
Simultaneous Boundary Partitioning
and Cameras Synchronization for

Optimal Video Surveillance ?

F. Zanella ∗ F. Pasqualetti ∗∗ R. Carli ∗ F. Bullo ∗∗

∗Department of Information Engineering, Università di Padova, Via
Gradenigo 6/a, 35131 Padova, Italy

{fzanella,carlirug}@dei.unipd.it
∗∗ Center for Control, Dynamical Systems and Computation,

University of California, Santa Barbara, USA
{fabiopas,bullo}@engineering.ucsb.edu

Abstract: This paper proposes a real-time distributed algorithm for a team of smart cameras
to self-organize and perform video surveillance of an open boundary. In particular, our algorithm
simultaneously partitions the boundary among the cameras, and synchronizes the motion of the
cameras to optimize the surveillance performance. We focus on the detection of smart intruders,
who are aware of the cameras configuration at each time instant, and who schedule their motion
to avoid detection for as long as possible. We consider both the worst-case and the average
detection times of smart intruders. Our algorithm achieves minimum worst-case detection time,
and, under some reasonable assumptions, constant-factor optimal average detection time.

1. INTRODUCTION

Networks of coordinated autonomous agents have recently
been used for many tasks requiring repetitive execution,
including the monitoring of oil spills (see Clark and Fierro
(2007)), the detection of forest fires (see Kingston et al.
(2008)), the tracking of border changes (see Susca et al.
(2008)), and the patrolling (surveillance) of an environ-
ment (see Elmaliach et al. (2008)). The surveillance of an
area of interest requires the agents (cameras in this case) to
continuously and repeatedly sweep the environment, and
the challenging problem consists in scheduling the cameras
trajectories so as to optimize a performance criteria.

Problem description. In this work we consider a net-
work of identical Pan-Tilt-Zoom (PTZ) cameras for video
surveillance, subjected to physical constraints: each cam-
era is located in a fixed position with limited field of view
(f.o.v.) of the scene and limited motion capability. The
cameras in fact use only the panning motion to span a one
dimensional perimeter. It is also assumed that cameras
are equipped with a low-level routine to detect intruders
that intersect their f.o.v.. Regarding intruders, we assume
them to be smart, in the sense that they have access to the
cameras configuration at every time instant and schedule
their trajectory to avoid detection, if possible. Regarding
our optimality criteria, we consider both the worst-case
detection time as well as the average detection time of a
smart intruder.

We focus on the development of algorithms for (i) op-
timally assigning a subpart of the environment to each
? This work was supported in part by “Fondazione Ing. Aldo Gini”
scholarship and NSF grants IIS-0904501 and CNS-1035917, and by
ARO grant W911NF-11-1-0092.

camera (partitioning problem), and (ii) optimally schedul-
ing the motion of the cameras for the detection of moving
intruders (cameras synchronization problem). By solving
these two problems, our algorithms allow the cameras to
self-organize along a boundary to provide optimal surveil-
lance against moving intruders.

Related work. The problem of patrolling an environment
by means of a team of autonomous robots has received
attention from scientists interested in mobile robotics.
Typically, (i) the environment is represented by a graph
on which the agents motion is constrained, and (ii) the
patrolling performance is given by the worst-case detection
time of static events. In Machado et al. (2003); Cheva-
leyre (2004) an empirical evaluation of certain patrolling
heuristics is performed. In Elmaliach et al. (2008) and
Kingston et al. (2008), an efficient and distributed solution
to the (worst-case) perimeter patrolling problem for robots
with zero communication range is proposed. In Pasqualetti
et al. (2011) the computational complexity of the pa-
trolling problem is studied as a function of the environment
topology, and optimal strategies as well as constant-factor
approximations are proposed. With respect to these works,
we consider smart moving intruders, as opposed to static
ones, and we focus not only on the worst-case but also on
the average detection times.

In the context of camera networks, the perimeter patrolling
problem has recently been studied in Baseggio et al.
(2010) and Carli et al. (2011). In these works, distributed
algorithms are proposed for the cameras to partition a
one-dimensional environment, and to synchronize along
a trajectory with minimum worst-case detection time of
static events. We improve the results along this direction



by showing that the strategies proposed in Baseggio et al.
(2010) and Carli et al. (2011) generally may fail in terms
of worst-case at detecting smart moving intruders, and by
focusing on the average detection time of smart intruders.
A more detailed description of the differences between our
approach and those in Baseggio et al. (2010), Carli et al.
(2011) is given in Sec. 2.

