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Abstract— This work considers the problem of detecting
corrupted components in a large scale decentralized system
via local model information. The electric power system, the
transportation system, and generally any computer or network
system are examples of large scale systems for which external
(cyber) attacks have become an important threat. We consider
the case of linear networks, and we model a cyber attack
as an exogenous input that compromises the behavior of a
set of components. We exploit two distributed methods that
rely on two different sets of assumptions to achieve detection
and identification. The first method takes advantage of the
presence in the network of weakly interconnected subparts, it
requires limited knowledge of the network model, and it affords
local detection and identification of misbehaving components
whose behavior deviates more than a threshold. The second
method relies on the presence of a set of trustworthy leaders
with better computation and communication capabilities. Only
relying on a partial knowledge of the network model, the leaders
cooperatively detect and identify misbehaving components.

I. INTRODUCTION

The increasing reliance on network systems to support
critical operations in defense, electric power management,
and telecommunication raises the issue of reliability and
robustness of such systems against external attacks. Because
of the decentralized nature of network systems, cyber attacks
compromising the availability of resources, the integrity of
data, or the confidentiality of information are easily launched
by a malignant agent. Furthermore, the growing dimension
of network systems forbids any centralized implementation
of an attack detection system, ruling out classical solutions
as presented in [1].

The detection and the identification of misbehaving agents
in a network has been the subject of intensive study among
the computer scientists interested in distributed computing.
In this work, we focus on the fundamental task of computing
an agreement (consensus) on a variable of interest via
distributed computation and in the presence of misbehaving
agents. We consider the extreme case of Byzantine agents,
which are omniscient, and which collude in order to cause
the biggest damage to the network. In the last few years, the
problem of reaching consensus in the presence of misbehav-
ing components has been revisited from a control theoretic
perspective. In these works, the network is assumed to evolve
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as a linear dynamical system, and the misbehaving agents are
modeled as unknown and unmeasurable inputs. In [2] the
problem of detecting and identifying misbehaving agents in
a linear consensus network is first introduced, and a solution
is proposed for the single faulty agent case. In [3], the
authors provide a policy that k malicious agents can follow
to prevent some of the nodes of a 2k-connected1 network
from computing the desired function of the initial state, or,
equivalently, from reaching an agreement. On the contrary,
if the connectivity is 2k+ 1 or more, then the authors show
that generically the set of misbehaving nodes is identified
independent of its behavior, so that the desired consensus is
eventually reached. Finally, in [4] the connection between
the graph connectivity and the zero dynamics of a specific
linear system associated with the network is explained, and
a complete characterization of the policies that make a set
of misbehaving agents undetectable is given. Despite the
advances in the theoretical understanding of the detection and
identification of misbehaving agents, efficient decentralized
algorithms ensuring security against attacks are still missing.
The procedures proposed so far rely indeed on an heavy
combinatorial machinery to locate the attackers, they require
every agent to have complete knowledge of the network
structure, and they need a number of steps proportional to the
cardinality of the network to converge. Therefore, although
provably correct, the existing algorithms for misbehavior
detection and identification are practically applicable only
when the dimension of the network is relatively small.

The main contribution of this work are as follows. We
present two novel methods to reduce the computational cost
of the existing detection and identification algorithms. The
proposed procedures rely on two different sets of assump-
tions, and they can be alternatively employed depending
on the network model. The first method is designed to
exploit the presence in a network of weakly interconnected
subparts. We introduce a notion of network decentralization,
in terms of relatively weakly connected subnetworks, and
derive a sufficient condition on the consensus matrix that
allows to identify a certain class of misbehaving agents under
limited information on the network structure. The second
method admits the presence of a subset of agents with better
computation and communication capabilities (leaders), and
it achieves exact detection and identification even when the
entire network structure is not available to any of the leaders.
Under the assumption that the leaders coincide with the
vertices of a connected communication graph, two algorithms

1The connectivity of a graph equals the maximum number of disjoint
paths between any two vertices of the graph.

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 5961



are proposed to distributively reconstruct the state of the
network in the presence of an unknown input, and to detect
the presence of a misbehaving agent. Both algorithms require
only a limited knowledge of the network structure, and
they are shown to converge in a finite number of steps.
We conclude the paper by showing the effectiveness of our
algorithms through a numerical study.

