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Abstract— This paper studies the controllability degree of
complex networks as a function of the network weights and
the location and number of control nodes. We quantify the
controllability degree of a network with the worst-case control
energy to drive the network to an arbitrary configuration.
We show that isotropic networks are difficult to control,
as the control energy grows exponentially with the network
cardinality when the number of control nodes remains constant.
Conversely, we prove that sufficiently anisotropic networks are
easy to control, as the control energy is bounded independently
of the network cardinality and number of control nodes.

I. INTRODUCTION

Control of a network refers to the possibility of designing
localized interventions to enforce a chosen configuration and
to promote a desirable global behavior. Most real-world net-
works in social, biological and technological domains exhibit
complex topological features and dynamics, and it remains
an outstanding problem to characterize to what extent these
networks can be reprogrammed by few control nodes.

In this work we study the controllability degree of a net-
work as a function of its structural properties. In particular,
we quantify the controllability degree of a network with the
minimum worst-case energy to reach a desired state [1], and
we investigate how the controllability degree depends on
the isotropic nature of the network. Inspired by studies on
mechanical properties of materials, we define a network to be
isotropic if it allows a (control) signal to propagate equally in
all directions, and to be anisotropic otherwise. The network
weights determine the anisotropic degree of a network. Our
study shows that anisotropic networks are easier to control
than isotropic networks, and that the controllability degree
may scale differently with the network dimension depending
on the degree of anisotropy. As many real-world systems
feature anisotropic structures, our results support the thesis
that certain complex networks may be efficiently controlled
by few carefully selected control nodes [2].
Related work The notion of controllability of dynamical
systems (see [1], [3]) has found renewed interest in the
context of complex networks, where classic methods are
often inapplicable due to the system dimension, and where
a graph-inspired understanding of controllability rather than
a matrix-theoretical one is preferable. In [4] controllability
of complex networks is addressed from a graph-theoretic
perpective by employing tools from structured control theory
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[3]. As discussed in [5], the approach to controllability
undertaken in [4] has several limitations, including the fact
that the presented results are generic [6], and do not account
for the network weights. As we show in this work, networks
with the same interconnection structure but different weights
may exhibit drastically different controllability properties.

The classic binary notion of controllability proposed in [7]
and adopted in most works analyzing controllability of com-
plex networks, including [8], [9], does not characterize the
difficulty of the control task. In practice, although a network
may be controllable by any single node, the actual control
input may not be implementable due to actuator constraints
and limitations. Instead, we adopt a quantitative measure of
network controllability, and we show how the controllability
degree scales with the network dimension depending on the
network weights and parameters. Surprisingly, we find that
for certain networks the controllability degree is independent
of the network cardinality and number of control nodes.

A quantitative approach to network controllability has re-
cently been adopted in [10], [11], [12]. We depart from these
works by studying the relation between the controllability
degree of a network and its isotropic structure. Finally, the
observability problem of complex networks is dual to the
controllability problem, and equally important [13], [14].
Paper contributions The main contribution of this paper
is to prove that certain complex networks can be controlled
with finite energy independently of the network cardinality
and number of control nodes. We show that the controlla-
bility degree scales differently with the network cardinality
depending on a notion of network anisotropy, which we
characterize as a function of the network weights. Results are
first derived for general networks with a technical assumption
on the number and location of control nodes, and then
specialized to the case of Toeplitz line networks with single
control node. A numerical study shows that our results may
hold also when our assumptions are violated, suggesting that
anisotropic networks may in fact be easier to control.

II. CONTROLLABILITY OF COMPLEX NETWORKS

Consider a directed graph G = (V, E), with V =
{1, . . . , n} and E ⊆ V × V . Let A ∈ Rn×n be the weighted
adjacency matrix of G, and let K ⊆ {1, . . . , n} be the set
of control nodes. Let path(i, j) denote a path on G from
node i to node j, and let |path(i, j)| be the number of edges
of path(i, j). Define the distance between a subset of nodes
S ⊆ V and the control set K as

dist(S,K) = min{|path(i, j)| : i ∈ K, j ∈ S}.
Without affecting generality, we order the nodes according to
their distance from the set of control nodes. In particular, we
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define N ∈ N so that V = ∪Ni=1Vi, with Vi∩Vj = ∅ if i 6= j,
and dist(Vi,K) = i− 1 for all i ∈ {1, . . . , N}. According to
the partition {V1, . . . ,VN}, the adjacency matrix reads as

A :=


D1 B1 0 · · · 0
C1 D2 B2 · · · 0

0 C2
. . . . . .

...
...

