay 

attack. Notice that replay attacks can be carried out without 

knowing the system dynamics, provided that the attacker has 

access to all sensors. The reader is referred to [17] for a method 

to reveal replay attacks.

COvERT ATTACkS [19]

Covert attacks are closed-loop replay attacks, where the at-

tacker modifies the system measurements to cancel out only 

the effect of its attack on the system dynamics. In particular, 

the covert attack input is ( , ),Bu Cx- u  where xu  is the state trajec-

tory due to the attack input. The system dynamics with covert 

attacks are

 
,

( ),

Ex Ax Bu

y C x x

= +

= -

o
u

 

where xu  satisfies

 , with ( ) .Ex Ax Bu x 0 0= + =uo u u  

See Figure S7 for a block diagram representation of a covert 

attack. Notice that covert attacks require the attacker to know 

the exact system dynamics and to hijack some sensors (only 

those sensors affected by the state attack). On the other hand, 

covert attacks are undetectable by static and dynamic monitors 

[24] and by the active method proposed in [17]. In fact, covert 

attacks excite only the zero dynamics of the attack/measure-

ments dynamical system, and they are therefore undetectable 

as discussed in the section “Fundamental Attack Detection and 

Identification Limitations.”

dYNAMIC fALSE-dATA INjECTION ATTACkS [54]

Dynamic false-data injection attacks can be formulated against 

systems with unstable modes, and they aim to modify the sys-

tem measurements to make some unstable modes unobserv-

able. The attack input for a dynamic false-data injection attack 

is ( , ),Cx0 - u  where

 ,Ex Ax=uo u  

and ( )x 0u  is the projection of the system state ( )x 0  along the 

eigenvector of an unstable mode. Dynamic false-data injection 

attacks are illustrated in Figure S8. As for the case of covert at-

tacks, dynamic false-data injection attacks are undetectable as 

in Definition 1. 4

x(0) x
y

Du

Bu
C

C

(sE - A)-1

(sE - A)-1

+
-

FiGure s7 A block diagram of a covert attack. The attacker cor-
rupts the system dynamics and the measurements. In particular, 
the attacker modifies the measurements to cancel out the effect 
of its attack on the system dynamics. Covert attacks are closed-
loop replay attacks, and they require access to some sensors 
and knowledge of the system dynamics to be implemented.

x(0)
x

y

Du

C(sE - A)-1

C (sE - A)-1 ((s - p) - 1)

+

FiGure s8 A block diagram of a dynamic false-data injection 
attack. The attacker corrupts the system dynamics and mea-
surements to render the unstable mode p unobservable from 
the measurements. Dynamic false-data injection attacks require 
access to some sensors and knowledge of the system dynamics 
to be implemented.
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of invariant zeros, undetectable attack sets can be algebra-
ically characterized as follows. 

Theorem 1 (Detectability of Cyberphysical Attacks)
For the descriptor system (1) and an attack set K , the fol-
lowing statements are equivalent: 

i) The attack set K  is undetectable. 
ii)  There exist ,,s g CC K! !  and ,x Cn!  with ,x 0!  

such that 

( ) ,
.

sE A x B g

Cx D g

0
0

K

K

- - =

+ =

In other words, the existence of undetectable attacks for 
the system ( , , , , )E A B C DK K  is equivalent to the existence of 
invariant zeros for the same attack/measurements system. 
On the other hand, undetectable attacks exist only if the 
cardinality of the attack set is sufficiently large. To see this, 
let supp x^ h be the set of nonzero components of the vector 

,x  and let the zero norm of ,x  that is the number of nonzero 
components of ,x  be denoted as p( ) .supx x0 =  Observe 
that condition ii) of Theorem 1 can be satisfied if and only 
if the cardinality of the attack set satisfies (K sE$ -

)A x Cx0 0+  for some vector .x  The choice of the vector x  
determines the cardinality of the attack set. This makes it, 
therefore, a suitable optimization variable for the design of 
undetectable attacks with smallest cardinality. 

The ability to modify the system dynamics by state 
feedback may improve detectability of attacks. To see this, 
consider the attack ( , )B DK K  and the state feedback matrix 

B with ( ) Im( ) .Im B BK3Y  Theorem 1 ensures that the detect-
ability of attacks in the closed-loop system is determined 
by the invariant zeros of ( , , , , ),E A BF B C DK K+  which may 
differ from the invariant zeros of the open-loop system 
( , , , , ) .E A B C DK K  Thus, attacks designed to excite only the 
zero dynamics of the system ( , , , , ),E A B C DK K  and hence un-
detectable in the open-loop system, may excite detectable 
dynamics in the closed-loop system ( , , , , ) .E A BF B C DK K+  It 
should be observed that i) the choice of feedback matrix 
F  is arbitrary, provided that F  alters the invariant zeros 
of the system, is unknown to the attacker, and compatible 
with predefined control objectives; and ii) the condition 

( ) Im( )Im B BK3Y  is necessary because the invariant zeros of 
the open-loop system ( , , , , ),E A B C DK K  which are exploited 
by the attack ( , ),B DK K  cannot be changed by static state 
feedback through the attack matrix BK  [40, Chapter 3]. 