The rest of the material is organized as follows. Section
II contains the problem setting. Section III describes our
method to exploit the presence of weakly interconnected
subnetworks, and Section IV contains an example. Sections
V introduces the hierarchical structure we propose, and it
contains our main results on the unknown input estimation
problem and on the detection problem. Sections VI and VII
contain respectively a numerical study and our conclusion.

II. DEFINITIONS AND PRELIMINARY CONCEPTS

Let G denote a directed graph with vertex set V =
{1, . . . , n} and edge set E ⊆ V × V . The (in)-neighbor set
of a node i ∈ V , i.e., all the nodes j ∈ V such that the pair
(j, i) ∈ E, is denoted with Ni. We let each vertex j ∈ V
denote an autonomous agent, and we associate a real number
xj with each agent j. Let the vector x contain the values xj .
A linear consensus algorithm over G is an update rule for x
and it is described by the linear discrete time system

x(t+ 1) = Ax(t),

where the matrix A is row-stochastic and primitive, and
where its (i, j)-th entry is nonzero if and only if the pair
(j, i) belongs to the edge set of G. We allow for some agents
to update their state differently than specified by the matrix
A by adding an exogenous input to the consensus system.
Let ui, i ∈ V , be the input associated with the i-th agent,
and let u be the vector of the functions ui. The consensus
system becomes x(t+ 1) = Ax(t) + u(t).

Definition 1 (Misbehaving agent): An agent j is misbe-
having if there exists a time t ∈ N such that uj(t) 6= 0, and
it is well-behaving otherwise.
Let K = {i1, i2, . . . } ⊆ V denote the set of misbehaving
agents, let ei be the i-th vector of the canonical basis,
and let BK = [ei1 ei2 · · · ]. The consensus system with
misbehaving agents K assumes the form

x(t+ 1) = Ax(t) +BKuK(t).

We associate an output matrix Cj to each agent j, which
describes the information about the state of the network that
is directly available to j. In particular, yj(t) = Cjx(t), Cj =
[en1

. . . enp
]T , and {n1, . . . , np} = Nj . Throughout the

paper, let Im(A) and Ker(A) denote the range space and
the null space defined by the matrix A.

III. LOCAL DETECTION AND IDENTIFICATION

In this section, after reviewing a basic filter approach to
security, we characterize a topological condition that allows
for local detection and identification of misbehaving agents.
For ease of notation, we consider now the single misbehaving
agent case. Let j be a well-behaving agent, and consider the

problem of deciding whether the agent i1 or the agent i2 is
misbehaving. Let the linear discrete time filter

wi1(t+ 1) = Fi1wi1(t) + Ei1yj(t),

ri1(t) = Mi1wi1(t) +Hi1yj(t),
(1)

be such that ri1 6= 0 if and only if i1 is misbehaving. Then,
the signal ri1 allows to uniquely identify the misbehaving
agent i1 against the well-behaving agent i2. By implementing
a similar filter for each possible pair2 of misbehaving agents,
the presence of the misbehaving agent i1 is finally assessed
by the agent j. A technique to design the filter (1) can be
found in [4], where the knowledge of the network matrix A
by the well-behaving agent j is assumed.

We consider now the case in which each well-behaving
agent has a partial knowledge of the network model, and it
cannot therefore design the filter presented in (1). Let A be
a consensus matrix, and observe that it can be written as
Ad + ε∆, where ‖∆‖∞ = 2, 0 ≤ ε ≤ 1, and Ad is block
diagonal with a consensus matrix on each of the N diagonal
blocks. For instance, let A = [akj ], and let V1, . . . , VN be
the subsets of agents associated with the blocks. Then the
matrix Ad = [ākj ] can be defined as

(i) ākj = akj if k 6= j, k, j ∈ Vi, i ∈ {1, . . . , N}, and
(ii) ākk = 1−

∑
j∈Vi\{k} akj , and

(iii) ākj = 0 otherwise.
Moreover, ∆ = 2(A− Ad)/‖(A− Ad)‖∞, and ε = 1

2‖A−
Ad‖∞. Note that, if ε is “small”, then the agents belonging
to the same group are strongly interacting, while the agents
belonging to different groups are weakly coupled (cf. Fig.
1). We assume the groups of strongly interacting agents to
be given, and we leave the problem of determining such
partitions as the subject of future research, for which the
ideas presented in [5] constitute a very relevant result.