Paper contributions. Our solution builds upon the re-
sults presented in Spindler et al. (2012); Alberton et al.
(2012). We propose a distributed algorithm to simultane-
ously partition a one dimensional open path among a set
of fixed cameras, and synchronize the cameras motion to
achieve optimal performance. Our partitioning algorithm
is asymptotically optimal, in the sense that it asymptoti-
cally computes a partition of the path that minimizes the
length of the longest cluster. Our algorithm only requires
distributed computation. Regarding our communication
model, we adopt a gossip communication model among
neighboring cameras, and we require communication only
when the f.o.v. of the two neighboring cameras overlaps. 1
Our synchronization algorithm inherits the optimality
properties discussed in Spindler et al. (2012); Alberton
et al. (2012). In particular, the cameras trajectory induced
by our algorithm asymptotically achieves minimum worst-
case detection time and bounded average detection time
of smart intruders. In fact, we show that our trajectory
achieves also minimum average detection time in some
particular scenarios such as, for instance, in the absence of
cameras range constraints. Finally, we validate our findings
through simulations.

Paper organization. Section 2 contains the mathemat-
ical description of the problem under investigation and
some preliminary results for our performance functions.
In Section 3 we present our main contributions, that is a
distributed algorithm to simultaneously partition an open
boundary among cameras and to synchronize the motion of
the cameras. Section 4 and Section 5 contain, respectively,
our illustrative examples and our conclusions.

2. PROBLEM FORMULATION AND PRELIMINARY
RESULTS

In this section we describe the surveillance problem we are
considering and the mathematical tools for its analysis.

Problem setup Consider a set of N identical cameras
{1, . . . , N} installed along a one dimensional open path
(boundary) B = [0 L], L > 0 (see Fig. 1). Assume that
(i) the f.o.v. of each camera is a point on B, (ii) the
motion of each f.o.v. is uniquely determined by the pan
movement of the corresponding camera, and (iii) the speed
vi : R≥0 → R of the f.o.v. of the i-th camera satisfies
|vi| ≤ vmax

i , with vmax
i ∈ R>0.

For the ease of notation we label the cameras in increasing
order according to their position on B. We define the
patrolling window Di as the subpart of B that camera
i can monitor due to physical panning constraints, i.e.,
Di = [di di] ⊆ B for some di < di. In order to guarantee
1 Although conservative, this assumption makes our algorithm im-
plementable for almost any real wireless radio or similar proximity
communication method.

Fig. 1. Four cameras are installed along an open boundary
B = [0 L]. For each camera i, the figure shows the
patrolling window Di, and the active boundary Ai.
Notice that patrolling windows may overlap, and that
the active boundaries form a partition of B.

that the boundary B can be fully patrolled by the cameras,
i.e., ∪Ni=1Di = B, we let d1 = 0 and dN = L, and assume
that the following interlacing physical coverage constraints
hold:

di ≤ di+1 ≤ di ≤ di+1, i = 1, . . . , N − 1. (1)
Let Ai(t) = [`i(t) ri(t)] denote the active boundary of the
i-th camera at time t, i.e., the subpart of Di assigned to
the i-th camera at time t. In other words the following
patrolling window constraints are satisfied:

Ai(t) ⊆ Di, ∀i ∈ {1, . . . , N},∀t ∈ R≥0. (2)
Additionally, let |Ai(t)| be the distance on B between `i(t)
and ri(t). Finally, define the i-th sweeping time as

τi(t) :=
|Ai(t)|
vmax
i

,

and
τmax(t) := max

i∈{1,...,N}
τi(t).

Cameras trajectories Let F(R≥0,B) be the Banach
space of all continuous and bounded functions from R≥0
into B endowed with the supremum norm (see Kreyszig
(1989)). The position of the i-th camera is a function
xi ∈ F(R≥0,B), xi : R≥0 → Di that describes the position
of the f.o.v. of the i-th camera as a function of the time
variable t. In particular the i-th camera position is a S-
asymptotically Ti-periodic function (see Nicola and Pierri
(2009)), i.e.,

∃Ti > 0 : lim
t→∞

xi(t+ Ti)− xi(t) = 0.

