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Abstract— This paper studies the problem of controlling
stable and symmetric complex networks, that is, the joint
problem of selecting a set of control nodes and of designing
a control input to drive a network to a target state. We adopt
the smallest eigenvalue of the controllability Gramian as metric
for the controllability degree of a network, as it identifies the
energy needed to accomplish the control task. In the first part of
the paper we characterize tradeoffs between the control energy
and the number of control nodes, based on the network topology
and weights. Our bounds show for instance that, if the number
of control nodes is constant, then the control energy increases
exponentially with the number of network nodes. Consequently,
despite the classic controllability notion, few nodes cannot in
practice arbitrarily symmetric control complex networks. In
the second part of the paper we propose a distributed open-
loop strategy with performance guarantees for the control of
complex networks. In our strategy we select control nodes
based on network partitioning, and we design the control input
based on optimal and distributed control techniques. For our
control strategy we show that the control energy depends on the
controllability properties of the clusters and on their coupling
strength, and it is independent of the network dimension.

I. INTRODUCTION

The ability to control complex networks via external inputs
is fundamental to guarantee reliable and efficient network
operation. Despite important advances in control theory,
several questions regarding the control of complex networks
are largely unexplored, as, for instance, the relation between
network topology and its controllability degree.

The control problem of complex networks consists of the
selection of a set of control nodes, and the design of a
control law to steer the network to a target state. We focus
on stable and symmetric networks, and we refer the reader
to [1] for the case of unstable and asymmetric networks.
We adopt the worst-case energy to drive a network from
the origin to a target state as controllability metric. By
combining this controllability notion with graph theory, we
characterize tradeoffs between the energy to control a given
network and the number of control nodes, and we develop a
distributed control strategy with guaranteed performance and
computational complexity.

Related work The classic concept of controllability has
found renewed interest in the context of complex networks,
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where classic methods are often inapplicable due to the
system dimension, and where a graph-inspired understanding
of controllability rather than a matrix-theoretical one is
preferable. For instance, in [2] standard tools from structured
control theory [3] are used to investigate controllability
properties of real networks. Among other conclusions, the
analysis in [2] reveals that the required number of control
nodes is mainly related to the network degree distribution,
and that sparse inhomogeneous networks are most difficult to
control, while dense and homogeneous networks require only
a few control nodes. The approach to controllability under-
taken in [2] has several shortcomings. First, the presented
results are generic, in the sense that they hold for almost
every choice of the network parameters [4], but they may
fail to hold if certain symmetries or constraints are present
[3, Section 15], [5]. Second, most results in [2], [6] rely on
particular interconnection properties of the considered net-
works, perhaps the absence of self-loops around the network
nodes. In fact it follows from [3, Theorem 14.2], equivalently
from [7, Theorem 1], that every strongly connected network
with self-loops is generically controllable by any single
node, which contradicts the conclusions drawn in [2]. This
discrepancy is underlined in [8] for the case of biological
networks, and more generally in [9]. Third, the binary
notion of controllability proposed in [10] and adopted in [2]
does not characterize the difficulty of the control task. In
practice, although a network may be generically controllable
by any single node, the actual control input may not be
implementable due to actuator constraints and limitations.
Finally, the design of the control input to drive a network
to a particular state is not specified in [2], and it remains to
date an outstanding problem for complex networks due to
their dimension and absence of a central controller.

We depart from [2], [6], [5], [9], and analogously from
[11], [12], [13], by adopting a quantitative measure of net-
work controllability, namely the worst-case control energy,
by characterizing tradeoffs between the difficulty of the con-
trol task and the number of control nodes, and by proposing
an open-loop control strategy for complex networks.
Contribution This paper features three main contributions.

First, we study network controllability from an energy per-
spective, which we quantify with the smallest eigenvalue of
the controllability Gramian (Section IT). We show that certain
controllable networks are practically uncontrollable by few
control nodes, as the control energy grows exponentially in
the network cardinality.