Analogously to the detectability condition, the iden-
tifiability condition in Definition 2 can be equivalently 
rewritten: for the descriptor system (1) with initial state 

,x0  the attack ( , )B u D uK K K K  is unidentifiable if and only if 
( , , )y x u u t 0K R2 - =  for some initial state ,x Rn

2 !  for some 
attack ( , )B u D uR R R R  with R K#  and ,R K!  and for all 

.t R 0! $  The following result gives an algebraic character-
ization of identifiability.

Theorem 2 (Identifiability of Cyberphysical Attacks) 
For the descriptor system (1) and an attack set K , the fol-
lowing statements are equivalent: 

i) The attack set K  is unidentifiable. 

Invariant Zeros and Zero Dynamics

The concept of a zero of a dynamical system plays an im-

portant role in several control problems, and it refers to the 

possibility of having a nonzero state trajectory while the system 

output is identically zero. To be specific, consider the system 

( , , , , ),E A B C D  where ,E Rn n! #  ,A Rn n! #  ,B Rn m! #  ,C Rp n! #  

and .D Rp m! #  Assume that

 Rank ,
B
D

m=c m; E  

where Rank( )$  denotes the rank of a matrix. Define the Rosen-

brock matrix associated with the system ( , , , , )E A B C D  as

 ( ) .P s
sE A

C
B

D
=

- -; E  

The invariant zeros of ( , , , , )E A B C D  are the complex values 

s C!  satisfying

 Rank( ( )) .P s n m1 +  

Let z  be an invariant zero, and let x0  and u0  be such that

 
( ) ,

.

sE A x Bu

Cx Du

0

0
0 0

0 0

- - =

=+
 

The vectors x0  and u0  are referred to as the state-zero direc-

tion and the input-zero direction, and they can be used to excite 

the system ( , , , , )E A B C D  so that the state trajectory is nonzero 

while the output is identically zero. To see this, let ,E I=  and let 

the system initial state ( )x 0  and input u  be x0  and ,t uezt
0"  

respectively. Notice that the state trajectory x  is et xzt
0"  

because it is the unique solution to the differential equation 

.x Ax Bu= +o  Finally, observe that the system output is identi-

cally zero at all times t R 0! $  because

 ( ) .ey t C x De u e Cx Du 0zt zt zt
0 0 0 0= + = + =^ h  

The state trajectory x  is called zero dynamics. Given the rela-

tionship between zero dynamics and invariant zeros, it can be 

shown that a system exhibits zero dynamics if and only if it fea-

tures invariant zeros. Notice that the number of invariant zeros 

can be infinite. A system with a finite number of invariant zeros 

is called left invertible, and it satisfies ( , , ) ( , , )y u t y u t0 01 2!  for 

some times t R!  and for all inputs u1  and .u2  Likewise, a sys-

tem that fails to be left invertible can be characterized in the La-

place domain by a rank-deficient transfer matrix, as illustrated 

in the example in “Power Network Model and Attack Example.”
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ii)  There exists an attack set R , with R K#  and 
,R K!  , , ,s g gC C CK

K
R

R! ! !  and ,x Cn!  with 
,x 0!  such that 

( ) ,
.

sE A x B g B g

Cx D g D g

0
0

K K R R

K K R R

- - - =

+ + =

Condition ii) in Theorem 2 can be written by collecting 
the input matrices 

 
( ) ,

.

sE A x B B
g
g

Cx D D
g
g

0

0

K R
K

R

K R
K

R

- - =

+ =6

6 ;

;

@

@

E

E
 

(3)

From (3) and Theorem 1 the existence of unidentifiable attack 
sets of cardinality k  is equivalent to the existence of undetect-
able attack sets of cardinality k2 , that is, to the existence of 
invariant zeros for the system ( , , , , )E A B C DK Kr r  with .K k2#r

Graph-Theoretic Conditions 
In this section, graph-theoretic conditions for the detect-
ability of attacks are described. The reader is referred to 
“Graph Theory and Generic Properties” for the background 
information on the graph theory and algebraic geometry 
used in this section. 

For the system ( , , , , ),E A B C D  construct the directed at-
tack/state/output graph ,G V Easo aso aso=^ h by defining the 
vertex set as 

,V U X Yaso aso aso aso, ,=

where , ,u uUaso m1 f= " , is the set of attack vertices, 
, ,x xXaso n1 f= " , is the set of state vertices, and Xaso =

, ,y yp1 f" , is the set of output vertices, and the edge set is 

,E E E E E Easo E A B C D, , , ,=

where 

{( , ): }, {( , ): },
{( , ): }, {( , ): },
{( , ): } .

x x E x x A

u x B x y C

u y D

0 0
0 0
0

E E

E E

E

E j i ij A j i ij

B j i ij C j i ij

D j i ij

! !

