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Abstract

This work proposes surveillance trajectories for a network of autonomous cameras to detect in-

truders. We consider smart intruders, which appear at arbitrary times and locations, are aware of the

cameras configuration, and move to avoid detection for as long as possible. As performance criteria we

consider the worst-case detection time and the average detection time. We focus on the case of a chain

of cameras, and we obtain the following results. First, we characterize a lower bound on the worst-

case and on the average detection time of smart intruders. Second, we propose a team trajectory for the

cameras, namely Equal-waiting trajectory, with minimum worst-case detection time and with guarantees

on the average detection time. Third, we design a distributed algorithm to coordinate the cameras along

an Equal-waiting trajectory. Fourth, we design a distributed algorithm for cameras reconfiguration in

the case of failure or network change. Finally, we illustrate the effectiveness and robustness of our

algorithms via simulations and experiments.

I. INTRODUCTION

Coordinated teams of mobile agents have recently been used for many tasks requiring con-

tinuous execution, including the monitoring of oil spills [1], the detection of forest fires [2],

the tracking of border changes [3], and the patrolling of environments [4]. The use of mobile

agents has several advantages with respect to the classic approach of deploying a large number of
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Fig. 1. This figure shows five cameras installed along a one dimensional open path. The field of view of each cameras is a

point on the path. Cameras coordinate their motion to detect smart moving intruders along the path.

static sensors, such as improved situation awareness and fast reconfigurability. In this paper we

address the challenging problem of scheduling the agents trajectories to optimize the performance

in persistent surveillance tasks.

Problem description. We consider a network of identical Pan-Tilt-Zoom (PTZ) cameras for

video surveillance, and we focus on the development of distributed and autonomous surveillance

strategies for the detection of moving intruders. We make combined assumptions on the envi-

ronment to be monitored, the cameras, and the intruders. We assume the environment to be one

dimensional, in the sense that it can be completely observed by a chain of cameras by using the

panning motion only (the perimeter surveillance problem is a special case of this framework).

We assume the cameras to be subject to physical constraints, such as limited field of view (f.o.v.)

and panning speed, and to be equipped with a low-level routine to detect intruders that fall within

their f.o.v.. We assume intruders to be smart, in the sense that they have access to the cameras

configuration at every time instant, and schedule their trajectory to avoid detection for as long

as possible. We also assume that intruders do not leave the environment once they have entered.

We propose cameras trajectories and control algorithms to minimize the worst case detection

time and the average detection time of smart intruders.

Related work. Of relevance to this work are the research areas of robotic patrolling and video

surveillance. In a typical robotic patrolling setup, the environment is represented by a graph on

which the agents motion is constrained, and the patrolling performance is given by the worst-



case detection time of static events. In [5], [6] an empirical evaluation of certain patrolling

heuristics is performed. In [4] and [2], an efficient and distributed solution to the (worst-case)

perimeter patrolling problem for robots with zero communication range is proposed. In [7] the

computational complexity of the patrolling problem is studied as a function of the environment

topology, and optimal strategies as well as constant-factor approximations are proposed. With

respect to these works, we consider smart intruders, as opposed to static ones, and we study

also the average detection time, as opposed to the worst case detection time only. In the context

of camera networks the perimeter patrolling problem is discussed in [8], [9], where distributed

algorithms are proposed for the cameras to partition a one-dimensional environment and to

coordinate along a trajectory with minimum worst-case detection time of static intruders. Graph

partitioning and intruder detection with minimum worst-case detection time for two-dimensional

camera networks is studied in [10]. We improve the results along this direction by showing that

the strategies proposed in [8], [9] generally fail at detecting smart intruders, and by studying

the average detection time of smart intruders. Complementary approaches based on numerical

analysis and game theory for the surveillance of two dimensional environments are discussed in

[11], [12]. Finally, a preliminary version of this work was presented in [13], [14].

In the context of video surveillance most approaches consider the case of static cameras,

where the surveillance problem reduces to an optimal sensor placement problem. In [15], this

sensor placement problem is considered in a static camera network with the goal of maximizing

the observability of a set of aggregate tasks that occur in a dynamic environment. In [16], a

similar problem is considered in a static camera network with the goal of visual tagging. In the

case of surveillance in active (PTZ) camera networks, [17] assumes the possibility to cover the

entire region at all times, and it considers the problem of coordinating camera motion using

a game-theoretic approach. With respect to this work, we do not make the assumption that

cameras can cover the whole region at all times, and we provide specific results for the case of

one-dimensional environment.

Contributions. The contributions of this work are as follows.

First, we mathematically formalize the concepts of cameras trajectory and smart intruder, and

we propose the trajectory design problem for video surveillance. We formalize the worst-case

detection time and average detection time criteria, and we characterize lower bounds on both

performance criteria.



Second, we propose the Equal-waiting cameras trajectory, which achieves minimum worst

case detection time, and constant factor optimal average detection time (under reasonable as-

sumptions). The Equal-waiting trajectory is easy to compute given a camera network, and it is

amenable to distributed implementation. In fact, we develop a distributed coordination algorithm

to steer the cameras along an equal-waiting trajectory. Our coordination algorithm converges

in finite time, which we characterize, and it requires only local communication and minimal

information to be implemented.

Third, we design a distributed reconfiguration algorithm for the cameras to react to failures and

to adapt to time-varying topologies. In particular, our reconfiguration algorithm takes advantage

of gossip communication to continuously partition the environment and, at the same time,

coordinate the motion of the cameras to optimize the detection performance.

Fourth and finally, we validate our findings through simulations and experiments. Through

simulations we validate our theoretical findings and algorithms for different configurations.

Analogously, our experiments validate our modeling framework and assumptions, and show

that our methods are robust to cameras failure, model uncertainties, and sensor noise.