. . . . . . DN−1 BN−1

0 · · · · · · CN−1 DN

 , (1)

where Di ∈ R|Vi|×|Vi| for i ∈ {1, . . . , N}, Bi ∈ R|Vi|×|Vi+1|

and Ci ∈ R|Vi+1|×|Vi| for i ∈ {1, . . . , N − 1}, and |Vi|
denotes the cardinality of the set Vi.

We make the following assumption:
(A1) the matrices Ci are of full row rank, that is,

Ker(CT
i ) = 0 for all i ∈ {1, . . . , N − 1};

Remark 1: (Selection of control nodes) Assumption (A1)
requires the selection of sufficiently many control nodes to
be satisfied. Such a selection is straightforward for certain
regular networks (see for instance Fig. 1(a)), and it remains
the subject of ongoing research for arbitrary topologies.
Observe that a necessary condition for (A1) to be satisfied
is that |Vi+1| ≤ |Vi| for all i ∈ {1, . . . , N − 1}. �

Let the T -steps controllability matrix CK,T and the T -steps
controllability Gramian WK,T be defined, respectively, by

CK,T :=
[
BK ABK · · · AT−1BK

]
, and

WK,T := CK,TCTK,T ,
where BK ∈ Rn×m is the network input matrix. Notice that,
due to our partitioning scheme in (1),

BK :=
[
I 0 · · · 0

]T
. (2)

Let † denote the Moore-Penrose pseudoinverse operation
[15], and define the network parameters

α := max{‖Di‖2 : i ∈ {1, . . . , N}},
β := max{‖Bi‖2 : i ∈ {1, . . . , N − 1}}, and

γ := max{‖C†i ‖2 : i ∈ {1, . . . , N − 1}}.
(3)

We next characterize the controllability degree of a net-
work as a function of the network parameters α, β and γ.
Let λmin(WK,T ) be the smallest eigenvalue of the T -steps
controllability Gramian, and recall that λ−1

min(WK,T ) is a tight
bound for the minimum control energy to reach any unit-
norm state [5] from the zero state.

Theorem 2.1: (Controllability degree of block tridiagonal
networks) Consider a network G with partition {V1, . . . ,VN}
and parameters α, β and γ defined in (3).

(i) If ‖A‖2 < 1, then for all control sets K and T ∈ N

λmin(WK,T ) ≤ Ω
n
|K| ,

where Ω ∈ R>0 is a constant depending only on ‖A‖2.
(ii) If γ(1 + α + β) < 1, then for the control set
K = {1, . . . , |V1|} and for all T ∈ N≥N

λmin(WK,T ) ≥ Ψ,

(a) Rectangular grid (b) Square grid

Fig. 1. Fig. 1(a) and Fig. 1(b) show the asymmetric rectangular and square
grid networks considered in Example 1. Control nodes are marked in black.
Network weights are specified in Fig. 2. Fig. 3(a) show the controllability
degree of the rectangular grid as the number of column increases. Fig. 3(b)
show the controllability degree of the square grid as its dimension increases.
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Fig. 2. Fig. 2(a) and Fig. 2(b) show the edges weight of the networks in
Fig. 1(a) and Fig. 1(b), respectively. Weights in the network in Fig. 1(b) are
adjusted so that there exists a path from the control node through all other
nodes, where the incoming edge of each non-control node in the path has
value 1.05. Notice that both networks are strongly anisotropic, as signals
do not propagate uniformly throughout the network.

where Ψ ∈ R>0 is a constant depending only on α, β,
and γ.