We now focus on the h-th block. Let K = v∪ l be the set
of misbehaving agents, where v = Vj∩K, and l = K\v. Let
j ∈ Vh, and consider the system (Ad, Bv, Cj). Recall from
[4] that the misbehaving agents v are identifiable by agent j
if the inputs uv and ui can be decoupled, for all i ∈ V \ v.
To be more precise, let + denotes the time shift operation,
and consider the systems[

x
wv

]+

=

[
Ad 0
EvCj Fv

] [
x
wv

]
+

[
Bv Bi

0 0

] [
uv
ui

]
,

rv =
[
HvCj Mv

] [ x
wv

]
,

(2)

and3[
x
wi

]+

=

[
Ad 0
EiCj Fi

] [
x
wi

]
+

[
Bv Bi

0 0

] [
uv
ui

]
,

ri =
[
HiCj Mi

] [ x
wi

]
.

(3)

2The design of the filter matrices depends upon the pair (i1, i2).
3The filter matrices Fv , Fi, Ev , Ei, Hv , Hi, Mv , and Mi are designed

to decouple the input uv and ui [4].
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The misbehaving agents v are identifiable by agent j if, for
all i ∈ V \ v, we have rv 6= 0 and ri = 0 whenever uv 6= 0.
It should be noticed that, since Ad is block diagonal, the
residual generators to identify the set v can be designed
by only knowing the h-th block of Ad, and hence only a
finite region of the original consensus network. Moreover, the
misbehaving agents l do not affect the residuals ri, i ∈ Vh,
so that the agents v are identifiable by agent j if, for all
i ∈ Vh \ v, we have rv 6= 0 and ri = 0 whenever uv 6= 0.
By applying the above residual generators to the consensus
system Ad + ε∆ with misbehaving agents K we get[

x̂
ŵv

]+

= Āε,v

[
x̂
ŵv

]
+

[
Bv Bl Bi

0 0 0

] uv
ul
ui

 ,
r̂v =

[
HvCj Mv

] [ x̂
ŵv

]
,

and[
x̂
ŵi

]+

= Āε,i

[
x̂
ŵi

]
+

[
Bv Bl Bi

0 0 0

] uv
ul
ui

 ,
r̂i =

[
HiCj Mi

] [ x̂
ŵi

]
,

where

Āε,v =

[
Ad + ε∆ 0
EvCj Fv

]
, Āε,i =

[
Ad + ε∆ 0
EiCj Fi

]
.

Because of the matrix ∆ and the input ul, the residual ri
is generally nonzero even if ui = 0. Notice that, however,
the misbehaving agents v remain identifiable by j if for each
i ∈ Vj\v it holds ‖r̂v‖∞ > ‖r̂i‖∞ for all admissible uv 6= 0.

Theorem 3.1 (Local identification): Let V be the set of
agents, let K be the set of misbehaving agents, and let
Ad+ε∆ be a consensus matrix, where Ad is block diagonal,
‖∆‖∞ = 2, and 0 ≤ ε ≤ 1. Let each block h of Ad

be a consensus matrix with agents Vh ⊆ V , and with
connectivity |K ∩Vh|+ 1. There exists α > 0 and umax ≥ 0,
such that, if each input signal ui, i ∈ K, takes value in
U = {u : εαumax ≤ ‖u‖∞ ≤ umax}, then each well-behaving
agent j ∈ Vh can identify in finite time the faulty agents
K ∩ Vh.

Proof: We refer the reader to [6] for a proof of the
results contained in this paper.

Notice that the constant α in Theorem 3.1 can be com-
puted by bounding the infinity norm of the impulse response
of the residual generators. An example follows.

IV. AN EXAMPLE OF LOCAL IDENTIFICATION

We show in this section the advantages of the clustered
setup described in Section III. Consider the consensus net-
work in Fig. 1, where A = Ad + ε∆, ε ≤ 1, and

Ad =


1
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3
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4
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4
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4
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1
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1
4

 ,∆ =


0 0 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 0 0 0 1
0 0 1 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 −1

 .

1

5

6

4

7

2

3
ε

ε

Fig. 1. A consensus network with two weakly interconnected subnetworks.