Paper Organization. The remainder of the paper is organized as follows. Section II contains

our problem setup and some preliminary results. In Section III we present our main results, that

is, we propose and characterize the Equal-waiting trajectory, and we describe our distributed

coordination algorithm. In Section IV we detail our simulations and experiments. Section V

contains our algorithm for cameras reconfiguration. Finally, our conclusion and final remarks

are in Section VI.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

In this section we describe the one-dimensional surveillance problem under consideration, and

we present some useful definitions and mathematical tools for its analysis.

A. Problem setting and notation

Consider a set of n ∈ N identical active cameras installed along a one dimensional open path

(boundary) Γ of length L (see Fig 1). For the ease of notation and without affecting generality,

we represent Γ with the segment [0, L], and we label the cameras in increasing order from c1

to cn according to their position on Γ. We make the following assumptions:



(A1) the f.o.v. of each camera is represented by a point on Γ,

(A2) the motion of each f.o.v. is uniquely determined by the pan movement of the corresponding

camera, and

(A3) the speed vi of the i-th camera satisfies |vi| ∈ {0, vmax
i }, with vmax

i ∈ R>0.

For assumption (A3) to be satisfied, we let each camera be equipped with a low-level controller

that maintains the speed of its f.o.v. at 0 or vmax
i .1 Let vmax = max{vmax

1 , . . . , vmax
n }.

Let xi : R≥0 → Γ be a map, such that xi(t) specifies the position on Γ of the i-th f.o.v. at

time t. We define the patrolling window Ai = [`i, ri] ⊆ Γ of camera ci as the segment of Γ

containing the f.o.v. of camera ci at all times, where `i and ri denote the start and end points

of the segment Ai, respectively. We assume the patrolling windows to be given and constant in

time (except for our analysis in Section V). We additionally assume that `1 = 0, rn = L, and

`i = ri−1, with i = 2, . . . , n, so that {A1, . . . , An} is in fact a partition of Γ. Finally, let di be the

length of Ai, let dmax = max{d1, . . . , dn} and dmin = min{d1, . . . , dn}, and define the longest

cameras sweeping time as τmax = max{τ1, . . . , τn}, where τi = di/v
max
i is the sweeping time of

camera ci.

A cameras trajectory is an array X = {x1, . . . , xn} of n continuous functions describing the

motions of the cameras f.o.v. on Γ. We focus on periodic cameras trajectories, for which there

exists a duration T ∈ R≥0 such that X(t+ T ) = X(t) or, equivalently, xi(t+ T ) = xi(t) for all

i ∈ {1, . . . , n}. We say that a cameras trajectory is synchronized if there exists a time ti ∈ [0, T ]

such that xi(ti) = ri = li+1 = xi+1(ti) for each pair of neighboring cameras ci and ci+1.

B. Model of intruder and performance functions

We consider the problem of detecting intruders appearing at random times and moving on

Γ. We model an intruder as an arbitrarily fast point on Γ, and we let the continuous map

It0,p0 : R≥t0 → Γ be defined such that It0,p0(t) describes the position of the intruder at a time t,

where t0 and p0 = It0,p0(t0) are the time and location at which the intruder appears, respectively.

We focus on smart intruders, which have full knowledge of the cameras trajectory and select

their motion to avoid detection for as long as possible. More formally, given an initial time

1For instance, the controller may set the panning velocity of the i-th camera to α̇i = vmax
i /(aisec2(α)), where α denotes the

panning angle, and ai is the distance of the i-th camera from Γ. See Section IV-B for a related example.
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Fig. 2. This figure shows a cameras trajectory in which cameras c1 and c2 are synchronized, while cameras c2 and c3 are not

synchronized. Notice that, because of the synchronization, intruder e1, and in fact any smart intruder, is detected when the f.o.v.

of cameras c1 and c2 occupy the same position. Instead, intruder e2 may avoid detection by properly choosing its trajectory.

t0 ∈ R≥0, an initial point p0 ∈ Γ, and a cameras trajectory X , the trajectory I∗t0,p0 of a smart

intruder satisfies

Tdet(I∗t0,p0 , X) = max
It0,p0

Tdet(It0,p0 , X)− t0,

where Tdet(It0,p0 , X) is the time at which the intruder is detected by the cameras, that is,

Tdet(It0,p0 , X) = min{{t : It0,p0(t) ∈ X(t)},∞}.

Notice that the trajectory I∗t0,p0 is in general not unique.

We consider two criteria for the detection performance of a T -periodic cameras trajectory,

namely the worst-case detection time (WDT), and the average detection time (ADT). These two

criteria are formally defined as

WDT(X) = sup
t0,p0

Tdet(I∗t0,p0 , X)− t0, (1)

and

ADT(X) =
1

TL

∫ T

0

∫
Γ

Tdet(I∗t,γ, X)− t dγdt. (2)

In other words, the WDT criterion measures the longest detection time of a smart intruder, while

the ADT criterion measures the average detection time of a smart intruder over the boundary Γ

and the periodicity T .



The worst case detection time criterion for static intruders, namely WDTs, is defined in [18]

as

WDTs(X) = sup
t0,p0

{t− t0 : t ≥ t0, p0 ∈ X(t)}, (3)

and it corresponds to the longest time for the cameras to detect a static intruder, or simply event,

along Γ. We next informally discuss the relation between WDT and WDTs, and we refer the

reader to [7], [8], [18] for a proof of these results. Let

WDT∗ = min
X

WDT(X), and WDTs∗ = min
X

WDTs(X).

Clearly, WDT(X) ≥ WDTs(X) for every cameras trajectory X . For instance, as shown by the

example in Fig. 2, if a cameras trajectory X is not synchronized and yet it covers every location

of Γ, then WDTs(X) < ∞ and WDT(X) = ∞. Additionally, because the patrolling windows

define a partition of Γ, it can be easily verified that the static worst case detection time satisfies

WDTs∗ = 2τmax,

and that any 2τmax-periodic cameras trajectory achieves minimum static worst-case detection

time. Similarly, any synchronized 2τmax-periodic cameras trajectory X satisfies (see Fig. 2)

WDT(X) = 2τmax. (4)

Thus, any synchronized 2τmax-periodic cameras trajectory achieves minimum worst-case detec-

tion time (WDT and WDTs). This discussion motivates us to restrict our attention to periodic

and synchronized cameras trajectories.