! !

!

= =

= =

=

Various properties of the dynamical system ( , , , , )E A B C D  can 
be expressed as properties of its associated graph Gaso  [41], [42]. 

The dynamical system ( , , , , )E A B C Dr r r r r  with attack/
state/output graph ( , )V EGaso aso aso=r r r  is compatible with 
( , , , , )E A B C D  if Gasor  is a subgraph of Gaso  with V Vaso aso=r  
and .E Easo aso3r  In other words, the system ( , , , , )E A B C Dr r r r r  
is compatible with the system ( , , , , )E A B C D  if the matri-
ces , , , ,E A B Cr r r r  and Dr  can be obtained from the matrices 

, , , ,E A B C  and D  by changing only their nonzero entries. A 
system property is generic if it holds for almost all compat-
ible systems. Many system properties turn out to be generic 
and hence robust to uncertainties in the system parameters. 

Recall from Definition 1 that an attack u  is undetectable 
if ( , , ) ( , , )y x u t y x t00 1=  at all times t  for some initial states 
x0  and .x1  As a particular case, if the system initial state is 
known, an attack u  is undetectable if ( , , ) ( , , )y x u t y x t00 0=  
for some initial state x0 . This attack undetectability condi-
tion is equivalent to the system ( , , , , )E A B C D  failing to be 
left invertible; see “Invariant Zeros and Zero Dynamics.”

Theorem 3: (Generically Undetectable Attack) 
Let Gaso  be the attack/state/output graph associated with the 
descriptor system (1) and attack set K . Assume that the system 
initial state is known and that the determinant ( )det sE A 0!-  
for some values of .s C!  The following statements are equiv-
alent (see Figure S3 for an example of linking): 

i) The attack set K  is generically undetectable. 
ii)  The graph Gaso  contains no linking of size K  from 

.toU Yaso aso

Theorem 3 shows that if the attack/state/output graph 
is sufficiently connected and the system initial state is 

Graph Theory and Generic Properties

The graph-theoretic approach to the control of dynamical 

systems tries to express system properties based on the 

features of an associated graph [42], [41]. A directed graph 

( , )G VG Gf=  consists of a set of vertices VG  and a set of di-

rected edges .V VG G G#3f  An edge ,v w G! f^ h  is directed 

from vertex v  to vertex .w  A subgraph of a graph ,G VG Gf=^ h 
is a graph ,H VH Hf=^ h such that V VH G3  and .H G3f f  A 

graph is undirected if ,v w G! f^ h  implies that , ,w v G! f^ h  

and in this case , .v w G! f" ,  A path in G is a subgraph 

({ , , }, { , , })P v v e ek k1 1 1f f= +  such that v vi j!  for all ,i j!  and 

( , )e v vi i i 1= +  for each , , .i k1 f! " ,  A set of ,  mutually disjoint 

paths between two sets of vertices S1  and S2  is called a link-

ing of size ,  from S1  to S2  (see Figure S3).

For a system ( , , , , ),E A B C D  let d  be the number of its 

nonzero entries. A system ( , , , , )E A B C Dr r r r r  is compatible with 

( , , , , )E A B C D  if the two systems have the same pattern of non-

zero entries. By collecting the nonzero parameters into a vec-

tor, every system compatible with ( , , , , )E A B C D  can be repre-

sented by a point in the Euclidean space .Rd  A property that 

can be asserted on a dynamical system is called generic if, 

informally, it holds for almost all compatible systems. To be 

more precise, a property is generic if and only if the set of com-

patible systems satisfying such property forms a dense subset 

of the parameter space. For instance, controllability, observ-

ability, and left invertibility of a dynamical system are generic 

properties with respect to the parameter space Rd  [41]. The 

interested reader is referred to [42] and [39] for a comprehen-

sive discussion of structured systems and generic properties.
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known, then there are no undetectable attacks for almost 
all compatible systems, that is, for almost every choice of 
the numerical entries of the system matrices. Conversely, if 
a system admits a generically undetectable attack set, then 
every compatible system admits an undetectable attack set. 
See “Power Network Model and Attack Example” for an 
illustrative example of this result. 

If the system initial state is unknown, then an undetect-
able attack u is characterized by the existence of a pair of ini-
tial conditions x0  and x1  such that ( , , ) ( , , )y x u t y x t00 1=  or, 
equivalently, by the existence of invariant zeros for the given 
cyberphysical system. It is now shown that, provided that a 
cyberphysical system is left invertible, its invariant zeros can 
be computed by simply looking at an associated nonsingular 
state space system. Let the state vector x  of the descriptor sys-
tem (1) be partitioned as ,1 2p p<

<<6 @  where 1p corresponds to the 
dynamic variables. Let the network matrices , , , ,E A B C  and D  
be partitioned accordingly, and assume that the descriptor sys-
tem (1) is given in semiexplicit form, that is blkdiag( , )E E 011=  
and E11  is nonsingular, where blkdiag( , , )M Mn1 f  is the 
block-diagonal matrix with diagonal blocks , ,M Mn1 f . In 
fact, many cyberphysical systems, such as power and mass-
transportation networks, are readily given in semiexplicit 
form. In this case, the descriptor system (1) is 

 
,
,

.