A proof of Theorem 2.1 is postponed to the Appendix.
Theorem 2.1 implies that if ‖A‖2 < 1, then the control-
lability degree decreases exponentially with the network
cardinality. This behavior is not surprising, and in fact it
is also highlighted in [5] for all symmetric networks and
for certain asymmetric networks. On the other hand, if the
network parameters satisfy the condition γ(1 + α+ β) < 1,
then the controllability degree admits a positive lower bound,
independent of the network cardinality and number of control
nodes. Because the controllability degree of symmetric net-
works decreases exponentially with the network cardinality
when the number of control nodes remains constant [5],
Theorem 2.1 implies that certain asymmetric networks are
easier to control than symmetric networks.

Example 1: (Controllability degree of rectangular grids)
Consider the rectangular grid in Fig. 1(a). Let the network
weights be as specified in Fig. 2(a), and let the control nodes
be the nodes at the left side of the grid. It can be verified
that the network in Fig. 1(a) satisfies assumption (A1) and
condition (ii) in Theorem 2.1. As shown in Fig. 3(a), the
smallest eigenvalue of the controllability Gramian admits a
positive lower bound independent of the network cardinality.

Consider now the square grid in Fig. 1(b). Let the network
weights be as specified in Fig. 2(b), and assume the presence
of 1 control node as illustrated in Fig. 1(b). It can be verified
that assumption (A1) is not satisfied. Yet, as shown in Fig.
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Fig. 3. Fig. 3(a) shows the controllability degree of the rectangular network
in Fig. 1(a) with m = 5 rows and n ∈ {1, . . . , 25} columns. Fig. 3(b)
shows the controllability degree of the square grid in Fig. 1(b) of dimension
n ∈ {1, . . . , 10}. Network weights are specified in Fig. 2. As predicted by
Theorem 2.1 for rectangular grid networks, the controllability degree admits
a positive lower bound independent of the network cardinality.

3(b), the weights in Fig. 2(b) numerically ensure that the
smallest eigenvalue of the controllability Gramian admits a
positive lower bound independent of the network size. �

We next investigate the case of Toeplitz line networks.
Let G` = (V`, E`) be a Toeplitz line network, where V` =
{1, . . . , n} and (i, j) ∈ E whenever |i − j| ≤ 1. Let A` be
the weighted adjacency matrix of G`, and assume that A` is a
Toeplitz matrix [15] ordered as in (1) with N = n, Di = a,
Bi = b, and Ci = c for all indices i. For this partitioning
to be possible, the network contains only one control node,
which coincides with node 1 or node n.

Theorem 2.2: (Controllability degree of Toeplitz line net-
works) Consider a Toeplitz line network G` with weights
a ∈ R>0, b ∈ R>0 and c ∈ R>0. Assume a < 1.

(i) If one of the following condition is satisfied:
a) a+ b+ c < 1,
b) ab < c < b

a and a ≥
√
bc,

c) bana < c < b
ana and a <

√
bc with

na = 2
π arccos

(
−a√
bc

)
− 1,

then for all control sets K and T ∈ N

λmin(WK,T ) ≤ Ω
n
|K| ,

where Ω ∈ R>0 is a constant depending only on a, b,
and c.

(ii) If one of the following condition is satisfied:
a) a(b+c)

4bc ≤ 1 and 1 < (b− c)2(1− a2

4bc ),

b) a(b+c)
4bc > 1 and 1 ≤ c+ b− a,

then for the control set K = {1} or K = {n} and for
all T ∈ N≥n

λmin(WK,T ) ≥ Ψ,
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Fig. 4. This figure shows the controllability degree of Toeplitz line
networks with a = 0.3 as a function of the network weights b and c
(see Theorem 2.2). The region identified by blue squares includes networks
with bounded controllability degree. The region identified by black dots
includes networks whose controllability degree decreases exponentially with
the network cardinality. The characterization of the controllability degree of
networks outside the two regions remains an outstanding problem.

where Ψ ∈ R>0 is a constant depending only on a, b,
and c.