Problem 1 (Design of cameras trajectories) Consider an open path partitioned among a set

of n cameras, and let τmax be the longest cameras sweeping time. Design a cameras trajectory

X∗ satisfying

ADT(X∗) = ADT∗ = min
X∈Ω

ADT(X),

where Ω is the set of all synchronized 2τmax-periodic cameras trajectories.

Remark 1 (Optimal patrolling windows) We assume that the patrolling windows are given and

form a partition of the path Γ. With these assumptions, the worst-case detection time satisfies



WDT∗ ≥ WDTs∗ ≥ 2τmax, and any synchronized 2τmax-periodic cameras trajectory achieves

the lower bound.

If the patrolling windows are not given but are still required to be a partition of Γ, then

the longest cameras sweeping time, and hence the worst-case detection performance, can be

minimized by solving a min-max partitioning problem [7], [18], [14]. We will discuss this

partitioning problem in Section V, where we develop an algorithm to simultaneously partition

the boundary and coordinate the motion of the cameras.

If the patrolling windows are not required to be a partition of Γ, then WDTs∗ may be smaller

than 2τ ∗. We refer the interested reader to [19, Conjecture 1] and [20]. �

A second focus of this paper is the design of distributed coordination algorithms for the

cameras to converge to a desired trajectory. We consider a distributed scenario in which cameras

ci and cj are allowed to communicate at time t only if |j − i| = 1 (neighboring cameras) and

xi(t) = xj(t). Although conservative, this assumption allows us to design algorithms imple-

mentable with many low-cost communication devices; see Section IV-B. Notice that additional

communications cannot decrease the performance of our algorithm.

Problem 2 (Distributed coordination) For a set of n cameras on a one-dimensional open path,

design a distributed algorithm to coordinate the cameras along a trajectory with minimum

average detection time of smart intruders.

III. EQUAL-WAITING CAMERAS TRAJECTORY AND COORDINATION ALGORITHM

In this section we present our results for Problems 1 and 2. In particular, we propose a

cameras trajectory with performance guarantees for the average detection time, and a distributed

algorithm for the cameras to converge to such a trajectory. We remark that in some cases an

exact solution to Problem 1 can be computed through standard optimization techniques [21].

Such computation, however, is not scalable with the number of cameras, and it is not amenable

to distributed implementation. Instead, our approximate solution is valid for every number of

cameras and environment configuration, is extremely simple and efficient to compute, and its

performance is shown to be within a bound of the optimum. The cameras trajectory that we

propose can informally be described as follows:
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Fig. 3. This figure shows the Equal-waiting trajectory for 4 cameras. Notice that (i) the cameras are synchronized, (ii) the

trajectory is 2dmax-periodic, and (iii) the waiting time of each camera is the same at both its boundaries.

(Equal-waiting trajectory) Each camera continuously sweeps its patrolling window at maximum

speed, and it stops for some waiting time when its f.o.v. reaches an extreme of its patrolling

window. For each camera, the waiting times at its two extremes are equal to each other.

Additionally, the waiting times of each camera are chosen so that the resulting cameras trajectory

is synchronized and periodic. �

Because we let each camera wait for the same amount of time at the two extremes of its

patrolling window, we call this cameras trajectory Equal-waiting trajectory. An example of

Equal-waiting trajectory is in Fig. 3, and a formal description is in Trajectory 1.

As discussed in Section II, the Equal-waiting cameras trajectory is optimal with respect to the

worst-case detection time criterion. Indeed, the Equal-waiting cameras trajectory is synchronized

and 2τmax-periodic. We now characterize the average detection time performance of the Equal-

waiting trajectory. A proof of this result is postponed to the Appendix.

Theorem III.1 (Performance of Equal-waiting trajectories) Let Xeq be the Equal-waiting

trajectory defined in Trajectory 1. Then,

(i) The average detection time of a smart intruder satisfies the lower bound:

ADT∗ ≥ 1

L

n∑
i=1

vmax
i τ 2

i , (5)

(ii) The Equal-waiting trajectory Xeq satisfies

ADT(Xeq) =
1

2

(
τmax +

1

L

n∑
i=1

vmax
i τ 2

i

)
, (6)



Trajectory 1: Equal-waiting trajectory (camera ci)

Input : τmax, ri, `i, τi, vmax
i ;

Set : ωi(k) = (k + 1)τmax − τi, k = −1, 0, . . . ;

if i is odd then

xi(t) = ri for ωi(k−1) + τi ≤ t ≤ ωi(k)

xi(t) = −vmax
i (t− ωi(k))+ri for ωi(k) ≤ t ≤ ωi(k) + τi

xi(t) = `i for ωi(k) + τi ≤ t ≤ ωi(k+1)

xi(t) = vmax
i (t− ωi(k+1))+`i for ωi(k+1) ≤ t ≤ ωi(k+1) + τi

else if i is even then

xi(t) = `i for ωi(k−1) + τi ≤ t ≤ ωi(k)

xi(t) = vmax
i (t− ωi(k+1))+`i for ωi(k) ≤ t ≤ ωi(k) + τi

xi(t) = ri for ωi(k) + τi ≤ t ≤ ωi(k+1)

xi(t) = −vmax
i (t− ωi(k))+ri for ωi(k+1) ≤ t ≤ ωi(k+1) + τi

(iii) The Equal-waiting trajectory Xeq satisfies

ADT(Xeq)

ADT∗
≤ min

{
τmax + τmin

2τmin ,
(n+ 1)dmax

2dmin

}
, (7)

(iv) If vmax
i = 1 for all i ∈ {1, . . . , n}, then the Equal-waiting trajectory Xeq satisfies

ADT(Xeq)