Let K = {2, 7} be the set of misbehaving agents,
and let ‖x(0)‖∞ ≤ 1. Consider the agent 1, and let
(F2, E2,M2, H2) and (F3, E3,M3, H3) be, respectively, the
residual generators as in (2) and (3), where

F2 =
[
−1/3 −1/3
1/3 1/3

]
, E2 =

[
−2/3 0 −1/3
2/3 0 1/3

]
,

M2 =
[

1 0
0 −1

]
, H2 = [ 1 0 0

0 1 0 ] ,

and

F3 =
[
−1/3 1/3
−1/3 1/3

]
, E3 =

[
−2/3 −1/3 0
−2/3 −1/3 0

]
,

M3 =
[−1 0

0 1

]
, H3 =

[−1 0 0
0 0 1

]
.

Let ĥ3
2 (resp. ĥ3

7) be the impulse response from the input
u2 (resp. u7) to r̂3, and let u1

2 (resp. u1
7) denote the input

signal u2 (resp. u7) up to time 1. Because the filters
(F2, E2,M2, H2) and (F3, E3,M3, H3) converge in two
steps,4 the misbehaving agent can be identified after 2 time
steps. After some computation, denoting ? the convolution
operator, the residual associated with the agent 3 is

r̂3(1) = [ H3C1 M3 ]
[
Ad+ε∆ 0
E3C1 F3

]2 [ x(0)
0

]
+ ĥ3

2 ? u
1
2 + ĥ3

7 ? u
1
7

or, equivalently,

r̂3(1) = ε [ H3C1 M3 ]
[
Ad∆+∆Ad+ε∆2 ∆B2 ∆B7

E3C1∆ 0 0

] [ x(0)
u2(0)
u7(0)

]
.

Analogously, we have

r̂2(1) = ε [ H2C1 M2 ]
[
Ad∆+∆Ad+ε∆2 ∆B2 ∆B7

E2C1∆ 0 0

] [ x(0)
u2(0)
u7(0)

]
+ [ H2C1 M2 ]

[
AdB2 B2

E2C1B2 0

] [ u2(0)
u2(1)

]
.

The agent 1 is able to identify the misbehaving agent 2 if
‖r̂2(1)‖∞ > ‖r̂3(1)‖∞ independently of u1

2 and u1
7. Let the

inputs u2 and u7 take value in U = {u : umin = εαumax ≤
‖u‖∞ ≤ umax}. Then, it can be verified that ‖r̂2(1)‖∞ >
‖r̂3(1)‖∞ if

min
u2∈U

∥∥∥[ H2C1 M2 ]
[

AdB2 B2

E2C1B2 0

] [ u2(0)
u2(1)

]∥∥∥
∞
> 11εumax,

and, after some computation, if 47 < α < ε−1, in which
case we conclude that the agent 1 correctly identifies the
misbehaving agent 2. The analysis of other possible pair of
misbehaving agents can be done analogously.

4The eigenvalue 0 in F2 and F3 has algebraic (resp. geometric) multi-
plicity 2 (resp. 1).
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V. HIERARCHICAL ESTIMATION AND DETECTION

The previous section shows how to detect a misbehaving
agent under limited knowledge of the overall system. The
proposed algorithm relies on the key assumption that the
magnitude of the misbehaving signal is within an interval
whose size strictly depends on the parameters of the system.
In this section we present an alternative method that con-
strains neither the input function, nor the network topology,
while maintaining the assumption of local knowledge. We
introduce a hierarchical structure that reduces, however, the
decentralization of the network by allowing for the presence
of a subset of nodes (leaders) with better communication and
computation capabilities. Before considering the detection
problem, we exploit the presence of this hierarchical structure
for solving the state estimation problem in a linear system
with unknown inputs. To be more precise, in Subsection V-A
we propose an algorithm that allows each leader to recover
the state x(0) in a finite number of steps. In Subsection
V-B we modify the estimation algorithm for the detection
of misbehaving agents. While illustrating our algorithms we
characterize also the local knowledge of the network required
by each leader to accomplish the state estimation and the
detection goals.

