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Data-driven control of complex networks
Giacomo Baggio1, Danielle S. Bassett 2,3,4,5,6,7 & Fabio Pasqualetti 8✉

Our ability to manipulate the behavior of complex networks depends on the design of effi-

cient control algorithms and, critically, on the availability of an accurate and tractable model

of the network dynamics. While the design of control algorithms for network systems has

seen notable advances in the past few years, knowledge of the network dynamics is a

ubiquitous assumption that is difficult to satisfy in practice. In this paper we overcome this

limitation, and develop a data-driven framework to control a complex network optimally and

without any knowledge of the network dynamics. Our optimal controls are constructed using

a finite set of data, where the unknown network is stimulated with arbitrary and possibly

random inputs. Although our controls are provably correct for networks with linear dynamics,

we also characterize their performance against noisy data and in the presence of nonlinear

dynamics, as they arise in power grid and brain networks.
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W ith the development of sensing, processing, and stor-
ing capabilities of modern sensors, massive volumes of
information-rich data are now rapidly expanding in

many physical and engineering domains, ranging from robotics1

to biological2,3 and economic sciences4. Data are often dynami-
cally generated by complex interconnected processes, and encode
key information about the structure and operation of these net-
worked phenomena. Examples include temporal recordings of
functional activity in the human brain5, phasor measurements of
currents and voltages in the power distribution grid6, and streams
of traffic data in urban transportation networks7. When first-
principle models are not conceivable, costly, or difficult to obtain,
this unprecedented availability of the data offers a great oppor-
tunity for scientists and practitioners to better understand, pre-
dict, and, ultimately, control the behavior of real-world complex
networks.

Existing works on the controllability of complex networks have
focused exclusively on a model-based setting8–14, although, in
practice, constructing accurate models of large-scale networks is a
challenging, often unfeasible, task15–17. In fact, errors in the
network model (i.e., missing or extra links, incorrect link weights)
are unavoidable, especially if the network is identified from
data18,19 (see Fig. 1a). This uncertainty is particularly important
for network controllability, since, as exemplified in Fig. 1b, c, the
computation of model-based network controls tends to be
unreliable and highly sensitive to model uncertainties, even for
moderate size networks, if the network is controlled by few
nodes20,21. It is therefore natural to ask whether network controls

can be learned directly from data, and, if so, how well these data-
driven control policies perform.

Data-driven control of dynamical systems has attracted
increasing interest over the last few years, triggered by recent
advances and successes in machine learning and artificial
intelligence22,23. The classic (indirect) approach to learn controls
from data is to use a sequential system identification and control
design procedure. That is, one first identifies a model of the
system from the available data and then computes the desired
controls using the estimated model24. However, identification
algorithms are sometimes inaccurate and time-consuming, and
several direct data-driven methods have been proposed to bypass
the identification step25. These include, among others, (model-
free) reinforcement learning26,27, iterative learning control28,
adaptive and self-tuning control29, and behavior-based
methods30,31.

The above techniques differ in the data-generation procedure,
class of system dynamics considered, and control objectives. In
classic reinforcement learning settings, data are generated online
and updated under the guidance of a policy evaluator or reward
simulator, which in many applications is represented by an
offline-trained (deep) neural network32. Iterative learning control
is used to refine and optimize repetitive control tasks: data are
recorded online during the execution of a task repeated multiple
times, and employed to improve tracking accuracy from trial to
trial. In adaptive control, the structure of the controller is fixed
and a few control parameters are optimized using data collected
on the fly. A widely known example is the auto-tuning of PID