ADT∗
≤ min

{
dmax + dmin

2dmin ,
3 +
√
n

4

}
. (8)

The following comments are in order. First, the average detection time of the Equal-waiting

trajectory is within a constant factor of the optimal if either τmax/τmin or n are constant. Second,

if all patrolling windows have the same sweeping time, that is τmax = τmin, then our Equal-

waiting trajectory is an optimal solution to Problem 1 (it achieves minimum worst-case and

average detection times). Moreover, our lower bound (5) is tight and holds with equality if

τmax = τmin. Third, the lower bounds in Theorem III.1 are independent of the ordering of the

patrolling windows. Fourth, if

(i) all cameras move at unitary speed,

(ii) there exists an index h ∈ {1, . . . , n} such that dh > di for all i ∈ {1, . . . , n} \ {h}, and

(iii) for all i ∈ {1, . . . , n} \ {h} the patrolling windows satisfy

di =
dmax

1 +
√
n
, (9)



then (see the proof of Theorem III.1 and Fig. 4(b))

ADT(Xeq)

ADT∗
=

3 +
√
n

4
. (10)

Fifth and finally, different cameras speeds can be taken into account in our bound (8). In fact,

if vmax
i /vmax

j ≤ C for all i, j ∈ {1, . . . , n} and for some C ∈ R, then (see the proof of Theorem

III.1)

ADT(Xeq)

ADT∗
≤ min

{
C
(
dmax + dmin

)
2dmin ,

2 + C (1 +
√
n)

4

}
.

We now design a distributed feedback algorithm that steers the cameras towards an Equal-

waiting trajectory. Our coordination algorithm is informally described as follows:

(Distributed coordination) Camera ci moves to `i and, if i > 1, it waits until the f.o.v. of its

left neighboring camera ci−1 occupies the same position. Then, camera ci stops as specified in

Trajectory 1, and finally move to ri. Camera c1 (resp. cn) moves to r2 (resp. `n−1) as soon as

its f.o.v. arrives at `1 (resp. rn). �

Our coordination algorithm is formally described in Algorithm 2, where for convenience we

set x0(t) = `1 and xn+1(t) = rn at all times.

Algorithm 2: Distributed camera coordination along an Equal-waiting trajectory (camera

ci)

Input : τmax, ri, `i, τi, vmax
i ;

Set : ωi = τmax − τi, x0(t) = `1 and xn+1(t) = rn ∀t;

Move towards `i with |vi(t)| = vmax
i ;

while True do

if xi(t) = xi−1(t) or xi(t) = xi+1(t) then

Wait until time t+ ωi;

Move towards the opposite boundary with |vi(t)| = vmax
i ;

It should be observed that, by construction, the cameras trajectory obtained via Algorithm 2 is

synchronized and Equal-waiting. Moreover, since cameras wait until the f.o.v. of a neighboring

camera occupies the same position, our coordination algorithm is robust to cameras failures



and motion uncertainties. A related example is in Section IV-A. Regarding the implementation

of Algorithm 2, notice that each camera is required to know the endpoints of its patrolling

window, its sweeping time and the maximum sweeping time in the network, and to be able to

communicate with neighboring cameras. The following theorem characterizes the convergence

properties of Algorithm 2, where we write X(t ≥ t̄) to denote the restriction of the trajectory

X(t) to the interval t ∈ [t̄,∞).

Theorem III.2 (Convergence of Algorithm 2) For a set of n cameras with sweeping times

τ1, . . . , τn, let X(t) be the cameras trajectory generated by Algorithm 2. Then, X(t ≥ nτmax) is

an Equal-waiting trajectory.

Proof: Notice that the f.o.v. of camera c1 coincides with the f.o.v. of camera c2 within

time max{2τ1, τ2} ≤ 2τmax. Then, the f.o.v. of camera ci coincides with the f.o.v. of camera

ci+1 within time (i+ 1)τmax. Hence, within time nτmax the cameras trajectory coincides with an

Equal-waiting trajectory in Trajectory 1. The claimed statement follows.

IV. SIMULATIONS AND EXPERIMENTS

In this section we report the results of our simulation studies and experiments. Besides

validating our theory, these results show that our models are accurate, that our algorithms can

be implemented on real hardware, and that our algorithms are robust to sensor noise and model

uncertainties.

A. Simulations

Three simulation studies are presented in this section. For our first simulation study, we let the

number of cameras n vary from 2 to 50. For each value of n, we generate 50 sets of patrolling

window with lengths {d1, . . . , dn}, where d1 = dmax = 1 m, and di is uniformly distributed within

the interval (0, 1] m , for all i ∈ {2, . . . , n}. For each configuration we let vmax
i = 1 m/s for all

cameras, we design the Equal-waiting trajectory Xeq, and we evaluate the cost ADT(Xeq) and

the lower bound ADT∗ from equation (5). We report the result of this study in Fig. 4(a). Notice

that, when the number of cameras is and the lengths of the patrolling windows are uniformly

distributed, the bound in (8) is conservative. On the other hand, if the lengths of the patrolling

windows are chosen as in (9), then the bound in (8) is tightly achieved (Fig. 4(b)).
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Fig. 4. In Fig. 4(a) we report the ratio ADT(Xeq)/ADT∗ as a function of the number of cameras n (blue dots), and the bound

(3 +
√
n)/4 in Theorem III.1 (red dots). For the considered configurations, the bound (dmax +dmin)/(2dmin) is much larger than

the experimental data, and it is not considered here. The lengths di of the patrolling windows are uniformly distributed in the

interval (0, 1], with d1 = dmax = 1. We assume that cameras have unitary speed. In Fig. 5 we report the ratio ADT(Xeq)/ADT∗

as a function of the number of cameras n (blue dots), and the bounds in Theorem III.1 (black dots and red circles). The lengths

di of the patrolling windows are chosen as d1 = dmax = 1 and di = (1 +
√
n)−1 for all i ∈ {2, . . . , n}. As predicted by

equation (10), the performance bound in equation (8) is tightly achieved.
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Fig. 5. In this figure we report the ratio ADT(Xeq)/ADT∗ as a function of dmax/dmin (blue dots), and the bounds in Theorem