Second, we derive an upper bound for the smallest eigen-
value of the controllability Gramian as a function of the
number of control nodes (Section III). Our bound shows,
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for instance, that in order to control a network with constant
energy, the number of control nodes must grow linearly with
the network dimension. These result provides a quantitative
measure of the numerical findings in [14], and are in accor-
dance with existing results in control theory [15].

Third and finally, we propose the decoupled control strat-
egy for the control of complex networks (Section 1V). The
decoupled control strategy consists of network partitioning,
selection of the control nodes, and the design of a distributed
control law to steer the network to a target state. We char-
acterize the performance of the decoupled control strategy,
and we show that, if sufficiently many control nodes are
available, the energy to control a network depends only
on the controllability properties of its parts, and on their
coupling strength. Conversely, we prove that certain networks
admit a distributed control strategy where the control energy
is independent of the network dimension. To the best of
our knowledge, our decoupled control strategy is novel, it
constitutes a first solution for the distributed scalable control
of complex networks, and it leads to a novel notion of
network controllability centrality.

II. NETWORK MODEL AND PRELIMINARY RESULTS

Consider a network represented by the undirected graph
G = V&), where ¥V := {1,...,n} and £ C V x V are
the vertices and the edges sets, respectively. Let a;; € R be
the weight associated with the edge (i,7) € £, and define
the weighted adjacency matrix of G as A = AT = [ay;],
where a;; = 0 whenever (4,5) ¢ £. We associate a real
value (state) with each node, collect the nodes states into a
vector (network state), and define the map = : N>o — R”
to describe the evolution (network dynamics) of the network
state over time. We consider the discrete time linear and
time-invariant network dynamics described by the equation

z(t+1) = Az(t). (1)

Controllability of the network G refers to the possibility
of steering the network state to an arbitrary configuration by
means of external controls. We assume that a set

K:={ky,....,km} CV
of nodes can be independently controlled, and we let
B;c = [le €km} (2)

be the input matrix, where e; denotes the ¢-th canonical
vector of dimension n. The network with control nodes K
reads as

x(t+1) = Ax(t) + Brux(t), (3)

where ux : N>g — R is the control signal injected into the
network via the nodes K. A network is controllable in 7" € N
steps by the set of control nodes K if and only if for every
state oy € R™ there exists an input ux such that z(T) = x¢
with z(0) = 0 [16]. Controllability of dynamical systems is a
well-understood property, and it can be checked by different
structural conditions [10], [17], [3]. For instance, let Ci T,
with T' € N1, be the controllability matrix defined as

CIC,T = [B;C ABjx AT_lB;C] .

The network (3) is controllable in 7" steps by the nodes K
if and only if the controllability matrix Cx 7 is of full row
rank.

The above notion of controllability is qualitative, and
it does not quantify the difficulty of the control task as
measured, for instance, by the control energy needed to
reach a desired state. As a matter of fact, many controllable
networks require very large control energy to reach certain
states [14]. To formalize this discussion, define the T'-steps
controllability Gramian by

T—1
Wi =Y A"BeBLA™ = Ce rCi s
=0
where we have used the fact that A = AT. It can be easily
verified that the controllability Gramian Wy r is positive
definite if and only if the network is controllable in T" steps
by the nodes K [16].

Let the network be controllable in 7' steps, and let xy,
with ||z¢|| = 1, be the desired final state at time 7'. Define
the energy of the control input ux as

T-1
E(ux, T) := lux |32 = ) lux(7)I3,
7=0

where 7' is the control horizon. The unique control input that
steers the network state from z(0) = 0 to x(7T") = z¢ with
minimum energy is [16]

uic(t) i= BLAT T W, “
with ¢t € {0,...,T — 1}. Then, it can be seen that
T-1
E(ui, T) = Y luic(m3 = 2f Wi e < A (Wier),
=0
&)

where equality is achieved whenever zr is an eigenvector
of Wic,r associated with Apin(Wic, 7). Because the control
energy is limited in practical applications, controllable net-
works featuring small Gramian eigenvalues cannot be steered
to certain states. An example follows.