E A A B u

A A B u

y C C Du

0
11 1 11 1 12 2 1

21 1 22 2 2

1 1 2 2

p p p

p p

p p

= + +

= + +

= + +

o
 

(4)

Consider now the associated nonsingular state-space sys-
tem that is obtained by regarding 2p  as an external input 
and the algebraic constraint as an output 

 
,

.

E A E A E B u

y
A
C

A B
C D u

1 11
1

11 1 11
1

12 2 11
1

1

21

1
1

22 2

2

2

p p p

p
p

= + +

= +

- - -o

u ; ; ;E E E  
(5)

Under the assumption of left invertibility of system (4), the 
invariant zeros of systems (4) and (5) coincide. Because sys-
tem (5) is nonsingular, graph-theoretic results in control 
can be used to investigate the presence of generically un-
detectable attacks in singular cyberphysical systems. For 
instance, from [41, Theorem 4], system (4) admits generi-
cally undetectable attacks if i) the system initial state is un-
known, ii) the number of attack vertices equals the number 
of output vertices, iii) the system is left invertible, and iv) in 
the graph Gaso  the vertices Xaso  are not contained in some 
linking of size K  from .toU Yaso aso

dESIGN Of ATTACk dETECTION ANd 
IdENTIfICATION MONITORS 
In the previous sections, fundamental limitations and condi-
tions characterizing attack detectability and identifiability 
by monitors are derived. In this section, the complementary 
problem of designing monitors to detect and identify attacks 
is addressed. Monitors can be designed in different ways, 
depending on the knowledge of the system dynamics, the 

available measurements, and the communication con-
straints. For the considered setup, monitors are designed by 
leveraging and extending fault detection and isolation tech-
niques; see “Geometric Control Theory and Its Application 
to Fault Detection and Isolation” and [8]. This article focuses 
on the design of centralized monitors with access to all mea-
surements y  and with detailed knowledge of the system 
matrices ( , , ) .E A C  We refer to [34], [43], and [44] for exten-
sions to distributed monitors with local knowledge of the 
system dynamics, access to locally available measurements, 
and subject to communication constraints. 

The design of an attack detection monitor is first con-
sidered. The design consists of a continuous-time residual 
filter with the system measurements :y R Rp

0 "$  as input 
and outputs the residual signal :r R Rp

0 "$ . Consider the 
modified Luenberger observer 

 
( ) ,

,
Ew A GC w Gy

r Cw y

= + -

= -

o
 

(6)

where the output injection matrix G Rn p! #  is selected so 
that the pair ( , )E A GC+  is regular and Hurwitz, that is, its 
finite spectrum ( , ) : , , ( )detE A E A<C 3!v m m m m= -6 @"  

0= , lies in the open left-half plane. If the system initial state 
x 0^ h is known and the filter (6) is initialized with ( ) ( ),w x0 0=  
then an analysis of the filter error dynamics w x-  yields that 
the residual r  is identically zero if and only if the attack 
( , )B u D uK K K K  is either identically zero (no attack) or unde-
tectable. Thus, the proposed filter (6) is a complete monitor, 
that is, it detects every detectable attack. Some initial results 
based on system design and reconfiguration for the detec-
tion of undetectable attacks are discussed in [14]–[16]. 

Theorem 4 (Complete Attack Detection Monitor) 
Consider the descriptor system (1) and assume that the 
attack set K  is detectable and the initial state ( )x 0 Rn!  is 
known. Consider the attack detection filter (6), where 
w x0 0=^ ^h h and G Rn p! #  is such that the pair ( , )E A GC+  
is regular and Hurwitz. Then, r t 0=^ h  at all times t R 0! $  
if and only if ( )u t 0K =  at all times .t R 0! $

Several comments are in order. First, if the initial state 
x 0^ h is not available, then an arbitrary initial state ( )w 0 Rn!  
can be chosen and the filter (6) has an asymptotic perfor-
mance: the filter error w x-  converges asymptotically, and 
the residual r  (in the absence of attacks) becomes zero only 
in the limit as time goes to infinity. Second, if the filter (6) 
is implemented only over a finite and nontrivial interval of 
time, then the residual r  being zero in this interval is equiva-
lent to the attack signal uK  being zero for this interval. Third, 
the filter (6) can be implemented using locally available in-
formation and distributed computation; see [44] for details. 
Fourth, the dynamics and the measurements of (1) may be 
affected by modeling uncertainties and noise with known 
statistics. In a practical implementation, the output injection 
matrix G  should be chosen to optimize the sensitivity of the 
residual r  to attacks versus the effect of noise or to optimize 
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the transient behavior of the filter. Statistical hypothesis test-
ing techniques [9] are subsequently used to analyze the re-
sidual r  for sufficiently large but finite horizons. Notice that 
attacks hiding in the transient dynamics or aligned with the 
noise statistics may remain undetected. 