A. Hierarchical unknown input state estimation

Consider the linear network5 x(t + 1) = Ax(t) + Bu(t)
and let G = (V,E) be the graph associated with the matrix
A. Let V (`) = {`1, . . . , `m} ⊆ V denote the subset of the
leaders. We assume the presence of a directed graph G(`) =
(V (`), E(`)), where E(`) ⊆ V (`)×V (`) describes the feasible
communications among the leaders. We assume that G(`)

is strongly connected, and we refer to it as to the leader
graph. Let N (`)

i denote the neighbor set of the leader `i
in G(`). As in Section II, the information of the state x(t)
directly available to the leader `i is given by yi(t) = C`ix(t),
where C`i is defined according to the neighbor set N`i in
G. The composite information available to the set of leaders
can be conveniently described by the output matrix C(`) =
[CT

`1
· · · CT

`m
]T . We now show how our hierarchical setup

can be conveniently used to solve the unknown input state
estimation problem, in which the input matrix B is known
by the leaders, while the input signal u(t) is unknown and
unmeasurable. For s ∈ N, let

Os
i =


C`i

C`i
A

C`i
A2

...
C`i

As−1

 , Y s
i =


yi(0)
yi(1)
yi(2)

...
yi(s−1)

 ,

5The results presented in this section hold for general linear networks,
i.e., they are not restricted to consensus dynamics.

and

F s
i =


0 0 ··· ··· 0

C`i
B 0

. . . . . . 0

C`i
AB C`i

B
. . . . . .

...
...

. . . . . . . . .
...

C`i
As−2B C`i

Ani−1B ··· C`i
B 0

 .
Finally, let

Os =


Os

1

Os
2

...
Os

m

 , Y s =


Y s
1

Y s
2

...
Y s
m

 , F s =


F s

1

F s
2

...
F s

m

 .
Note that Y s = Osx(0)+F sUs, where Us contains the input
sequence from time 0 up to time s− 1. From [7] we know
that a system is finite-time unknown input observable (UIO),
i.e., the initial state x(0) can be recovered without knowing
the input signal, if and only if there exists an integer d < |V |
such that

Ker(Od) = 0 and Im(Od) ∩ Im(F d) = 0. (4)

In particular conditions (4) imply that x(0) can be computed
as the solution of the system Y d =

[
Od F d

] [
xT UT

]T
.

To see this, let In denote the n-dimensional identity matrix,
and observe that

Ker
[
Od F d

]
⊥ Im

([
In
0

])
= 0, (5)

where, given two subspaces A and B, A ⊥ B denotes the
orthogonal projection of A on B. Let[

x̂
û

]
:=
[
Od F d

]†
Y d, (6)

where † denotes the pseudo-inverse operation, then, from (5),
we have x̂ = x(0). Consider the basic algebraic equality

Ker([Od F d]) = ∩mi=1 Ker([Od
i F d

i ]), (7)

which leads to the useful geometric interpretation of (6) that
is next described. For i ∈ {1, . . . ,m}, let Si =

[
x̂i

ûi

]
+ Vi,

where
[
x̂i

ûi

]
= [Od

i F d
i ]†Y d

i and Vi = Ker([Od
i F d

i ]). Then
x coincides with the projection on the subspace Im

([
In
0

])
of the intersection of the affine subspaces {S1, . . . ,Sm}. It
follows indeed from (5) and (7) that ∩mj=1Si ⊥

[
In
0

]
results

in a vector whose first n components coincide with x(0).
Based on the above discussion, in Algorithm 1 we propose
a distributed procedure that allows each leader to compute
the vector x, and that only requires local knowledge of the
network. Let diam(G(`)) denote the diameter of G(`).

Theorem 5.1 (Convergence of Algorithm 1): Let
(A,B,C(`)) be the unknown input linear system associated
with the graph G and the leader graph G(`). Assume that

(i) G(`) is strongly connected, and
(ii) there exists an integer d such that Ker(Od) = 0 and

Im(Od) ∩ Im(F d) = 0,6 and

6This condition ensures the solvability of the unknown input state
estimation problem [7].
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Algorithm 1: Decentralized state estimation (leader i)

Input : Od
i , Y d

i , F d
i ;

Require : Ker(Od) = 0, Im(Od) ∩ Im(F d) = 0;

set [x̂Ti ûTi ]T = ([Od
i F d

i ])†Y d
i , Vi = Ker([Od

i F d
i ]);

transmit Si = [x̂Ti ûTi ]T + Vi;
while Vi ⊥ Im([In 0]T ) 6= 0 do

for `j ∈ N (`)
i do

receive [x̂Tj ûTj ]T and Vj ;
set [x̂Ti ûTi ]T = [x̂Ti ûTi ]T ⊥ (Si ∩ S)|,
Vi = Vi ∩ Vj ;

transmit Si = [x̂Ti ûTi ]T + Vi;
return x̂i;

(iii) each leader i knows the matrices Od
i and F d

i .
The Decentralized state estimation algorithm provides each
leader with the system initial state in diam(G(`)) steps.