In this case we say that Ti is the asymptotic period of xi.

A (cameras) trajectory as an array X = {x1, . . . , xN}
of N functions in F(R≥0,B) describing the motion of
the cameras f.o.v. on B. In particular, we focus on S-
asymptotically jointly T -periodic cameras trajectories X,
so that

∃T > 0 : lim
t→∞

X(t+ T )−X(t) = 0.

Finally, we say that a cameras trajectory is synchronized
if, for each pair of neighboring cameras i and j (|i−j| = 1),
there exists τ ∈ [0 T ] such that limt→∞ xi(t+ τ)− xj(t+
τ) = 0, where T denotes the asymptotic periodicity of X.

Model of intruder In this work we consider the problem
of detecting an intruder on the boundary B. We represent



the intruder as an arbitrarily fast point of B, and we let
t0 ∈ R≥0 be the time at which the intruder appears on B.
Let the continuous map p : R≥t0 7→ B describe the position
of the intruder at a certain time t ≥ t0. We say that the
intruder is detected at time td ∈ R≥t0 if p(td) ∈ X(td).
We focus on smart intruders, which have full knowledge
of the cameras trajectory and choose their trajectory p to
avoid detection as long as possible. More formally, given
an initial time t0 ∈ R≥0, an initial point p0 = p(0) ∈ B and
a cameras trajectory X, the trajectory of a smart intruder
p∗t0,p0 is such that

p∗t0,p0 = arg max{t∗d(p)− t0 : p ∈ Φ(t0, p0)},

where Φ(t0, p0) ∈ F(R≥0,B) is the set of continuous maps
p and

t∗d(p) = min{t : p(t) ∈ X(t), p ∈ Φ(t0, p0)}.
Notice that the trajectory p∗t0,p0 is, in general, non unique.

Performance functions The detection performance of a
T -periodic cameras trajectory X is measured according to
two criteria, namely the worst-case detection time (WDT),
and the average detection time (ADT). The two criteria
are formally defined as

WDT(X) := max
p0,t0

t∗d(p)− t0, (3)

and

ADT(X) :=
1

TL

∫ T

0

∫
B

(t∗d(p
∗
t,γ)− t)dγdt. (4)

In other words, the WDT criterion measures the longest
detection time of a smart intruder, while the ADT criterion
measures the average detection time of a smart intruder
over the boundary B and the periodicity T .

A static variation (WDTs) of the WDT criterion in equa-
tion (3) is defined in Alberton et al. (2012). In particular,

WDTs(X) := max
p0,t0
{t− t0 : p0 ∈ X(t), t ≥ t0}, (5)

and it corresponds to the longest time for the cameras
to detect a static event along B. Due the fact that B
is an (open) boundary, a (periodic) cameras trajectory
with minimum WDTs can be computed by optimally
partitioning B among the cameras, and by letting each
camera sweep its assigned segment Ai at maximum speed
(see Alberton et al. (2012) and (Czyzowicz et al., 2011,
Conjecture 1)). 2 It follows that
WDTs∗ := min

X
WDTs(X) = 2 min

A1,...,AN

τmax =: 2τ∗, (6)

where ∪Ni=1Ai = B, and Ai∩Aj has zero measure on B for
every distinct cameras i and j. Clearly,

WDT∗ := min
X

WDT(X) ≥WDTs∗. (7)

In particular, it can be shown that WDT(X) = WDTs∗ for
any WDTs∗-periodic and synchronized cameras trajectory
(see Spindler et al. (2012)). Hence, any WDTs∗-periodic
and synchronized cameras trajectory achieves minimum
WDT of smart intruders. On the other hand, notice that
for any non-synchronized cameras trajectory X, it holds
WDT(X) = ∞. Indeed, a smart intruder may avoid
2 The computation of non-periodic cameras trajectories with op-
timal performance is, to the best of our knowledge, still an open
problem, as well as a proof of the fact that the family of trajectories
based on partitions of B contains optimal camera trajectories.

detection by moving between two neighboring cameras
(see Spindler et al. (2012)).