Example 1: (Controllable networks may exhibit practi-
cally uncontrollable states) Consider the network G with n
nodes, weighted adjacency matrix A := [a,;] defined as

1
.= 27
aij = 0
)

and control node K = {1}. Notice that the controllability
matrix C ., is diagonal and nonsingular, and its i-th diagonal
entry equals 271, Since A’Bx = 0 for all t > n, we have
Wi,r = C;QnC,E,n for all 7 > n, and the smallest eigenvalue
of the controllability Gramian Wi, equals 27272 for all
7 > n. We conclude that the network G with control nodes
is controllable in T° > n steps, yet the control energy grows
exponentially with the network cardinality. (]
In this work we measure controllability of a network based
on the smallest eigenvalue of the controllability Gramian,
that is, from a worst-case perspective, by looking at the target
states requiring the largest control energy to be reached; see
[1] for a discussion of alternative controllability metrics.

ifj=i—1landi€{2,...,n},
otherwise,
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III. LOWER BOUND ON THE CONTROL ENERGY

In this section we characterize a tradeoff between the
energy to control a network and the number of control nodes.
Let spec(M) denote the set of eigenvalues of M, and let

Amin(M) := min{|A| : X\ € spec(M)},
Amax (M) := max{|A| : A € spec(M)}.

Recall that a matrix M is Schur stable if Apax (M) < 1.

Theorem 3.1: (Control energy and number of control
nodes) Consider a network G = (V,€) with |V| = n,
weighted adjacency matrix A, and control set IC. Assume
that A is Schur stable. For all T' € N+ ¢ it holds

1 oeray 2RI
AninWiesr) < mminy 3750 0 T2 ()

min

(6)

Proof: We start by showing the first part of the in-
equality. Notice that for all 7' € Ny it holds Amin(Wic, 1) <
Amin(Wy ). In fact, £ C V, and the control energy cannot
increase by adding control nodes to a given control set. Then,

T-1
1-— /\min(A)QT
) —_ . 27 —_ T 5
)\mm(WV,T) Amm (Z A ) 1-— )\min(A)z ’

7=0

part of the inequality. Let T x = \%I — 1. Notice that
rank(Cx 1,,,.) < n. In fact, Cxc 1,,,, € R™*™ with

max

and the first statement follows. We novj show the second

m = Tax|K| < (IIZ + 1) K| - K| = n.

Consequently, Wi r,.. = Ci. Ty Cr T, 18 singular, and
AminWVic T ) = 0. Let T > Ty Since Wy r is symmetric,
it admits an orthonormal basis of eigenvectors, that is,
Wicr = VAV, with VTV = T and ||V|o]|[V Y2 = 1.
From the Bauer-Fike Theorem [18] we have

max min A= pl < [VI[2[V7 2l A l2,
1€o (Wi, Tinas ) AEG (Wi 1)
where Ar, = — Zz:%d AT BB A". In particular, since
Wi Ty 18 singular, we have
)\2ITmax (A)
AminWr ) < ||Ap,, |2 < —28 ——
mWier) < | T X2, (4)
and the statement follows. ]

In Theorem 3.1 we provide an upper bound on the smallest
eigenvalue of the controllability Gramian or, equivalently,
a lower bound on the worst-case energy needed to control
a network to an arbitrary target state, as a function of the
number of control nodes. In fact, due to (5),

1- )\rznin (A) 1- )‘r2nax(A)
L= AT () 2([mr=) 4 [
(7

where uy- depends on the target state xf as in (4). The
bounds in (7) are to be regarded as performance limitations:
independently of the control strategy, the least amount of