III.1. For each value of dmax/dmin, the lengths of the patrolling windows are uniformly distributed in the interval [dmin/dmax, 1],

with d1 = dmax = 1.
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Fig. 6. In this figure we validate Algorithm 2 for a set of 4 cameras with unitary speed. Cameras start at random positions

inside their patrolling window and achieve coordination at time 150. Notice that the algorithm recovers from the temporary

failure of camera c4 between time 340 and 440. Moreover, the coordination performance of the algorithm degrade gracefully

in the presence of noise affecting the cameras motion of the cameras (time 700). In this simulation the noise is assumed to be

normally distributed with mean 0.2 and unitary standard deviation.

For our second simulation study, we let the number of cameras be fixed (50 cameras), and

we vary the value dmax/dmin between 2 and 25. Specifically, we let d1 = dmax = 1 m, and di,

with i = 2, . . . , 50 be uniformly distributed within the interval [dmin/dmax, 1] m. For each value

of dmax/dmin we generate 50 sets of patrolling windows with lengths {d1, . . . , dn}, compute the

Equal-waiting trajectory Xeq, evaluate the cost ADT(Xeq), and compute the lower bound in

equation (5). The results of this simulation study are reported in Fig. 5.

In our third simulation study we validate the effectiveness of our coordination algorithm.

We consider a set of 4 cameras with pre-specified patrolling windows and unitary speed. The

cameras trajectory generated by Algorithm 2 is reported in Fig. 6. Observe that our coordination

algorithm drives the cameras towards an Equal-waiting trajectory, and it is robust to failures

and motion uncertainty. In particular, (i) coordination is achieved for cameras starting at random

initial positions, (ii) the algorithm is robust to temporary cameras failure, and (iii) the average

detection time degrades gracefully in the presence of motion uncertainties.



Fig. 7. Illustration of the experimental set-up and photos of the hardware.

B. Experiments

In this section we detail the experiments we have conducted to validate our theoretical findings

and simulation results. For our experiments we use a network of six AXIS 213 PTZ (Pan-Tilt-

Zoom) network cameras mounted along a square perimeter. In order to simulate a 1-dimensional

environment, we assign each camera responsibility for surveilling a segment of the perimeter and

assume that camera c1 and camera c6 have no left and right neighbors, respectively. Movement

of the cameras is restricted to a panning motion and is controlled in such a way as to keep

the center of the f.o.v. moving at constant speed. Each camera is equipped with a low-level

detection algorithm in order to alert the user when an intruder enters its f.o.v.. All programming

of the cameras is performed in Python, utilizing the OpenCV computer vision package for image

processing. A diagram of our camera network and a table with our experimental parameters are

shown in Fig. 7 and Table I.

In our first experiment, we validate our distributed coordination algorithm to control the motion

of the cameras. Fig. 8 shows the results of our experiment. Notice that the algorithm steers the

cameras into an equal waiting trajectory within time 6τmax as predicted by Theorem III.2. In

fact, since the cameras are all starting the experiment at their left boundary, we see that the

system reaches an equal waiting trajectory in only slightly longer than 5τmax = 150 s. This

is consistent with Theorem III.2, since delays in communication and network bandwidth limits



TABLE I

RELEVANT EXPERIMENTAL PARAMETERS.

Camera di(cm) vmax
i (cm/s) τi (s)

c1 624.3 20.8 30.0

c2 290.3 18.0 16.1

c3 291.0 20.6 14.1

c4 619.3 21.1 29.0

c5 331.5 19.0 17.4

c6 232.7 17.3 13.5

Fig. 8. Cameras trajectories as obtained from our experimental implementation of Algorithm 2. See Table I for the cameras

parameters. Notice that the trajectory is robust to noise, as well as small overshoots and undershoots introduced by hardware

and network uncertainty. These inaccuracies in the individual camera trajectories do not significantly affect coordination. The

cameras trajectory is also robust to momentary failures, as shown at time t ≈ 600 s.

cause some lagging in our experimental implementation. In order to demonstrate the behavior

of the algorithm under a camera failure, camera c4 is stopped at time t = 600 s. Notice that the

algorithm continues to function despite this temporary hardware failure.

In our second experiment we focus on the worst-case detection time of intruders. We utilize

an Erratic mobile robot from Videre Design to simulate a smart intruder. The robot is equipped



with an on-board computer with Ubuntu Linux and uses Player/Stage in order to interface with

the user and allow for manual steering. We assume that the cameras motion is controlled by

Algorithm 2, and we run 40 trials where the Erratic robot enters the environment at specific

times and locations (we let the Erratic robot move only along the first segment, that is, the

segment with longest sweeping time), and it is manually driven to avoid detection for as long as

possible. We report the results of our second experiment in Fig. 9(a), where we notice that the

theoretical worst-case detection time is a relatively tight bound for the experimental worst-case

detection time.

In our third experiment we focus on the average detection time of intruders. As in our second

experiment, we let the cameras motion be controlled by Algorithm 2, and we use an Erratic robot

as an intruder. We run 40 trials where the Erratic robot enters the environment at random times

and locations, and it is manually driven to avoid detection for as long as possible. We report

the results of our second experiment in Fig. 9(b), where we notice that the theoretical bounds

in Theorem III.1 are compatible with the experimental data (the slight difference is due to the

fact that the theoretical value is calculated by considering all possible intruder initial locations

and times).

We remark that there is a small amount of uncertainty in the execution of the algorithm by the

cameras, resulting in small overshoots and undershoots in the individual camera trajectories. As

we see from Fig. 8, these small gaps, which are to be expected in practical applications, do not

have a significant effect on the performance of the algorithm. We conclude that our experimental

results validate our theory, our camera models, and our assumptions.