A proof of Theorem 2.2 is postponed to the Appendix.
The conditions in Theorem 2.2 can be visualized in the
parameters space. See Fig. 4 for a map of the controllability
degree of Toeplitz line networks. It should be observed that
the parameter c must be sufficiently larger than the parameter
b for the network to feature a bounded controllability degree.
Such networks are anisotropic, as (control) signals do not
propagate uniformly along all directions. If the degree of
anisotropy is not sufficiently large, (control) signals are
attenuated along the network, and the controllability degree
decreases with the network cardinality. We conclude this
section by specializing Theorem 2.2 to the case a = 0,
which is illustrated in Fig. 5. Fig. 5 suggests that a sharp
controllability transition from networks with bounded con-
trollability degree to networks with exponentially decaying
controllability degree may occur in certain regions of the
parameters space. It remains an outstanding problem to
formally prove that this controllability transition occurs.

Corollary 2.3: (Controllability transition for Toeplitz line
networks with a = 0) Consider a Toeplitz line network G`
with weights a = 0, b ∈ R>0 and c ∈ R>0.

(i) If c < 1 − b or c ≤ b, then for all control sets K and
T ∈ N

λmin(WK,T ) ≤ Ω
n
|K| ,

where Ω ∈ R>0 is a constant depending only on b
and c.

(ii) If (b−c)2 > 1, then for either the control set K = {1}
or K = {n} and for all T ∈ N

λmin(WK,T ) ≥ Ψ,

where Ψ ∈ R>0 is a constant depending only on b
and c.

III. CONCLUSION

In this paper we characterize the controllability degree of
a network as a function of the network weights. We show
that the controllability degree of networks with identical
topologies but different weights may scale differently with
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Fig. 5. This figure shows the controllability degree of Toeplitz line
networks with a = 0 as a function of the network parameters b and c (see
Corollary 2.3). The region identified by blue squares includes networks with
bounded controllability degree. The region identified by black dots identifies
networks whose controllability degree decreases exponentially with the
network cardinality. This numerical study suggests that a controllability
transition may occur at the points b = 0, c = 1 and b = 1, c = 0.

the network cardinality, and this transition may be sharp in
the network parameters space. Our results imply that certain
networks are controllable with finite energy independently of
the network dimension and number of control nodes.

APPENDIX
A. Proof of Theorem 2.1

For the ease of notation, in what follows, we let each
submatrix indexed with a nonpositive subscript equal the zero
matrix of appropriate dimension. Let N = T .

Lemma 3.1: (Block-triangular controllability matrix)
The T -steps controllability matrix can be written as

CK,T :=


E1,1 E1,2 · · · E1,T

0 E2,2 · · · E2,T

...
. . . . . . ET−1,T

0 · · · 0 ET,T

 ,
where E1,1 = I , and

Ei,j = Ci−1Ei−1,j−1 +DiEi,j−1 +BiEi+1,j−1. (A-1)
Proof: Due to the definition of CK,T we have

E(:, j) = AE(:, j − 1),

where E(:, j) denotes the j-th (block) column of CK,T , and

Ei,j = A(i, :)E(:, j − 1),

where A(i, :) the i-th (block) row of A. Since A is block
tridiagonal (see equation (1)), the statement follows.

We next show that the T -steps controllability matrix is of
full row rank.

Lemma 3.2: (Rank of controllability matrix) The T -steps
controllability matrix is of full row rank, that is,

Ker(CTK,T ) = 0.

Proof: Notice that E1,1 = I and Ei,i =
∏0
j=i−1 Cj

for i ∈ {2, . . . , T}. Because Cj is of full row rank due to
assumption (A1), the matrix Ei,i is also of full row rank.
To conclude the proof, notice that CK,T is block triangular,
where each block is of full row rank.

From Lemma 3.1, the T -steps controllability matrix admits
a right inverse, that is, there exists a matrix ZK,T ∈ RT |K|×n
satisfying CK,TZK,T = I .

Lemma 3.3: (Right inverse of CK,T ) Let

ZK,T :=


G1,1 G1,2 · · · G1,T

0 G2,2 · · · G2,T

...
. . . . . . GT−1,T

0 · · · 0 GT,T

 ,
where G1,1 = I , and

Gi,j = (Gi−1,j−1 −Gi,j−1Dj−1 −Gi,j−2Bj−2)C†j−1.
(A-2)

The matrix ZK,T satisfies CK,TZK,T = I .