E(uf,T) >
max E(uy, T) 2 max

/
R R e Aiils - il

-2+ I
250 ]
i p=0.75 K|
_ ‘ ‘ ‘ ‘ ‘ ‘ i}
3a 0.4 05 0.6 07 08 0.9 1

Fig. 1. For the network in Example 2, this figure compares (in a
logarithmic scale) the upper bound (7) (solid red) with the largest A*.
of the controllability Gramian (dashed-dot blue) over all possible sets /C.
For each value |/C| from 1 to n, a combinatorial search determines the value

*in = Maxx Amin(Wi,o0)- The two quantities in the right hand side of
equation (7) are also reported in dashed green and dotted black, respectively.
The horizontal axis represents the ratio |K|/n. It can be shown that the

bound (7) tends to be conservative as the parameter p increases.

energy needed to steer the network from the origin to an
arbitrary unit-norm state is bounded by (7).

Theorem 3.1 implies that, for the control energy to be
bounded as the network grows, the number of control nodes
must be a linear function of the total number of nodes, pro-
vided that A, (A) remains bounded away from 1. Instead,
classic controllability [2], [10] is (generically) ensured by
the presence of a single control node, independently of the
network dimension [3, Theorem 14.2], [7, Theorem 1].

Example 2: (Tightness of the bound in Theorem 3.1)
Consider a network with n = 20 nodes and adjacency matrix

1 1 0o --- 1
1 1 1 -0
p
A==]: . . . :
3 N . . . ol
o --- 1 1 1
1 -~ 0 1 1

where p € (0,1). Observe that A is Schur stable for all p €
(0,1). In Fig. 1 we compare the upper bound in Theorem 3.1
with the value max{A\nin(Wi.r) : £ C{1,...,12},|K| =
k}, as a function of the cardinality & of the control set. [

IV. DECOUPLED CONTROL OF COMPLEX NETWORKS

In this section we provide a solution to the problem of
controlling a complex network, that is, the problems of
both selecting the control nodes, and designing a distributed
control law to drive the network to a target state. Our
approach is different from classic solutions, as it exploit the
network structure to jointly select the control nodes and to
design a control law amenable to distributed implementation.

A. Setup and definition of the decoupled control strategy

Our decoupled control strategy can be divided into three
parts: (i) network partitioning, (ii) selection of the control
nodes, and (iii) definition of the decoupled control law.
Network partitioning Consider an undirected network G :=
(V, &) with weighted (symmetric) adjacency matrix A :=
[a;;]. Partition V into N disjoint sets P := {Vy,...,Vn},

3289



and let G; := (V;, &;) be the i-th subgraph of G with vertices
V; and edges & := EN(V; xV;).! According to this partition,
and possibly after relabeling states and inputs, the network

matrices read as

Ay o AN By
A=| ¢t i Be=| 0 b
Any -+ An 0 B

®)

where IC; C V; for all ¢ € {1,...,N}, and the networks
dynamics can be written as the interconnection of N sub-
systems of the form

zi(t+1) = Aizi(t) + > Ayz(t) + Bk, (), 9)
JEN;

where i € {1,...,N} and NV := {j : A;; # 0}.
Selection of the control nodes For a network G := (V, &)
with partition P := {Vy,...,Vn}, we say that a node i € Vj,
is a boundary node if a;; # 0 for some node j € V,, with
k.0 € {1,...,N} and k # (. Let B; C V; be the set of
boundary nodes in the i-th cluster, and let B = Uf\ilBi
be the set of all the boundary nodes of the partition. We
select the set of control nodes K = Ky U--- UKy to satisfy
B; CK; CV;forallie {1,..., N}, and to ensure that each
pair (A;, B;) is controllable. See Fig. 2 for an example.
The decoupled control law For a network G := (V, £) with
partition P := {V,..., Un}, let 2] := [z zly] be
the target state, where ||z¢||o = 1, and xy; € RYil for i e
{1,...,N}. Let ||zt ||z = ., and notice that Zf\[:l a? = 1.
Define the control input ux, by

uk, () = B, AT "W tag — > B Aija(t), (10)
jeNiﬁz—/

v; (t) fij ()

where, with a slight abuse of notation, W; 1 is the i-th
controllability Gramian defined by