V. DISTRIBUTED CAMERAS RECONFIGURATION

In this section we describe an algorithm to reconfigure the cameras patrolling windows to

improve the detection performance, and to allow the camera network to recover from a permanent

camera failure and autonomously adapt to the addition and removal of cameras. We consider

a symmetric gossip communication protocol among cameras, where communication is allowed

only among neighboring cameras, and where each camera updates its patrolling window only

after communication with a neighboring camera. We now informally describe our reconfiguration

algorithm (REC).

(Cameras reconfiguration) Camera ci sweeps back and forth at the maximum speed its patrolling



(a) (b)

Fig. 9. In Fig. 9(a) we show the detection times for our second experiment, in which smart intruders appear at worst case

times and locations. The detection times of this experiment are depicted by a solid blue line. Notice that the detection times

are smaller than the upper bound predicted in Section II. In Fig. 9(b) we show the detection times for each trial of our third

experiment, in which smart intruders appear at random times and locations. The detection times of this experiment are depicted

by a solid blue line. The solid black line corresponds to the average of the experimental detection times. For the considered

configuration of cameras, the lower bound ADT∗ in (5) (dashed green line), ADT(Xeq) as in (6) (dotted red line), and the

worst case upper bound (dashed light blue line), which is calculated by multiplying the lower bound on ADT∗ by the quantity
τmax+τmin

2τmin from (7) are reported.

windows Ai, and it updates Ai upon communication with neighboring cameras. The update of

Ai is performed so that, as time progresses, the cameras patrolling windows form a partition

of the boundary that minimizes the longest sweeping time. Cameras stop for a certain waiting

time when their f.o.v. reaches an extreme of their patrolling window. These waiting times ensure

that (i) communication among neighboring cameras is maintained over time, and (ii) cameras

trajectories are synchronized along an Equal-waiting trajectory. As previously mentioned, in an

Equal-waiting trajectory the waiting times at the two extremes of the patrolling window are

equally long. Finally, in order to achieve motion synchronization, the (time varying) maximum

sweeping time τmax is be propagated across cameras during the execution of the algorithm. In

order to do so, the auxiliary variable qi is used by the i-th camera to store the information about

the camera associated with τmax. �

The REC algorithm is formally described in Algorithm 3, where Di represents cameras

visibility constraints (Ai ⊆ Di).



Algorithm 3: Cameras Reconfiguration (Camera ci)

Input : Ai = [`i, ri], Di = [γ
i
, γi], v

max
i ;

Require : {A1, . . . , An} is a partition of Γ;

Set τ̂max
i = τi and qi = ci;

Move according to Algorithm 2;

if Communication between cameras ci and ci+1 then

Transmit `i, ri, τ̂max
i , qi to ci+1;

Receive `i+1, ri+1, τ̂max
i−1, qi+1 from ci+1;

Compute m = (`iv
max
i+1 + ri+1v

max
i ) / (vmax

i + vmax
i+1);

Update ri and `i+1 as:

ri = `i+1 =


m if m ∈ [γ

i+1
, γi],

γi if m > γi,

γ
i+1

if m < γ
i+1

,

;

Compute new value for τi = (ri − `i)/vmax
i ;

case qi ≥ ci
if qi+1 > ci+1 then

τ̂max
i = τ̂max

i+1 = max{τi, τi+1, τ̂
max
i+1};

qi = qi+1 = arg max
ci,ci+1,qi+1

{τi, τi+1, τ̂
max
i+1};

else if qi+1 ≤ ci+1 then

τ̂max
i = τ̂max

i+1 = max{τi, τi+1};

qi = qi+1 = arg max
ci,ci+1

{τi, τi+1};

case qi < ci

if qi+1 ≤ ci+1 then

τ̂max
i = τ̂max

i+1 = max{τi, τi+1, τ̂
max
i };

qi = qi+1 = arg max
ci,ci+1,qi

{τi, τi+1, τ̂
max
i };

else if qi+1 > ci+1 then

τ̂max
i = τ̂max

i+1 = max{τi, τi+1, τ̂
max
i , τ̂max

i+1};

qi = qi+1 = arg max
ci,ci+1,qi,qi+1

{τi, τi+1, τ̂
max
i , τ̂max

i+1};

For the analysis of Algorithm 3, notice that the patrolling window Ai is updated every time

camera ci communicates with a neighboring camera. Let Ai(k) denote the i-th patrolling window



after k communications of camera ci, and let di(k) be the length of Ai(k). We say that a cameras

trajectory X is asymptotically T -periodic if there exists a duration T ∈ R>0 satisfying

lim
t→∞

X(t+ T )−X(t) = 0.

Theorem V.1 (Convergence of REC) Consider a set of n cameras installed along a one-

dimensional open path Γ. Let A1, . . . , An be the initial patrolling windows, with Ai ⊆ Di

for all i ∈ {1, . . . , n}. Let the cameras implement the Algorithm 3. Then,

(i) for all iterations k ∈ N and for all i ∈ {1, . . . , n} the patrolling window Ai(k) satisfies

Ai(k) ⊆ Di,

(ii) for all iterations k ∈ N the set {A1(k), . . . , An(k)} is a partition of Γ, and

τ ∗ = lim
k→∞

max
i∈{1,...,n}

di(k)

vmax
i

= min
P

max
i∈{1,...,n}

di
vmax
i

,

where P is the set of partitions {A1, . . . , An} of Γ satisfying Ai ⊆ Di for all i ∈ {1, . . . , n}
and di is the length of Ai, and

(iii) the cameras trajectory generated by the REC algorithm is asymptotically 2τ ∗-periodic, and

it converges to an Equal-waiting trajectory.