We now derive a lower bound for ADT criterion.
Theorem 2.1. (Lower bound for ADT) Consider N
cameras installed along a boundary B of length L. Let Ai
be the active boundary of camera i. Assume ∪Ni=1Ai = B,
and Ai ∩Aj has zero measure on B for every distinct pair
i, j ∈ {1, . . . , N}. Then,

ADT∗ = min
X

ADT(X) ≥ 1

L

N∑
i=1

|Ai|τi =
1

L

N∑
i=1

|Ai|2

vmax
i

, (8)

where X is a τmax-periodic function.

Theorem 2.1 generalizes the result in Spindler et al. (2012)
to the case of cameras with different maximal speeds. In
the interest of space, we omit a proof of Theorem 2.1,
which closely the arguments used in Spindler et al. (2012)

Communication model In this work we consider a
distributed scenario in which cameras i and j are allowed
to communicate at time t only if |j − i| = 1 (neighboring
cameras) and xi(t) = xj(t). Although conservative, this
assumption allows us to develop algorithms implementable
with many low-cost communication devices.
Problem 1. (Distributed surveillance) Consider a set
ofN cameras with given patrolling windows on a boundary
B. Design a distributed algorithm for the cameras to
converge to a synchronized trajectory X with WDT(X) =
WDT∗ and ADT(X) <∞.

It should be observed that, although we make explicit
use of the techniques developed by Spindler et al. (2012)
and by Alberton et al. (2012), this paper extends the
cited works in the following ways: with respect to Spindler
et al. (2012), (i) the boundary partition and hence its
dimension are not given a priori, and, instead, they are
computed by the cameras via a distributed algorithm, (ii)
we consider cameras with different maximal speeds, and
(iii) with respect to Alberton et al. (2012), we consider
the WDT and the ADT of moving and smart intruders,
as opposed to only the WDTs of static intruders. As it
will be clear in the sequel, these extensions are not trivial.
Finally, we remark that in order to simultaneously parti-
tion the boundary B among the robots and synchronize
the motion of the robots, the length τmax of the longest
partition needs to dynamically tracked by every camera
via distributed computation. This tracking problem is not
posed in Spindler et al. (2012) because they start from
the assumption that the Ai partitions are known a pri-
ori. Instead, we address this problem by considering S-
asymptotically cameras trajectories, and the machinery
introduced in the next section.

3. SYMMETRIC-GOSSIP PARTITIONING
ALGORITHM WITH EQUAL-WAITING

TRAJECTORIES GENERATION

In this section we introduce the symmetric-gossip par-
titioning with equal-waiting trajectories generation algo-
rithm (denoted as SGPEWT hereafter). This algorithm
allows the cameras to simultaneously partition the bound-
ary and synchronize their motion via distributed compu-
tation. Loosely speaking, the i-th camera sweeps back and



forth at the maximum speed its patrolling windows Ai(t),
and updates Ai(t) upon communication with neighboring
cameras. The update of Ai(t) is performed so that, as t
grows, the cameras patrolling windows form a partition of
the boundary that minimizes the longest sweeping time.
Cameras stop for a certain waiting time when their f.o.v.
reaches an extreme of their patrolling window. These wait-
ing times ensure that (i) communication among neigh-
boring cameras is maintained over time, and (ii) cameras
trajectories are synchronized along an equal-waiting tra-
jectory. In an equal-waiting trajectory, for each camera,
the waiting times at the two extremes of the patrolling win-
dow are equally long. Finally, in order to achieve motion
synchronization, the (time varying) maximum sweeping
time τmax needs to be propagated among cameras during
the execution of the algorithm. In order to do so, the
auxiliary variable qi is used by the i-th camera to store
the information about the camera associated with τmax.

We assume that:

(A1) each camera knows its initial active boundary Ai(0) =
[`i(0), ri(0)] and the patrolling speeds of its neighbors,

(A3) initial active boundaries satisfy the patrolling window
constraint, i.e., Ai(0) ⊆ Di, the boundary conditions,
i.e. l1(0) = d1 and rN (0) = dN , and that the set
{A1(0), . . . , AN (0)} is a partition of B, and

(A4) the position xi(0) is randomly chosen within Ai(0).

The SGPEWT is formally described as follows:

Processor states: For each i ∈ {1, . . . , N} and for all
t ∈ R≥0, camera i maintains in memory the following
quantities:
• the extremes `i(t) and ri(t) defining its active
boundary Ai(t);
• the estimated maximum sweeping time τ̂max

i (t);
• the value of the variable qi(t).