Remark 1 (Network knowledge): The computation of the
matrices Od

i , i ∈ V (`), does not require the knowledge of
the entire network model. Given a graph, let a path be a
sequence of vertices, such that any two consecutive vertices
in the sequence are connected through an edge. Let the length
of a path equal the number of its edges. Let A be the network
matrix, and observe that the (i, j)-th entry of Ak, with k ∈ N,
is nonzero if and only if there exists a path of length k
connecting the agent j to i. Let Nd

`i
⊆ V denote the set of

agents connected to `i through a path of length at most d. It
can be shown that the matrix Od

i can be computed by only
knowing the sub-matrix of A with rows and columns in Nd

`i
,

and hence only a subnetwork of the consensus network.
We conclude this section with a remark on the convergence

of Algorithm 1. The Decentralized state estimation algorithm
may converge before diam(G(`)) iterations. For instance, if
the pair (A,C`1) is observable, then, with a sufficiently large
number of observations d, the leader `1 is able to reconstruct
the state without communicating with the other leaders. Note
however that a larger d requires the leaders to know a larger
subnetwork, and, as it is shown in Section VI, it introduces
numerical difficulties in the execution of our algorithm.

B. Hierarchical detection

We consider now the problem of detecting the presence
of misbehaving agents. Because the misbehaving set is a
priory unknown, the input matrix B and hence the matrix
F d are to be considered unknown as well. Let Ud =
[u(0)T . . . u(d − 1)T ]T , and assume that each leader `i
has collected the observations y`i(0), . . . , y`i(d − 1). In
Algorithm 2 we propose a procedure that allows the leaders
to detect if F dUd 6= 0 without using the matrix F d.

Theorem 5.2 (Convergence of Algorithm 2): Let
(A,B,C(`)) be the unknown input linear system associated
with the graph G and the leader graph G(`). Let u be the
misbehaving input, and let Ud = [u(0)T · · · u(d− 1)T ]T ,
with d ∈ N. Assume that

(i) G(`) is strongly connected, and

Algorithm 2: Decentralized detection (leader i)

Input : Od
i , Y d

i ;
Require : Im(Od) ∩ Im(F d) = 0;

set Si = (Od
i )†Y d

i + Ker(Od
i );

transmit Si;
for diam(G(`)) iterations do

for j ∈ N (`)
i do

receive Sj ;
set Si = Si ∩ Sj ;

transmit Si;
if Si = ∅ then return 1
else return 0

l1 l2 l3

l4 l5 l6

l7 l8 l9

Fig. 2. A grid partitioned into 9 cblocks. Each block is identical and it
contains 9 vertices. The central vertex of a block corresponds to the leader.

(ii) Im(Od) ∩ Im(F d) = 0,7 and
(iii) each leader i knows the matrices Od

i .
Then the Decentralized detection algorithm allows each
leader to detect if F dUd 6= 0 in at most diam(G(`)) steps.

The following remarks are in order. First, the condition
Ker(Od) = 0 is not required by the Decentralized detection
because only the presence of an unknown input has to be
assessed. Second, in order to detect a misbehaving input that
becomes nonzero at an arbitrary instant of time, the detection
algorithm needs to be executed iteratively. Precisely, at each
time t ≥ d−1, the consistency of the system Y d

t = Odx(t−
d + 1) needs to be checked with the detection algorithm,
where Y d

t = [y(t− d+ 1)T · · · y(t)T ]T , y(t) = C(`)x(t),
and Ud

t = [u(t − d + 1)T · · · u(t)T ]T . Third and finally,
for the detection to be possible, there must exist d ∈ Z and
t ≥ d − 1 such that F dUd

t 6= 0. Such condition coincides
with the left-invertibility of the linear network, which has to
be assumed by any detection method [7].