T—1
Wiz =Y Al 77 'Be, By, AT,
7=0
and the control horizon 7' is chosen large enough so that
W, r is positive definite for all ¢ € {1,..., N}. We refer to
the above control law as to the decoupled control law.
Before analyzing the performance of our decoupled con-
trol law, we discuss its implementation properties. First,
notice that the control input ux, is the sum of an open-loop
control signal v;, and a feedback control signal > JEN: fij.
Second, if each cluster is equipped with a control center,
then our decoupled control law can be implemented via
distributed computation by the control centers. In fact, the
control signal v; depends on the dynamics of only the
i-th cluster, and the feedback control signals f;; can be
determined upon communication of the ¢-th control center
with its neighboring control centers belonging to A;. Third

!'Several methods are available to partition a network [19], such as spectral
methods and modularity based heuristics. For the implementation of our
decoupled control law it is only required that the network is partitioned into
strongly connected components. The performance of the decoupled control
law depend on the partitioning scheme.

and finally, our decoupled control law is scalable, in the sense
that the complexity of the control law does not depend upon
the network cardinality, but only on its partition, provided
that the degree of each cluster remains bounded.

B. Analysis of the decoupled control law

We start our analysis by noticing that the decoupled
control law (10) steers the network to the target state x¢. In
fact, from equation (9) and the definition of f;; in equation
(10), the network dynamics with decoupled control law can
be written as the collection of N decoupled subsystems

SL’Z‘(t-i-l) :Aixi(t)—i—B;Civi(t), 1€ {1,...,N}. (1

Since v; in equation (10) equals the minimum energy input to
drive the i-th subsystem (11) from z;(0) = 0 to x;(T) = x;,
we conclude that z(7T) = .

We next study the energy properties of our decoupled
control law. Observe that the state evolution of the ¢-th cluster
can be written as

t—1
zi(t) = Z AT B, B, AL,
7=0

For the ease of notation we assume that the matrix A; is
Schur stable for all ¢ € {1,..., N}. Observe that, if A is
Schur stable and nonnegative, then each matrix A; is Schur
stable and Apax(A;) < Amax(A4). We define the local energy
matrix A € RN*N and the Ly gains matrix T € RV*N by

A= diagA\in W), A W), (12)
1 7o YN
Y21 1 YoN

r=1|. . -, (13)
v w2 -1

where 7,5, for i,5 € {1,...,N} and i # j, is the £, gain
of the system (Aj, Bi,, B{ Ay;) or, equivalently, the Hoo
gain of the transfer matrix B,EiAij(zI — Aj)_lB,Cj [20].
Theorem 4.1: (Energy of the decoupled control law)
Consider a network G = (V,€) with weighted adjacency
matrix A = AT, control set K, and partition P. Assume that
K contains all boundary nodes of P, every A; is stable, and
every pair (A;, B;) is controllable, where A; and B; are the
submatrices associated with the partition P. The decoupled
control law ufc with control horizon 7T satisfies
E(uf, T) < [TAY?|3, (14)
where A and I are the local energy matrix and the Lo gains
matrix defined in (12) and (13), respectively.