Initialization: For i ∈ {1, . . . , N}, set the estimated
maximum sweeping time τ̂max

i (0) and the variable qi(0)
equal to τi(0) and i, respectively. Moreover at time
t = 0 camera i starts moving at speed vmax

i toward the
furthest extreme.

Transmission steps: Consider cameras i and i+ 1, and
notice that they communicate as soon as their f.o.v.s
meet at the common extreme, that is, as soon as
xi(t) = ri(t) and xi+1(t) = `i+1(t) for a certain
instant t > 0. This communication link is bidirectional,
namely, camera i sends to camera i + 1 the values
`i(t), ri(t), τ̂max

i (t), qi(t) while camera i + 1 sends to
camera i the values `i+1(t), ri+1(t), τ̂max

i+1 (t), and qi+1(t).
Based on this information, cameras i and i+ 1 perform
instantaneously the operations described in Extremes’
update and Maximum sweeping time estimation.

Extremes’ update: Cameras i and i + 1 update the
extremes ri and `i+1 according to the symmetric gossip
partitioning algorithm introduced in Alberton et al.
(2012). Specifically, the agents perform the following
two actions in order. First, following the neighbors’ equal
traveling time criterion, they compute the point

m∗ :=
`i(t)v

max
i+1 + ri+1(t)vmax

i

vmax
i + vmax

i+1

Second they check if the intervals [`i(t), m
∗] and

[m∗, ri+1(t)] satisfy the physical constraints, and they

update their extremes by setting

ri(t
+) = `i+1(t+) =


m∗ if m∗ ∈ [di+1, di],

di if m∗ > di,

di+1 if m∗ < di+1,

where the symbol t+ denotes any time instant after t, i.e.
t+ > t. Instead, `i, ri+1 don’t change, i.e. `i(t+) = `i(t),
ri+1(t+) = ri+1(t). Finally, both cameras compute and
store the values τi(t+) = (ri(t

+) − `i(t
+))/vmax

i and
τi+1(t+) = (ri+1(t+)− `i+1(t+))/vmax

i+1 .
Maximum sweeping time estimation: Cameras i and
i+1 update qi, qi+1, τ̂max

i and τ̂max
i+1 , based on the current

values of these quantities. In particular we distinguish
among four cases:

(M1) if qi(t) = i− 1 and qi+1(t) = i+ 2, then
τ̂max
i (t+) = τ̂max

i+1 (t+) = max
{
τ̂max
i (t), τ̂max

i+1 (t)
}
.

Moreover, if the above maximum is attained at
τ̂max
i (t) then

qi(t
+) = i− 1 and qi+1(t+) = i,

otherwise
qi(t

+) = i+ 1 and qi+1(t+) = i+ 2.

(M2) if qi(t) = i− 1 and qi+1(t) ∈ {i, i+ 1}, then
τ̂max
i (t+) = τ̂max

i+1 (t+) =

max
{
τ̂max
i (t), τi(t

+), τi+1(t+)
}
,

Moreover, if the above maximum is attained at
τ̂max
i (t), then

qi(t
+) = i− 1 and qi+1(t+) = i,

otherwise
qi(t

+) = qi+1(t+) = arg max
i,i+1

{
τi(t

+), τi+1(t+)
}
.

(M3) the case qi+1(t) = i+ 2 and qi(t) ∈ {i, i+ 1} work
analogously to the previous case (M2);

(M4) if qi(t), qi+1(t) ∈ {i, i+ 1}, then
τ̂max
i (t+) = τ̂max

i+1 (t+) = max
{
τi(t

+), τi+1(t+)
}
,

and
qi(t

+) = qi+1(t+) = arg max
i,i+1

{
τi(t

+), τi+1(t+)
}
.

Equal-waiting synchronization: After performing the
update steps, cameras i waits in its current position
for an additional time ωi = τ̂max

i (t+) − τi(t
+), which

is the time that each camera is required to wait for X
to converge to an equal-waiting trajectory (see Spindler
et al. (2012)). 3 Then, camera i moves its f.o.v. toward
the opposite extreme `i, and it stops at `i until it
communicates with camera i − 1. Analogously, camera
i + 1 moves its f.o.v. towards ri+1, and it stops at ri+1

until it communicates with camera i+ 2.