Proof: In the interest of space, we only sketch the proof. First, notice that the update of ri and

`i is such that Ai belongs to the constraint set Di, so that statement (i) follows. Second notice that

cameras persistently communicate over time. Indeed, (i) each camera sweeps back and forth its

assigned segment, (ii) cameras wait at their boundaries until communication with a neighboring

camera takes place, and (iii) cameras 1 and n do not stop at `1 and rn, respectively. In particular,

it can be shown that any two neighboring cameras communicate within an interval of finite

length. Then, statement (ii) follows from [18, Theorem IV.1]. Third, because of the persistence

of communication among cameras, the value τmax(k), which is decreasing in k, propagates in

some time Tprop to every camera, for every iteration k. Let t̄ be such that τmax(t̄) = τ ∗ + ε,

for some ε ∈ R>0. Then, after time t̄ + Tprop, the period Ti of ci is within 2ε of 2τ ∗, for all

i ∈ {1, . . . , n}. Statement (iii) follows by letting ε tend to zero.

As stated in Theorem V.1, Algorithm 3 drives the cameras towards an Equal-waiting trajectory.

Then, the detection performance of the cameras trajectory generated by our reconfiguration

algorithm are as in Theorem III.1 with τmax = τ ∗.



0 50 100 150 200
0

5

10

15

20

time (s)

ca
m
er
a
s
tr
a
je
ct
o
ri
es

(m
)

(a)

0 50 100 150 200
3

4

5

6

7

8

9

τ̂
m
a
x
,i
tr
a
je
ct
o
ri
es

(s
)

time (s)

(b)

Fig. 10. Simulation of REC with n = 5 cameras with maximum speed vmax = 0.67 m/s and patrolling windows constraints.

In Fig. 10(a) we show the cameras trajectories starting from random positions. The dashed lines refer to the trajectories of the

active boundaries. In Fig. 10(b) we report the dynamics of the longest patrolling time τ̂max
i . Notice that τ̂max

i converges to the

optimal value τ∗ = 6.2023 s (dash-dot line).

We now validate our reconfiguration algorithm via simulation. We consider two scenarios with

5 cameras. All cameras start their trajectory from some initial point in their patrolling window.

In the first scenario (Fig. 10) cameras have the same maximum speed vmax = 0.67 m/s, and

they are not subject to patrolling windows constraints. Relevant parameters for this simulation

study are reported in Table II. Observe from Fig. 10 that the cameras trajectory converges to an

Equal-waiting trajectory, and that the length of the largest patrolling window τmax is decreasing

and converges to τ ∗ = 6.2023 s.

In the second scenario, cameras have different maximum speeds (v1 = 0.61, v2 = 0.57,

v3 = 0.47, v4 = 0.68, v5 = 0.68 m/s), and they are subject to patrolling windows constraints.

Relevant parameters for this simulation study are reported in Table III. As shown in Fig. 11, the

cameras trajectory converges to an Equal-waiting trajectory, and that the length of the largest

patrolling window τmax is decreasing and converges to τ ∗ = 6.65 s.

VI. CONCLUSION

This work studies the problem of coordinating a team of autonomous cameras along a one-

dimensional open path to detect moving intruders. We propose mathematical models of cameras



TABLE II

PARAMETERS AND RESULTS FOR UNIFORM CAMERAS SPEED.

c1 c2 c3 c4 c5

Di [0 4.68] [1.14 7.45] [3.32 12.09] [7.26 18.41] [10.12 20]

Ai(0) [0 2.91] [2.91 5.38] [5.38 9.67] [9.67 14.26] [14.26 20]

Ai(∞) [0 3.72] [3.72 7.45] [7.45 11.63] [11.63 15.82] [15.82 20]
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Fig. 11. Simulation of REC with n = 5 cameras with non-uniform maximum speeds vmax
i ∼ U [0.45, 0.75] m/s and no

patrolling windows constraints. In Fig. 11(a) we show the cameras trajectories starting from random positions. The dashed lines

refer to the trajectories of the active boundaries. In Fig. 11(b) we report the dynamics of τ̂max
i . Notice that τ̂max

i converges to

the optimal value τ∗ = 6.65 s (dash-dot line).

and intruders, and we define the worst-case and average detection times as performance criteria.

We propose cameras trajectories with performance guarantees, and distributed algorithms to

coordinate the motion of the cameras. Finally, we validate our theoretical findings and show

effectiveness of our algorithms via simulations and experiments.



TABLE III

PARAMETERS AND RESULTS FOR NON-UNIFORM CAMERAS SPEED.

c1 c2 c3 c4 c5

Di [0 20] [0 20] [0 20] [0 20] [0 20]

Ai(0) [0 4] [4 8] [8 12] [12 16] [16 20]

Ai(∞) [0 4.04] [4.04 7.81] [7.81 10.94] [10.94 15.48] [15.48 20]

APPENDIX

This section contains a proof of Theorem III.1. We start with a lower bound for the average

detection time.

Lemma VI.1 (Lower bound on the average detection time) For a set of n cameras with

maximum velocities vmax
1 , . . . , vmax

n and sweeping times τ1, . . . , τn, the average detection time of

a 2τmax-periodic cameras trajectory X satisfies the lower bound

ADT(X) ≥ 1

L

n∑
i=1

vmax
i τ 2

i .

Proof: Since a smart intruder moves away from the camera f.o.v., the detection time of a

smart intruder appearing at time t and at location γ ∈ [`i, ri] satisfies the lower bound∫ ri

`i

Tdet(It,γ)− t dγ =

∫ di

0

Tdet(It,γ)− t dγ ≥ Tup,

where di = ri − `i and Tup equals∫ xi(t)

0

xi(t) + 2(di − xi(t))
vmax
i

dγ +

∫ di

xi(t)

di − xi(t)
vmax
i

dγ,

if the camera ci first detects intruders appearing at locations γ ≥ xi(t). Analogously, if the

camera ci first detects intruders appearing at locations γ ≤ xi(t)∫ di

0

Tdet(It,γ)− t dγ ≥ Tdown,

where Tdown equals ∫ xi(t)

0

xi(t)

vmax
i

dγ +

∫ di

xi(t)

2xi(t) + (di − xi(t))
vmax
i

dγ.