Proof: Let M(:, j) and M(j, :) denote the j-th column
and the j-th row of the matrix M , respectively.

We proceed by induction. Notice that

CK,T (1, :)ZK,T (:, 1) = I, CK,T (i, :)ZK,T (:, 1) = 0,

for all i ∈ {1, . . . , T}. Assume now that

CK,T (k, :)ZK,T (:, k) = I, CK,T (i, :)ZK,T (:, k) = 0,
(A-3)

for all i ∈ {1, . . . , T}, i 6= k, and k ∈ {1, . . . , j − 1}. We
need to show that

(i) CK,T (i, :)ZK,T (:, j) = 0 for all i 6= j, and
(ii) CK,T (j, :)ZK,T (:, j) = I .
(Case i > j): Since ZK,T is block triangular, it holds

Ek,j = 0 and Gk,j = 0 for all k > j. Then,

CK,T (i, :)ZK,T (:, j) =

T∑
k=1

Ei,kGk,j =

j∑
k=i

Ei,kGk,j = 0.

(Case i = j): Since CK,T and ZK,T are block triangular,
we have

CK,T (j, :)ZK,T (:, j) =

T∑
k=1

Ei,kGk,j = Ej,jGj,j

=

 1∏
k=j

Ck

( j∏
k=1

C†k

)
= I,

where the last equality follows from the fact that Ker(CT
i ) =

0 for all i ∈ {1, . . . , T}, and, consequently, CiC
†
i = I [15].

(Case i < j): By using equation (A-2) we obtain

CK,T (i, :)ZK,T (:, j) =

j∑
k=1

Ei,kGk,j

=

j∑
k=i

Ei,kGk−1,j−1C
†
j−1 −

j∑
k=i

Ei,kGk,j−1Dj−1C
†
j−1

−
j∑
k=i

Ei,kGk,j−2Bj−2C
†
j−1 =

j∑
k=i

Ei,kGi−1,k−1C
†
k−1

− CK,T (i, :)ZK,T (:, j − 1)Dj−1C
†
j−1

− CK,T (i, :)ZK,T (:, j − 2)Bj−2C
†
j−1.

(A-4)
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Due to equation (A-1) we have
j∑
k=i

Ei,kGk−1,j−1C
†
j−1 =

j∑
k=i

Ci−iEi−1,k−1Gk−1,j−1C
†
j−1

+DiEi,k−1Gk−1,j−1C
†
j−1 +BiEi+1,k−1Gk−1,j−1C

†
j−1

= Ci−1CK,T (i− 1, :)ZK,T (:, j − 1)C†j−1

+DiCK,T (i, :)ZK,T (:, j − 1)C†j−1

+BiCK,T (i+ 1, :)ZK,T (:, j − 1)C†j−1.
(A-5)

Let i < j − 2. Due to the hypothesis (A-3) we obtain

CK,T (i, :)ZK,T (:, j) = 0,

because each term in equations (A-4) and (A-5) vanishes.
Let i = j − 2. Due to the hypothesis (A-3) we obtain

CK,T (i, :)ZK,T (:, j) = Bj−2C
†
j−1 −Bj−2C

†
j−1 = 0.

Let i = j − 1, due to the hypothesis (A-3) we obtain

CK,T (i, :)ZK,T (:, j) = Dj−1C
†
j−1 −Dj−1C

†
j−1 = 0.

This concludes the proof.
The matrix ZK,T is a generalized inverse of CK,T and,

in general, it does not coincide with the Moore-Penrose
pseudoinverse [15]. If CK,T is square, then ZK,T = C−1

K,T .
Lemma 3.4: (Lower bound controllability Gramian) Let

WK,T be the T -steps controllability Gramian. Then, for all
T̄ ≥ T it holds

λmin(WK,T̄ ) ≥ λmin(WK,T ) ≥ ‖ZK,T ‖−2,

where ZK,T is defined in Lemma 3.3.
Proof: Let xf ∈ Rn, with ‖xf‖ = 1 be the network

target state, and let u∗K(xf) be the minimum-energy input to
drive the network to the state xf in T steps. Then, xf =
CK,Tu∗K(xf), and ‖u∗K(xf)‖2 ≤ ‖ZK,T ‖2. We conclude that

max
‖xf‖=1

E(u∗K(xf), T ) = max
‖xf‖=1

‖u∗K(xf)‖22
= λ−1

min(WK,T ) ≤ ‖ZK,T ‖2,
and the claimed inequality follows.