We now characterize the convergence properties of the
SGPEWT algorithm.
3 Notice that ωi is intrinsically greater or equal to zero. This is trivial
to see for the cases (M2)-(M4) in which τ̂max

i (t+) ≥ τi(t+). For (M1)
it is sufficient to consider that, for the property of the partitioning,
the sweeping times τi, i ∈ {1, . . . , N}, are not increasing functions.
Thus in (M1) it holds τ̂max

i (t+) ≥ τ̂max
i (t) ≥ . . . ≥ τ̂max

i (t?) ≥
τi(t

?) ≥ . . . ≥ τi(t) ≥ τi(t
+) where t? < t+ is the first instant

in which the maximum sweeping time estimation occurs in (M2)
or (M3) or (M4). Otherwise if the evolution of τ̂max

i permanently
takes place in (M1) we trivially have τ̂max

i (t+) ≥ τ̂max
i (t) ≥ . . . ≥

τ̂max
i (0) = τi(0) ≥ . . . ≥ τi(t) ≥ τi(t+).



Theorem 3.1. (Convergence of the SGPEWT) Con-
sider a set of N cameras installed along a boundary B of
length L. Let {vmax

1 , . . . , vmax
N } be the set of f.o.v. max-

imum speeds. Let the camera implement the SGPEWT
algorithm. Then,

(i) the evolution of the partitions t 7→ {Ai(t)}Ni=1 gener-
ated by the SGPEWT algorithm satisfies the bound-
ary conditions, the patrolling windows and interlacing
physical constraints for all t ∈ R≥0, and the partition
{Ai(t)} satisfies

τ∗ = lim
t7→∞

max
i∈{1,...,N}

|Ai(t)|
vmax
i

= min
A1,...,AN

max
i∈{1,...,N}

|Ai|
vmax
i

,

where {A1, . . . , AN} is a feasible partition of B,
(ii) the cameras trajectory X generated by the SGPEWT

algorithm is S-asymptotically jointly 2τ∗-periodic,
and converges to an equal-waiting trajectory.

Proof. Due to space constraints we just sketch the proof.
First notice that cameras persistently communicate over
time. Indeed, (i) each camera sweeps back and forth its
assigned segment, (ii) cameras wait at their boundaries
until communication with a neighboring camera takes
place, and (iii) cameras 1 and N do not stop at `1 and
rN , respectively. In particular, it can be shown that any
two neighboring cameras communicate within an interval
of finite length. Statement (i) follows from (Alberton et al.,
2012, Theorem IV.1).

Notice that, because of the persistency of communication
among cameras, for any time t, the value τmax(t), which is
decreasing in t, propagates in a finite time Tprop to every
camera. Let t̄ be such that τmax(t̄) = τ∗ + ε, for some
ε ∈ R>0. Then, after time t̄+Tprop, the period Ti of camera
i is within 2ε of 2τ∗, for each i ∈ {1, . . . , N}. Statement
(ii) follows by letting ε to zero. �

As a corollary of Thm. 3.1, the detection performance
of the cameras trajectory generated by the SGPEWT
algorithm are as follows.
Corollary 3.1. (Performance of the SGPEWT) Let
X be the cameras trajectory generated by the SGPEWT
algorithm and τ� := limt7→∞mini∈{1,...,N} τi(t). Then,

(i) lim
t→∞

WDT(X)

WDT∗
= 1,

(ii) lim
t→∞

ADT(X)

ADT∗
≤ τ∗ + τ�

2τ�
.

Proof. We start from (i). We have already shown, recall-
ing Equ. (6) and Spindler et al. (2012), that WDT(X) =
WDT∗ = WDTs∗ = 2τ∗ for any 2τ∗-periodic and syn-
chronized cameras trajectory X. Thus (i) trivially fol-
lows by Thm. 3.1, since the cameras trajectory X is S-
asymptotically jointly 2τ∗-periodic. Now consider (ii). Ex-
ploiting the technicalities to prove (Spindler et al., 2012,
Thm. III.2) we have ADT(X) = τ∗/2+

∑N
i=1 v

max
i τ2i /(2L)

where X is the 2τ∗-periodic equal-waiting trajectory
to whom the cameras trajectory converge. Recalling
(8), an upper bound of the ratio ADT(X)/ADT∗ is
(τ∗
∑N
i=1 v

max
i τi/

∑N
i=1 v

max
i τ2i + 1)/2. Now the inequality

τ∗
∑N
i=1 v

max
i τi

2
∑N
i=1 v

max
i τ2i

+
1

2
≤ τ∗ + τ�

2τ�
,

is trivially verified, in fact, after some manipulation, we ob-
tain

∑N
i=1 v

max
i (τ�−τi)τi ≤ 0, that holds since τ� ≤ τi, ∀i.