In contrast to the attack detection problem, the attack 
identification problem is inherently combinatorial and 
computationally hard. If the cardinality of the attack set 
is known, the identification of the attack set K  requires a 
combinatorial procedure because, a priori, K  is one of the 

K
n p+` j possible attack sets. The following attack identifica-

tion procedure consists of designing a residual filter for a 
candidate attack set to determine whether the candidate set 
coincides with the actual attack set. 

For simplicity, only the case of nonsingular systems 
E I=^ h in the absence of output attacks D 0K =  is consid-

ered; see [34] for a more general treatment. Identification 
monitor design is similar to the design of residual genera-
tors (S4) in fault detection and isolation, and it relies on 

the notion of conditioned invariant subspaces from geomet-
ric control theory; see “Geometric Control Theory and Its 
Application to Fault Detection and Isolation.” Define the 
subspace SK  to be the smallest ( ,Ker( ))A C -conditioned 
invariant subspace containing ,Im BK^ h  where Ker C^ h and 
Im BK^ h denote the null space of C  and the range space of 

,BK  respectively. Let J RK
p n! #  be an output injection ma-

trix rendering this subspace invariant, that is, 

( ) .A J C SSK K K3+

Consider the orthonormal matrix [ ] ,T W P RK K K
n n!= #  

where WK  is a basis of SK  and PK  is a basis of the quotient 
space \ .R Sn

K  In the coordinates [ , ] [ , ]W x P xK K1 2p p =  and 
with the output injection JK , system (1) is 
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(7)

Geometric Control Theory and Its Application to Fault Detection and Isolation

The geometric approach to the control of dynamical systems 

aims to develop a set of tools and techniques based on geo-

metric notions and operations, such as subspaces, sets, linear 

transformation, direct sum, and orthogonalization, to analyze 

and control dynamical systems. The geometric approach has 

been developed over the last decades, and it has found appli-

cability in many classic control problems. The interested reader 

is referred to [39], [38], and [55] for a comprehensive treatment 

of the geometric approach to control of linear dynamical sys-

tems. Some basic concepts and applications of the geometric 

approach are now reviewed.

Consider the system

,

,

x Ax Bu

y Cx

= +

=

o

where , ,A B  and C  are constant matrices of appropriate dimen-

sions. A subspace RV n3  is an ( , Im( ))A B -controlled invariant 

subspace [38, Chapter 4] if

Im( ),A BVV 3 +

or, equivalently, if there exists a matrix F  such that

( ) .A BF VV 3+

The notion of a controlled invariant subspace refers to the possi-

bility of confining the state trajectory of the system ( , , )A B C  within 

a subspace. Specifically, a subspace RV n n3 #  is an ( , Im( ))A B

-controlled invariant if, for every initial state ,x V0 !  there exists 

a control input u  such that the state x V!  at all times .t R 0! $  

For instance, the controllability subspace Im([ ])B AB A Bn 1g -  is 

an ( , Im( ))A B -controlled invariant subspace. The set of controlled 

invariant subspaces contained in a subspace RE n n3 #  admits a 

supremum ,V)  that is, there exists an ( , Im( ))A B -controlled in-

variant subspace satisfying ,V EV 3 3)  for any ( , Im( ))A B -con-

trolled invariant subspace .V  If Ker( ),CE =  then the subspace 

V)  contains all the state trajectories driven by the input u  and 

resulting in the output y  being identically zero.

Controlled invariant subspaces are dual to conditioned in-

variant subspaces. A subspace RS n3  is an ( ,Ker( ))A C -condi-

tioned invariant subspace [38, Chapter 4] if

( Ker( )) ,A C SS+ 3

or, equivalently, if there exists a matrix G such that

( ) .A GC SS 3+

Conditioned invariant subspaces arise in the context of state es-

timation. Specifically, the subspace S  is an ( , )A C -conditioned 

invariant if it is possible to estimate the trajectory x S=  by pro-

cessing the initial condition ,x S0 =  the input ,u  and the measure-

ments y  through an observer [55, Chapter 5]. For instance, the 

unobservability subspace Ker([ ( ) ] )C A C A Cn 1g< < < < << -  is an 

( ,Ker( ))A C -conditioned invariant subspace. The set of conditioned 

invariant subspaces containing RE n n3 #  admits an infimum ,S)  

that is, an ( ,Ker( ))A C -conditioned invariant subspace satisfying 

,SE S3 3)  for any ( ,Ker( ))A C -conditioned invariant subspace 

.S  If Im( ),BE =  then the subspace S)  defines the largest sub-

space of the state space that can be estimated in the presence of 

an unknown input signal .u  Controlled and conditioned invariant 

subspaces can be extended to systems with direct feedthrough 

matrix, and to singular systems; see [38] and [56]. Several prob-

lems, including disturbance decoupling, noninteracting control, 

fault detection and isolation, and state estimation in the pres-

ence of unknown inputs, have been addressed and solved in 

the geometric framework. 
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where ( ) , ,A T A J C T B T BK K K K K K= + = <<t t  and .C CTK=t  Hence, 
the effect of the input uK  is contained in the “contaminat-
ed” 1p -dynamics, and the 2p -dynamics are “secure.” The 
measurement equation y Cp= t  can be projected on the im-
age of C1t  and its orthogonal complement as