Proof: Let xy; be the target state of the i-th cluster, and
let ||z |2 = «;. From equations (5) and (10), and from the
definition of L5 gain [20] it follows that

o Yij O

[villzr < 75— Ifijler £ 45—

W) MleWir)

min (
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Moreover, due to the triangle inequality, we have

luillar < llviller + Y I fijllar

JEN;
@ Vig® o oa1/2
< INERYY + Z Ny =LA e,
min( ’i,T) JEN; min( j,T)

where I'; is the ¢-th row of I' defined in (13), and « is the
vector of a; with 4 € {1,..., N}. By using (13) and the fact
that [[uft|3 - = S0, [|us]3 7, we obtain

[ lB.r < max 0T AVPTTTA 20 = Ay (Ar2rTrar?),

lell=1

from which the statement follows. [ ]

In Theorem 4.1 we derive a bound on the energy needed
to control a network via our decoupled control law. Theorem
4.1 has several general consequences which we now describe.
First, due to equation (5), if the set K of control nodes
includes the boundary nodes of a network partition P, then

1

)\min(WlC,T) 2 ma

15)
where A and I" are the local energy matrix and the Lo gains
matrix for the partition P. This bound on the smallest eigen-
value of the controllability Gramian is novel (see [21]), and
it highlights that the controllability of a clustered network
depends on the controllability of the isolated clusters via the
matrix A, and on their interconnections strength via the £,
gains matrix I'. Second, the control energy for our decoupled
control law does not depend on the cardinality of the whole
network. In fact, notice that

ITAYZ(3 < TI3lIAll2 < T[T ol Alloe, — (16)
and that, independently of the network dimension, ||T'||; and
|IT|| o remain bounded if, for instance, the network weights
and the nodes degrees are bounded. A related example is in
Section IV-C. Third and finally, since the energy to control
a network via the decoupled control law depends on local
properties of the network partitions, an appropriate partition-
ing method may be developed to optimize the performance
of the decoupled control law. To this aim, we state the
following corollary of Theorem 4.1, where we derive a bound
on the control energy for our decoupled control law, which is
proportional to the interconnection strength among clusters.
Let A be the symmetric interconnection matrix defined by

1 [ A1z2]l2 | A1n]|2
[|A21l2 1 | A2n]l2
= ) ) . (17)
lAnill2  [[Anz2llz -+ 1

Corollary 4.2: (Bound for network partitioning) Let -;
be the Ly gain of the system (A;, Bi,, Bi, Ay;), and let
Amax = max{Amax(4;) : i€ {1,...,N}} < 1. Then,

< 1Al

ij—ma fOI‘]E{l,,N}\{Z},

and, being 7" the control horizon,

Al A2
E(ul,T) < 1118
( K ) — (1 _ )\max)Q
where A is the local energy matrix defined in equation (12),
and A is the interconnection matrix defined in equation (17).

Proof: Recall that ~y;; equals the H,, gain of the
transfer matrix of the system (Aj, By, B,E A;;), that is,

Vij = ||B)E,;Aij(21 - AJ')%B’CJ'HHW’

where ||| .. denotes the Ho, norm [20]. Since the Ho
norm satisfies the submultiplicative property, we have

Yis S 1B Wil G =A™ g 1B [,

Notice that the H,, norm of a constant transfer matrix co-
incides with its induced 2-norm. Finally we have HB,E H2 =
HB’CJ‘HQ =1, and

T = 457 o= e e (7T = 4;)7)
= mgax [/\mX ((eigl — Aj)_l(e_iel - Aj)_l)} i
= max [Amax (I —2cos(9)A; + A?)_l)] e
1 1
= < =
1= Amax(A7) = 1= Apax |

from which the first part of the statement follows. The
second statement follows from (14), (16), and from the facts
[ITlloo (T = Amax) < [|Afloos [IT1(1 = Amax) < AL =
1Al =

Analogously to equation (15), from Corollary 4.2 we
conclude that, if the set K of control nodes includes the
boundary nodes of a network partition P, then

(]- - S\max)Q
2 T T AT
Ao 1A%

where A and A are the local energy matrix and the inter-
connection matrix for the partition P, respectively, and Apax
is a bound on the spectral radius of the clusters of P.