We next derive an upper bound on ‖ZK,T ‖2.
Lemma 3.5: (Norm of ZK,T ) Let α, β, and γ be as in

(3), and assume that γ(1 + α+ β) < 1. Then,

‖ZK,T ‖2 ≤ c,
for some constant c ∈ R.

Proof: From Lemma 3.3 we have

‖ZK,T (:, j)‖2 ≤
∥∥∥∥(zZK,T (:, j − 1)−ZK,T (:, j − 1)Dj−1

−ZK,T (:, j − 2)Bj−2

)
C†j−1

∥∥∥∥
2

,

where z denotes the shift operator. By using the facts ‖M1 +
M2‖2 ≤ ‖M1‖2 + ‖M2‖2 and ‖M1M2‖2 ≤ ‖M1‖2‖M2‖2
for every pair of matrices M1 and M2 [15], we obtain[
‖ZK,T (:, j + 1)‖2
‖ZK,T (:, j)‖2

]
≤
[
γ(1 + α) γβ

1 0

]
︸ ︷︷ ︸

H

[
‖ZK,T (:, j)‖2
‖ZK,T (:, j − 1)‖2

]
.

The characteristic polynomial of H is PH(z) = z2 − γ(1 +
α)z − γβ. From Jury’s stability test [16], the matrix H is
Schur stable if the following three inequalities are satisfied:

0 < 1− γ(1 + α)− γβ,
0 < 1 + γ(1 + α)− γβ,
1 > γβ.

Since α, β, γ ∈ R>0, we conclude that H is Schur stable if
γ(1 +α+ β) < 1, in which case the norm of the column of
ZK,T decreases exponentially. To conclude notice that

‖ZK,T ‖2 ≤ ‖ZK,T ‖F =

 T∑
j=1

‖ZK,T (:, j)‖22

1/2

≤ c,

for some constant c ∈ R>0.
We are now ready to prove Theorem 2.1.

Proof: Let Tmax =
⌈
n
|K|

⌉
−1, and notice that the matrix

Tmax−1∑
τ=0

AτBKB
T
KA

Tτ = CK,TmaxCTK,Tmax

is singular, where CK,Tmax is the controllability matrix of
(A,BK) at Tmax steps. In fact, CK,Tmax ∈ Rn×m with

m = Tmax|K| <
(
n

|K| + 1

)
|K| − |K| = n.

An application of the Bauer-Fike theorem [17] for the
location of eigenvalues of perturbed matrices yields

λmin(WK,T ) ≤
(
λmin

(
T−1∑
τ=0

AτBKB
T
KA

Tτ

))

≤ λmin

(
Tmax−1∑
τ=0

AτBKB
T
KA

Tτ

)
+

∥∥∥∥∥
T−1∑
τ=Tmax

AτBKB
T
KA

Tτ

∥∥∥∥∥
2

≤
T−1∑
τ=Tmax

‖A‖2τ2 ‖BK‖22 ≤
µ2(d n

|K|e−1)

1− µ2
,

where we have used the fact ‖A‖2 := µ < 1. This concludes
the proof of statement (i). Statement (ii) follows from Lemma
3.4 and Lemma 3.5.

B. Proof of Theorem 2.2

We start with the following instrumental result.
Lemma 3.6: (Eigenvalues and condition number of

Toeplitz line networks) Consider a Toeplitz line network
G` with weights a ∈ R>0, b ∈ R>0 and c ∈ R>0. The
eigenvalues of A` satisfy

spec(A`) =

{
a+ 2

√
bc cos

(
kπ

n+ 1

)
: k ∈ {1, . . . , n}

}
.