 
( )

,
y
y

C C C C
I C C C0

1 1 1 2

1 1 2

1

2

p

p
=

-

@

@

u
r
t t t t

t t t= = ;G G E  (8)

where ( )y I C C y1 1= - @r t t  is the secure component of the output 
unaffected by .1p  Hence, a residual filter for the secure 2p - 
dynamics can be designed using the secure output .yr

Theorem 5 (Complete Attack Identification Monitor  
for the Attack Set K ) 
Consider the descriptor system (1) with attack set K  in the 
coordinates (7). Assume that the attack set is identifiable and 
the network initial state x 0^ h is known. Consider the attack 
identification filter for the attack signature ( , )B DR R  with R K=

 ( ) ,w A G I C C C w Gy22 1 1 2= + - -@o t t t t r^ h  

 ( ) ,r I C C C w yR 1 1 2= - -@t t t r  (9)

where ( ) ( )w 0 02p=  and G  is such that ( )A G I C C C22 1 1 2+ - @t t t t  
is Hurwitz and yr  is the secure output defined in (8). The 
residual satisfies ( )r t 0R =  at all times t R 0! $  if and only if 
R  coincides with the attack set, that is, if and only if .R K=

Theorem 5 implies that the attack set K  can be identi-
fied by constructing 

K
n p+` j residual filters (9), one for each 

distinct attack set of cardinality K ; see “An Example of 
Monitor Design.” In [34] it is shown that this nonpolynomi-
al complexity is inherent to the attack identification prob-
lem, which is generally NP-hard. As a remark, for output 
attacks, an efficient (yet incomplete) approach is to refor-
mulate the attack identification problem as a convex opti-
mization problem using heuristic convex relaxations [21]; 
see “An Example of Monitor Design.”

An Example of Monitor Design

Consider the undirected consensus network G in Figure S9. 

Notice that G has connectivity three, because there exist three 

vertex-disjoint paths between any two vertices. Let the network 

evolve according to the continuous-time nonsingular system

 ,x Ax=o  

where :x R R0
8

"$  contains the agents states and A is the La-

placian matrix of G [57]

 .A
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Assume that each node measures its own and its neighboring 

states. In particular, let the attack and measurements sets be 

{ } and { , , },7 1 2 4  respectively, and define

 , .B C0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

1 0

1 0

1 0
K
T = =6 >@ H  

From the analysis in the section “Fundamental Attack Detection 

and Identification Limitations” and [34], [29], and [28], every set of 

at most two attackers is detectable (three attackers are detectable 

if the system initial state is known), and any set of at most one 

attacker is identifiable. To see this, i) construct the attack/state/

output graph associated with G as in Figure S10, and ii) notice 

that there exists a linking of size 2 from any set of two nodes to the 

output vertices (see Figure S10).

A procedure to identify the attacker from measurements fol-

lows from the analysis in the section “Design of Attack Detec-

tion and Identification Monitors.” Assuming state attacks only, 

design eight residual generators, where the thi  residual gen-

erator is made insensitive to any input entering at node i  and 

sensitive to all other inputs. In other words, due to the identifi-

ability of the attack set, the output of the thi  residual generator 

is identically zero if and only if the attacker compromises the 

thi  node. 

RESIduAL fILTER fOR NOdE i

1) Compute ,S i  the smallest ( ,Ker( ))A C -conditioned invari-

ant subspace containing ,Im Bi^ h  and its injection matrix 

,Ji  and define the conditioned filter

 
( ) ,

.

w A J C w J y

z Cw
i i i

i i

= + -

=

o
 

2) Define the orthonormal change of coordinates [ ],T W Pi i i=  

where ( )Im W Si i=  and the coordinates .w Tp=  In the 

new coordinates the conditioned filter is

FiGure s9 An undirected consensus network with eight nodes. 
The network has connectivity three, because there exist three 
vertex-disjoint paths between any two nodes. Three vertex-dis-
joint paths between nodes 1 and 4 are shown in red.
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( ) ,

.

T A J C T T Jy

z CT

i i
T

i i

A

i i
T
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i i i

i i

C i

p p

p

= + -

=

o
t t

t

1 2 3444 444

8

9

3) Partition Cit  as [ ],C C Ci i i
1 2=t t t  where Ci

1t  has as many col-

umns as the dimension of .S i  Let ( )C I C Ci i i
1 1

= -
@r t t  and 

.C C Ci i i=u r t
4) Define the residual filter as

( ) ,

,

A G C B y G C y

z C C y

i i i i

F

i i i i

i i i i

i

p p

p

= + - -

= -

t uo t u

t u r

1 2 3444 444

where Gi  is such that A G Ci i i+t u  is stable.