To conclude the proof note that limt→∞ADT(X)/ADT∗ =
ADT(X)/ADT∗ follows from Thm. 3.1. �

4. ILLUSTRATIVE EXAMPLES

In this section we validate our algorithms thorough numer-
ical simulations. We consider two scenarios with 5 cameras.
All cameras start their trajectory from a random point
xi(0) ∼ U [`i(0), ri(0)] [m]. The initial partitions Ai(0) are
generated as described in Section 3.

In the first scenario (Fig. 2) cameras have the same
maximum speed vmax

i = 0.67 [m/s], and they are not
subject to patrolling windows constraints. In the case
of same maximum speed, the patrolling windows Di,
the initial active boundaries Ai(0), and the asymptotic
partitions Ai(∞) are listed in Table 1. It can be seen
from Fig. 2 that τmax is a decreasing function, and that
the cameras converge to the optimally maximum sweeping
time τ∗ = 6.2023 [s].

Table 1. Same cameras speed: values of Di,
Ai(0) and Ai(∞), i ∈ {1, . . . , 5}.

1 2 3 4 5

Di [0 4.68] [1.14 7.45] [3.32 12.09] [7.26 18.41] [10.12 20]

Ai(0) [0 2.91] [2.91 5.38] [5.38 9.67] [9.67 14.26] [14.26 20]

Ai(∞) [0 3.72] [3.72 7.45] [7.45 11.63] [11.63 15.82] [15.82 20]

In the second scenario, cameras have different maximum
speeds (v1 = 0.61, v2 = 0.57, v3 = 0.47, v4 = 0.68,
v5 = 0.68 [m/s]), and they are subject to patrolling
windows constraints. In Table 2 we report the values of
Di, Ai(0) and Ai(∞). As shown in Fig. 3, our algorithm
is convergent also in this case (τ∗ = 6.65 [s]).

Table 2. Different cameras speeds: Di, Ai(0),
Ai(∞) values for i ∈ {1, . . . , 5}.

1 2 3 4 5

Di [0 20] [0 20] [0 20] [0 20] [0 20]

Ai(0) [0 4] [4 8] [8 12] [12 16] [16 20]

Ai(∞) [0 4.04] [4.04 7.81] [7.81 10.94] [10.94 15.48] [15.48 20]

Finally, notice from Fig. 2 and Fig. 3 that the cameras
trajectories generated by our algorithm converge to syn-
chronized trajectories.

5. CONCLUSIONS

This work studies the problem of simultaneously partition-
ing a boundary among a set of cameras and synchronizing
the motion of the cameras. We measure the performance
of a cameras trajectory in term of the worst-case detection
time, and the average detection time of smart intruders.
We show the convergence and characterize the perfor-
mance of our algorithms.



Fig. 2. Simulation of SGPEWT with N = 5 cameras
running at the same maximum speed vmax

i = 0.67
[m/s] with patrolling windows constraints. At the
top are depicted the xi trajectories of the cameras,
starting form random positions xi(0). The dashed
lines refer to the trajectories of the active boundaries.
At the bottom are highlighted the dynamics of the
maximum patrolling times τ̂max

i that converge to the
optimal τ∗ = 6.2023 [s], marked with a dash-dot line.

Fig. 3. Simulation of SGPEWT with N = 5 cam-
eras running at different maximum speeds vmax

i ∼
U [0.45, 0.75] [m/s] with no patrolling windows con-
straints. At the top are depicted the xi trajectories
of the cameras, starting form random positions xi(0).
The dashed lines refer to the trajectories of the ac-
tive boundaries. At the bottom are highlighted the
dynamics of τ̂max

i that distributively converge to the
optimal τ∗ = 6.65 [s], marked with a dash-dot line.

Several problems remain of interest. First, the design
of finite time partitioning and synchronization algo-
rithms. Second, the design of optimal non-periodic cam-
eras trajectories. Third and finally, a proof of the fact
that partitioned-based trajectories achieve optimal perfor-
mance even when cameras have different maximal speeds.
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