We conclude this part by noting that our results lead
to a novel notion of network controllability centrality,”
where network nodes are ranked according to the product
of their local controllability degree and their interconnection
strength with neighboring nodes. Our notion of network
controllability centrality is motivated by Corollary 4.2, where
the control energy is bounded by the scaled product of the
worst-case control energy of the isolated clusters ||A ||, (least
controllable cluster), and the worst-case clusters intercon-
nection strength ||A||o (strongest interconnection strength).
A comparison between controllability centrality and other
centrality notions is left as the subject of future research.

Amin(Wke, )

C. An example of network control via decoupled control law

In this section we demonstrate our technique to control
large networks with an example. Consider a circulant net-
work G with n = nyN nodes, ny, N € N, and adjacency

2Network centrality is a fundamental concept in network analysis [22].
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Fig. 2. A circulant network with n = 24 nodes. The network is partitioned
into N = 6 clusters with ny, = 4 nodes each. Controlled nodes are in black.

- . N ny,

Fig. 3. In this figures we study circulant networks partitioned as in Section
IV-C, and we compare (in a logarithmic scale) the performance of our
decoupled control law against the minimum energy control law. In the left
figure we maintain constant the number of nodes in each cluster, and we
report as a function of the number clusters (see Section IV-C) (i) the smallest
eigenvalue of the controllability Gramian with 7" = oo and boundary nodes
as control nodes (solid red), (ii) the bound (15) for the energy performance
(see Theorem 4.1) achieved by our decoupled control law (dashed blue),
and (iii) the smallest eigenvalue of the controllability Gramian with 7" = co
and control nodes selected randomly (dashed-dotted green). Notice that the
energy needed by our decoupled control law remains constant when the
network cardinality grows (the number of control nodes grows as 2N and
that the number of nodes in each cluster remains constant). This property is
not maintained if the control nodes are chosen randomly. In the right figure
we report the same quantities as in the left figure, while maintaining constant
the number of clusters and letting the number of nodes in each cluster grow.
Notice that the smallest eigenvalue of the controllability Gramian and our
bound (15) degrade with the same rate, while randomly selected control
nodes require more energy.

matrix as in Example 3.1 with p = 0.5. We partition G
into N clusters, so that each cluster contains 7, nodes. In
particular, we label the nodes in increasing order, and for
i € {1,...,N} we define the i-th cluster to have vertices
Vi i={(t—1npy+1,(¢ = \)np + 2,...,inp} and control
nodes C; := {(i — 1)np + 1, 49np }.

See Fig. 2 for an example with n, =4 and N = 6. It can
be numerically verified® that the set K of control nodes is
optimal, in the sense that it solves the maximization problem

Amin( WK ,00)
ICQI{I}?%JL} mm( K, ) (18)
subject to  |K| = 2N.

In Fig. 3 we validate Theorem 4.1 and equation (15).
Notice that, although conservative, our bound (15) captures
the fact that circulant networks can be driven with constant
energy to any (unit norm) target state independently of
the network dimension; this result is compatible with our
analysis in Theorem 3.1 and in Section IV-B. Moreover, our
decoupled control law is a distributed control law achieving
this performance. Finally, it can be shown that for circulant
networks, and in fact for all d-dimensional torus networks,
the diagonal entries of (I — AAT)~! are all equal to each
other. Thus, the selection of the control nodes for the
maximization of the trace of the Gramian is in this case
equivalent to a random positioning of the control nodes [1].

3Due to computational complexity, we have solved the maximization
problem (18) for the cases n, = 4 and N € {2,...,6}.

V. CONCLUSION

In this work we study the problem of controlling complex
networks to a target state. We adopt the smallest eigenvalue
of the controllability Gramian, which quantifies the worst-
case control energy, as measure of network controllability.
First, we characterize tradeoffs between the number of
control nodes and the control energy as a function of the
network dynamics. Then, we develop a control strategy
with performance guarantees, consisting of a method to
select control nodes based on network partitioning, and a
distributed control law to drive the network to the target state.
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