By leveraging the geometric routines developed in [38], the 

residual filters for node 3 and node 7 are computed as in the 

equations shown at the bottom of the page.

Figure S11 shows the residuals computed by the above filters 

when the attack input is a sinusoidal wave. Notice that the residual 

associated with node 7 is identically zero, while the residual as-

sociated with node 3 is nonzero (as well as the residuals associ-

ated with other network nodes). Thus, the attacker is detected and 

identified by the set of residual filters.

20
-0.1

0

0 2 4 6 8 10 12 14 16 18

0.1

Residual
for Node 7

Residual for Node 3

Time

FiGure s11 The output of the residual filters designed in “An 
Example of Monitor Design.” Because the only zero residual is 
associated with node 7, the attacker has compromised node 7 in 
the network in Figure S10.
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FiGure s10 The attack/state/output graph associated with the 
consensus network in Figure S9, with attack set { , }3 7  and mea-
surements { , , }1 2 4  (see the section “Graph-Theoretic Condi-
tions”). Because there exists a linking of size two from any two 
attack nodes to the output vertices, every set of two attackers is 
detectable, and every set of one attacker is identifiable (see the 
section “Fundamental Attack Detection and Identification Limi-
tations” and [34], [29], [28]).
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COORdINATEd ATTACkS IN pOwER NETwORkS 
This section considers a network of utility companies that 
compete in the production of electrical energy. In particular, 
the case is considered where a group of utility companies 
form a coalition to compromise the functionality of their 
business rivals through a coordinated and destabilizing 
attack. A similar power network scenario is studied in [22]. 

Consider a connected power transmission network with 
n  generators { , , },G g gm n1 f=  where the generators’ rotor 
dynamics are modeled by second-order linear swing equa-
tions subject to governor control, and the power flows along 
lines are modeled by the dc approximation; see “Power 
Network Model and Attack Example.” Assume that a sub-
set { , , }K k km1 f=  of generators is driven by an additional 
control action besides the primary frequency control. After 
elimination of the load bus variables through Kron reduc-
tion, the power network dynamics subject to the additional 
control u  at the generators K  are 

 ,x Ax B uK K= +o  (10)

where [ , ]x i ~= < <<  contains the generators’ rotor angles 
and frequencies, ,A R n n2 2! #  and ,B I RK K

n m2!= #  where 
[ ]I e eK n k n km1g= + +  and ei  is the i th canonical vector in .R n2  

Consider an attack where the K  generators form a coali-
tion, select some sacrificial machines ,K K3r  and imple-
ment a coordinated control strategy (see below) to 
destabilize the other generators \ ,G Km  while maintaining 
satisfactory performance within the group \ .K Kr

The attack strategy relies on the notion of controlled invari-
ant subspace from geometric control theory; see “Geometric 
Control Theory and Its Application to Fault Detection and Iso-
lation.” In particular, the colluding generators inject an attack 
input that remains undetectable by the generators \ ,K Kr  while 
affecting the generators \ .G Km  The attack input is of the form 

 ,u Fx B vK K= + @r  (11)

where the matrix F  and BKr  satisfy the conditions 

 ( )A B F VVK 3+ ) )  (12)

and

 Basis( Im( )) .B BVK K+= )r  (13)

In (12), V)  denotes the largest , ImA BK^ ^ hh-controlled 
invariant subpace contained in Ker ,C^ h  where C  is the 
vector of the frequencies of the generators \ .K Kr  Notice that 
the subspace Im C^ h identifies the generators \ ,K Kr  while 
Ker C^ h identifies the generators \G Km  and the sacrificial 
machines .Kr  

The attack input (11) consists of two components. The 
open-loop component B vK

@r  alters the behavior of the sacrifi-
cial machines only. In fact, ( ) Ker( ) .Im B CVK 3 3)r  The input 

:v R Rn
"  is an arbitrary signal designed by the attackers to 

optimize some performance function, such as the effect of 
the malicious control on the sacrificial machines, the energy 
of the malicious control, or the information pattern required 
to implement the malicious control. The closed-loop compo-
nent F  ensures that the generators \K Kr  are not affected by 
network dynamics evolving in the subspace .V)  In fact, dy-
namics in the subspace V)  are invariant due to (12) and do 
not affect the generators \K Kr  because Ker .CV 3)  Because 
the open-loop component of the attack excites only dynamics 
in V)  due to (13), the attack (11) does not affect the generators 

\K Kr , while altering the behavior of the sacrificial machines 
and, consequently, of the generators \ .G Km  Notice that the at-
tack (11) is undetectable from the measurements taken at the 
generators \K Kr . Let I \K Kr  be the matrix obtained by selecting 
the columns \K Kr  from the identity matrix I . 