VI. AN EXAMPLE OF HIERARCHICAL ESTIMATION AND
DETECTION

We show in this section the main advantages over classical
solutions of the hierarchical structure presented in Section V.

7This condition ensures the detectability of the misbehaving input by
means of d measurements [7].
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Let the network G be a two dimensional lattice with (ab)2

agents, and let the network be partitioned into b2 identical
blocks containing a2 vertices each. An example with b = 3
and a = 3 is in Fig. 2. Let A describe a linear consensus
algorithm on G. Let Vi, with i ∈ {1, . . . , b2}, denote the
set of agents belonging to the i-th block, and let the central
vertex li ∈ Vi represent the i-th leader. We assume that the
leaders li and lj are connected through an undirected edge
if there exists h1 ∈ Vi and h2 ∈ Vj that are connected in G.
We focus on leader l1 and we analyze the performance of
Algorithm 1 and 2 as a function of the parameters a and b.

A. State estimation

We compare here the performance of Algorithm 1 with
the method proposed in [8], where the state is recovered by
relying on the observability property of the pair (A,Cl1). We
show that, although theoretically correct, the latter method
suffers from numerical instability when the dimension of A
grows. Let a = 3 and b = 3, and compute the condition
number8 of the observability matrix of the pair (A,C

(`)
k ),

where C(`)
k is the composite output matrix associated with

the leader set V (`)
k = {l1, . . . , lk}, k = 1, . . . , 9. As we

see from Table I, the condition number rapidly decreases
by increasing the number of leaders. To be more precise in
the case of V (`)

1 the condition number of the observability
matrix results to be ∼ 1014 so that the problem of estimating
the state only relying on the measurements of l1 is very
ill-conditioned. When the leader set is V (`)

9 , the condition

TABLE I

Leader Condition number Size (a) Size (b) Measurement (d)
V

(`)
1 ∼ 1014 3 1 2

V
(`)
2 ∼ 107 3 3 3

V
(`)
3 ∼ 105 3 5 3

V
(`)
4 ∼ 104 3 7 3

V
(`)
5 ∼ 104 5 1 6

V
(`)
6 ∼ 103 5 3 7

V
(`)
7 ∼ 103 5 5 7

V
(`)
8 ∼ 102 5 7 7

V
(`)
9 ∼ 102 5 9 7

number becomes ∼ 102, so that each leader can reliably
estimate the correct state via distributed computation by
means of Algorithm 1. We now let |V (`)| = b2 and we
show a scalability property of Algorithm 5.1. Let d be the
smallest number of measurements that ensures the full rank
of the observability matrix, i.e., such that Ker(Od) = 0.
Observe from Table I that, when a is fixed and b grows,
the number d remains constant. We conclude that, for the
particular network structure considered in this section, the
part of the network that a leader needs to know to estimate
the network state does not depend upon the cardinality of
the network.

8The condition number equals the ratio of the largest singular value to the
smallest. Large condition numbers indicate a nearly singular matrix. Here,
the pair (A,C

(`)
k ) is assumed to be observable for each k ∈ {1, . . . , 9}.
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Fig. 3. The figure shows the number of iterations required for the detection
of a misbehaving agent by means of Algorithm 2. Both the cases of a = 3
(squares) and a = 5 (circles) are plotted as a function of b.

B. Detection

We analyze here the performance of Algorithm 2. Let the
agent i ∈ V \V (`) be misbehaving, and let the input sequence
{ui(t), t ∈ Z≥0} be an i.i.d. sequence taking value in the
interval (0, 1). For each a ∈ {3, 5} and each b ∈ {2, . . . , 12}
we consider 20 randomly chosen consensus weights, we
locate b2 leaders (cfr. Fig. 2), and we choose the misbehaving
agent i. The first instant of time at which a leader detects the
presence of i by means of Algorithm 2 is reported in Fig.
3. Note that the detection time remains constant when the
dimension of the network grows beyond a threshold. Hence,
Algorithm 2 converges before diam(G(`)) iterations, and it
exhibits therefore desirable scalability properties.

VII. CONCLUSION

The problem of estimating the state of a linear network
and the problem of detecting misbehaving parts in a linear
network have been considered. Whereas classical approaches
require a complete knowledge of network model, our meth-
ods only assume partial knowledge of the system structure.
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