To see this, consider the first case. The detection time of every intruder appearing at location

γ > xi(t) is at least (di − xi(t))/v
max (time needed by camera ci to reach ri starting from

xi(t)). Likewise, the detection time of every intruder appearing at location γ < xi(t) is at least

(xi(t) + 2(di− xi(t)))/vmax (time needed by ci to reach ri and `i starting from xi(t)). The other

case follows similarly.

It can be verified by simple manipulation that Tup = Tdown = d2
i /v

max. Finally, it follows from

(2) and τi = di/v
max
i that

ADT(X) =
1

TL

∫ T

0

∫
Γ

Tdet(I∗t,γ)− t dγdt ≥
1

TL

∫ T

0

n∑
i=1

d2
i

vmax
i

dt =
1

L

n∑
i=1

vmax
i τ 2

i .

It should be observed that the bound in Lemma VI.1 is tight for the case of a single camera,

and it is conservative otherwise (see Fig. 4(a) and 5). We now characterize the average detection

time of the Equal-waiting trajectory.

Lemma VI.2 (Equal-waiting trajectory performance) For a set of n cameras with sweeping

times τ1, . . . , τn, let Xeq be the Equal-waiting trajectory defined in Trajectory 1. Then

ADT(Xeq) =
1

2

(
τmax +

1

L

n∑
i=1

vmax
i τ 2

i

)
. (A-1)

Proof: Observe that the function ADT(Xeq) can be written as

ADT(Xeq) =
1

2τmaxL

n∑
i=1

∫ 2τmax

0

∫ ri

`i

(Tdet(It,γ)− t) dγdt.

Let i be odd and recall the description of xi(t) given in Trajectory 1. Due to symmetry, it can

be verified that∫ 2τmax

0

∫ ri

`i

(Tdet(It,γ)− t) dγdt = 2

∫ τmax

0

∫ ri

`i

(Tdet(It,γ)− t) dγdt

Let 0 ≤ t ≤ τmax−τi, and notice that xi(t) = ri. Observe that Tdet(It,γ) = τmax for all γ ∈ [`i, ri),

and Tdet(It,γ) = 0 for γ = ri. Then∫ τmax−τi

0

∫ ri

`i

(Tdet(It,γ)− t) dγdt =
(τmax)2 − τ 2

i

2
di . (A-2)

Let τmax − τi ≤ t ≤ τmax. Observe that Tdet(It,γ) = τmax for γ ∈ [`i, xi(t)), Tdet(It,γ) = 0 for

γ = x(t), and Tdet(It,γ) = 2τmax for γ ∈ (xi(t), ri]. Thus,∫ τmax

τmax−τi

∫ ri

`i

(Tdet(It,γ)− t) dγdt =

∫ τmax

τmax−τi

∫ xi(t)

`i

(τmax − t) dγ +

∫ ri

xi(t)

(2τmax − t) dγdt.



Since xi = ri + (t − (τmax − τi)vmax
i ) (see Trajectory 1), it follows from the above expression

that ∫ τmax

τmax−τi

∫ ri

`i

(Tdet(It,γ)− t) dγdt =

∫ τmax

τmax−τi
(2τmax − t)di − τmax(τmax − t)vmax

i dt

=
1

2
τmaxτ 2

i v
max
i +

1

2
diτ

2
i .

(A-3)

The statement follows by combining (A-2) and (A-3).

We now conclude with a proof of Theorem III.1.

Proof of Theorem III.1: From Lemma VI.1 and VI.2 we have

ADT(Xeq)

ADT∗
=

1

2
+

Lτmax

2
∑n

i=1 v
max
i τ 2

i

=
1

2
+

Lτmax

2
∑n

i=1 diτi
≤ 1

2
+

Lτmax

τmin2
∑n

i=1 di
=
τmax + τmin

2τmin ,

where we have used L =
∑n

i=1 di and τmin ≤ τi for all i ∈ {1, . . . , n}. To show the second

bound notice that

ADT(Xeq)

ADT∗
=

1

2
+

Lτmax

2
∑n

i=1 diτi
=

1

2
+

L

2
∑n

i=1 di
τi
τmax

≤ 1

2
+

L

2dmin ,

where the last inequality is obtained by letting τi/τ
max → 0 for all i except for one segment

(τi/τmax = 1 for some i, and di ≥ dmin). Since L ≤ ndmax we conclude that

ADT(Xeq)

ADT∗
≤ 1

2
+
ndmax

2dmin ≤
(n+ 1)dmax

2dmin .

We now show the last part of the Theorem. Assume that all cameras move at unitary speed

and, without affecting generality, that d1 = dmax. Notice that

ADT(Xeq)

ADT∗
=

1

2
+

Lτmax

2
∑n

i=1 diτi
=

1

2
+

∑n
i=1 d1di

2
∑n

i=1 d
2
i

=
1

2

(
1 +

1 +
∑n

i=2 yi
1 +

∑n
i=2 y

2
i

)
,

where yi = di/d1. Consider the minimization problem

min
{K,x2,...,xn}

K,

subject to 1 +
∑n

i=2 yi ≤ K (1 +
∑n

i=2 y
2
i ) ,

(A-4)

and the associated Lagrangian function [22]

L = K + λ

(
1−K +

n∑
i=2

yi −Ky2
i

)
.



Following standard optimization theory, necessity optimality conditions for the minimization

problem (A-4) are

∂L
∂K

= 0 =⇒ 1− λ
(

1 +
n∑
i=2

y2
i

)
= 0,

∂L
∂yi

= 0 =⇒ λ (1− 2Kyi) = 0, for i ∈ {2, . . . , n},

Complementary slackness: λ

(
1−K +

n∑
i=2

yi −Ky2
i

)
= 0.

From the first and second equations we obtain λ 6= 0 and yi = 1/(2K). Then, the third equation

yields K = (1±√n)/2. Since yi > 0, the statement follows.
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