Theorem 6 (Malicious Attacks) 
Consider the network-reduced power system model (10) with 
controlled generators K  and sacrificial machines .K K3r  Let 

,C I \K K=
<r r  let V)  be the largest , ImA BK^ ^ hh-controlled invari-

ant subspace contained in Ker( )Cr , let the state feedback F  
satisfy ( ) ,A B F V VK 3+ ) )  let Basis( Im( )),B BVK K+= )r  and 
let S)  be the smallest ( ,Ker( ))A Cr -conditioned invariant sub-
space containing Im( ) .BK  Then, for every input : ,v R Rn

0 "$  
the attack u Fx B vK= + @r  affects the generators \K G Km,r  only.

The attack (11) is very general and, in fact, includes all 
attacks that can be formulated by the generators K  with-
out affecting the generators \K Kr , including the strategy 
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FiGure 2 A schematic diagram of the western North American 
power grid. The grid contains 16 generators, numbered from 1 to 16, 
that are connected to the grid through transformers. Loads are 
denoted by arrows and buses by straight lines.
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proposed in [22]. To illustrate the effectiveness of the attack 
(11), consider an aggregated model of the Western North 
American power grid as illustrated in Figure 2. This mod-
el is often studied in the context of interarea oscillations 
[45]. Assume that the generators { , }1 9  form a coalition and 
that generator 9 is the sacrificial machine. Following Theo-
rem 6, the malicious attack illustrated in Figure 3, which is 
of the form u Fx B vK= + @r , is carried out by the generators 
{ , }1 9  such that i) generator 1 is not affected by the attack, 
ii) generator 2 maintains an acceptable working condition 
even in the presence of the attack, and iii) large frequency 
oscillations are induced at all other generators \ .G Km  See 
Figure 4 for a pictorial representation of the effect of the 
coordinated attack. As a consequence of the attack, the lin-
ear model (10) is driven far away from the operating point, 
and the corresponding original nonlinear model eventu-
ally may lose stability. In a real-world scenario, instability 
and equipment damage would be prevented by promptly 
disconnecting the generators \G Km  from the grid [46]. It 
is worth noting that the methods derived in this article for 

linearized dynamics are, in fact, robust to model uncertain-
ties and nonlinearities. A related example is presented in 
[34, Section V.D], where the performance of the presented 
detection and identification methods is validated for noisy 
and nonlinear dynamics. 
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FiGure 4 The deviations from steady state of the generators’ frequencies due to the coordinated attack in the section “Coordinated Attacks 
in Power Networks.” The system model is given by (10), with parameters taken from [45]; see also the section “Coordinated Attacks in Power 
Networks.” All deviations have been normalized so that the unit value indicates a safety limit. All signals are plotted as a function of time (mea-
sured in seconds). The attack input is of the form (11), where the input v  is chosen such that the infinity norm of 9~  is minimized, subject to the 
infinity norm of 16~  being no less than one. The attack input is reported in Figure 3. Notice that i) generator 1 is not affected by the attack, ii) 
generator 9 maintains satisfactory performance, and iii) the remaining generators are severely affected by the coordinated attack.
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FiGure 3 The coordinated attack input discussed in the section 
“Coordinated Attacks in Power Networks.” The attack is imple-
mented by modifying the governor control input of generator 1 
(solid) and generator 9 (dashed). Both signals are represented as 
deviations from steady state and normalized by the base power for 
the linear system (10). All signals are plotted as a function of time 
measured in seconds.
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In the above scenario, assume that each generator moni-
tors its own state variables and that at most two generators 
may be colluding to disrupt the network. Notice that de-
tectability of the malicious attacks designed in Theorem 6 
is guaranteed for each generator affected by the attack. Un-
fortunately, the colluding generators cannot be identified 
from the measurements of any single generator. To see this, 
let BK  be the input matrix associated with any set K  of two 
generators, and let C ei i= <  be the output matrix associated 
with generator i . It can be verified that for every K  and 
i  the system ( , , )A B CK i  is right-invertible [38], that is, the 
output C xi  can be arbitrarily assigned by any coalition of 
two generators. Thus, the measurements taken by genera-
tor i  can be generated by any set of two generators so that 
the colluding generators are not identifiable by generator i . 

CONCLuSION 
Cyberphysical systems are complex systems integrating 
physical processes with cyber infrastructures. For security 
assessment, cyberphysical systems can be conveniently 
modeled by linear time-invariant descriptor systems, where 
the algebraic constraints capture the presence of conserved 
physical quantities in the system. For cyberphysical systems 
modeled by descriptor systems, attacks can be represented 
by exogenous inputs that alter the system dynamics and the 
measurements. With this representation of attacks, it is pos-
sible to i) characterize fundamental attack detection and 
identification limits, ii) analyze the effect of attacks on the 
system, and iii) design monitors capable of revealing and 
locating attacks independently of the attack strategy and 
implementation. This article presented a self-contained dis-
cussion of cyberphysical security, including modeling, sys-
tem-theoretic and graph-theoretic security analyses, monitor 
design, and illustrative examples.
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