Moreover, there exists an eigenvector matrix V satisfying

cond(V ) := ‖V ‖2‖V −1‖2 =


(
b
c

)n−1
2 if b ≥ c,(

c
b

)n−1
2 if b < c.

Proof: The first statement is a known result; see for
instance [18, Lemma 1.77]. To show the second statement,
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define the diagonal matrix D with diagonal elements δi,
where

δ1 = 1, and δi+1 = δi

√
c

b
, for i ∈ {1, . . . , n− 1}.

Notice that D−1A`D = Ã`, where Ã` is tridiagonal, Toeplitz
and symmetric. Let Ṽ be the orthonormal matrix of the
eigenvectors of Ã`. Then, V = DṼ is an eigenvector matrix
of A`. Notice that

cond(V ) = ‖DṼ ‖2‖Ṽ −1D−1‖2 ≤ ‖D‖2‖D−1‖2,
where we have used the fact that Ṽ is orthonormal. The
statement follows from ‖D‖2 = max{δi : i ∈ {1, . . . , n}}
and ‖D−1‖2 = 1/min{δi : i ∈ {1, . . . , n}}.

We are now ready to prove Theorem 2.2.
Proof: Statement (i) part a) follows from Theorem 2.1.

In fact, the condition a + b + c < 1 ensures ‖A`‖∞ =
‖A`‖1 < 1 and consequently ‖A`‖2 < 1.

To show statement (i) part b) and c), recall from [5,
Theorem 3.1] that

λmin(WK,T ) ≤ cond2(V )
µ2(d nµ|K|e−1)

1− µ2
, (A-6)

for all T ∈ N>0 and for all µ ∈ [λmin(A`), 1), where

nµ = |{λ : λ ∈ spec(A`), |λ| ≤ µ}| ,
and V is an eigenvector matrix of the adjacency matrix A`.

Let a ≥
√
bc and µ = a. From Lemma 3.6 we have that

na ≈ n/2.1 Lemma 3.6 and equation (A-6) yield

λmin(WK,T ) ≤
{(

b
c

)n−1 an−2

1−a2 if b ≥ c,(
c
b

)n−1 an−2

1−a2 if b < c.

Notice that, if ac < b, then λmin(WK,T ) decreases exponen-
tially with the network cardinality.

Let 0 < a <
√
bc and µ = a. It can be shown that

na ≈
(

1

π
arccos

( −a√
bc

)
− 1

2

)
n. (A-7)

In this case, Lemma 3.6 and equation (A-6) imply that

λmin(WK,T ) ≤
{(

b
c

)n−1 a2na−2

1−a2 if b ≥ c,(
c
b

)n−1 a2na−2

1−a2 if b < c.

Notice that, if ca2na/n < b, then λmin(WK,T ) decreases
exponentially with the network cardinality.

We now proceed with statement (ii). Consider the recur-
sion (A-2) defining the inverse of CK,n:

cGh,k = Gh−1,k−1 − aGh,k−1 − bGh,k−2. (A-8)

We employ Von Neumann analysis [19] to assess the stability
of the recursion (A-8). The amplification factor is

H(θ) =
1

cejθ + a+ be−jθ
,

1The relation na = n/2 and equation (A-7) hold with equality in the
limit for n to infinity. When n is finite appropriate constants should be
included. These constants have been omitted to simplify notation, as they
do not affect our conclusions.

with θ = πk/n, k ∈ {1, . . . , n}. The recursion (A-8) is
stable if |H(θ)| < 1 for all θ ∈ R. Notice that

|H−1(θ)|2 = (b− c)2 + a2 + 2a(b+ c) cos(θ) + 4bc cos2(θ).

By differentiating |H−1(θ)|2 and computing its fixed points
we find that |H(θ)| < 1 for all θ ∈ R if

1 ≥ a(b+ c)

4bc
, and 1 < (b− c)2

(
1− a2

4bc

)
,

or

1 <
a(b+ c)

4bc
, and 1 <= c+ b− a.

Notice that, when the recursion (A-8) is stable, ‖ZK,T ‖2 ad-
mits an upper bound independent of the network cardinality.
Statement (iii) then follows from Lemma 3.4.
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