Fig. 1 The effect of model uncertainty in the computation of optimal network controls. Panel (a) shows a schematic of a classic network identification
procedure. The reconstructed network is affected by estimation errors δij. The symbol {aij} denote the correct network weights, whereas fâijg the
(incorrectly) reconstructed ones. Panel (b) illustrates the error in the final (output) state induced by an optimal control design based on the reconstructed
network. The symbol yf denote the desired final state of (a subset of) the network nodes, whereas ŷf the one reached by the optimal input u⋆(t). In panel
(c), we consider minimum-energy controls designed from exact and incorrectly reconstructed linear dynamical networks, and compute the resulting error
in the final state as the network size n varies. We consider connected Erdös–Rényi networks with edge probability pedge ¼ ln n=nþ 0:1, ten randomly
selected control nodes, control horizon T= 2n, and a randomly chosen final state xf 2 Rn. We assume yf= xf, i.e., the nodes that we want to control
coincide with all network nodes. To mimic errors in the network reconstruction process, we add to each edge of the network a disturbance modeled as an i.
i.d. random variable uniformly distributed in [− δ, δ], δ > 0. Each curve represents the average of the (norm of the) error in the final state over 100
independent realizations of xf. To compute minimum-energy control inputs, we use the classic Gramian-based formula and standard LAPACK linear-
algebra routines (see “Methods”). Notice that there is a nonzero error in the final state which grows with the size of the network even in the absence of
uncertainty (δ= 0). This is due to numerical errors in the computation of the minimum-energy control which are a consequence of the ill-conditioning of
the Gramian9,20.
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controllers33. Behavior-based techniques exploit a trajectory-
based (or behavioral) representation of the system, and data that
typically consist of a single, noiseless, and sufficiently long
input–output system trajectory31. Each of the above data-driven
approaches has its own limitations and merits, which strongly
depend on the intended application area. However, a common
feature of all these approaches is that they are tailored to or have
been employed for closed-loop control tasks, such as stabilization
or tracking, and not for finite-time point-to-point control tasks.

In this paper, we address the problem of learning from data
point-to-point optimal controls for complex dynamical networks.
Precisely, following recent literature on the controllability of
complex networks34,35, we focus on control policies that opti-
mally steer the state of (a subset of) network nodes from a given
initial value to a desired final one within a finite-time horizon. To
derive analytic, interpretable results that capture the role of the
network structure, we consider networks governed by linear
dynamics, quadratic cost functions, and data consisting of a set of
control experiments recorded offline. Importantly, experimental
data are not required to be optimal, and can even be generated
through random control experiments. In this setting, we establish
closed-form expressions of optimal data-driven control policies to
reach the desired target state and, in the case of noiseless data,
characterize the minimum number of experiments needed to
exactly reconstruct optimal control inputs. Further, we introduce
suboptimal yet computationally simple data-driven expressions
and discuss certain numerical and computational advantages of
using our data-driven approach when compared to classic model-
based ones. Finally, we illustrate with different numerical studies
how our framework can be applied to (i) induce prescribed pat-
terns of synchronization in networks of oscillators, (ii) restore the
correct operation of power-grid networks after a fault, and (iii)
characterize the controllability properties of functional brain
networks.

While the focus of this paper is on designing optimal control
inputs, the expressions derived in this work could also serve as an
alternative, computationally reliable, and efficient way of (i)
analyzing the controllability properties of network systems and
(ii) solving control-related network problems, such as the optimal
selection of control and sensor nodes. In particular, as a by-
product of our analysis, we show that (output) controllability can
be assessed directly and simply from data. This constitutes an
additional methodological contribution to the extensive literature
on the model-based analysis of network controllability.

Results
Network dynamics and optimal point-to-point control. We
consider networks governed by linear time-invariant dynamics

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ;
yðtÞ ¼ CxðtÞ; ð1Þ

where xðtÞ 2 Rn, uðtÞ 2 Rm, and yðtÞ 2 Rp denote, respectively,
the state, input, and output of the network at time t. The matrix
A 2 Rn´ n describes the (directed and weighted) adjacency matrix
of the network, and the matrices B 2 Rn ´m and C 2 Rp ´ n,
respectively, are typically chosen to single out prescribed sets of
input and output nodes of the network.

In this work, we are interested in solving point-to-point control
problems; that is, designing open-loop control policies that steer
the network output y(t) from an initial value y(0)= y0 to a
desired one y(T)= yf in a finite number of steps T. If yf is output
controllable in T steps (a standing assumption in this paper; we
refer to Supplementary Note 1 for more details), then the latter
problem admits a solution and, in fact, there are many ways to
accomplish such a control task. Here, we assume that the network

is initially relaxed (x(0)= 0), and we seek the control input

u?0:T�1 ¼ ½u?ðT � 1ÞT � � � u?ð0ÞT�T that drives the output of the
network to yf in T steps and, at the same time, minimizes a
prescribed quadratic combination of the control effort and
locality of the controlled trajectories.

Mathematically, we study and solve the following constrained
minimization problem:

u?0:T�1 ¼ arg min
u0:T�1

yT1:T�1 Q y1:T�1 þ uT0:T�1 R u0:T�1

s:t: Eq: ð1Þ and yT ¼ yf ;
ð2Þ

where Q≽ 0 and R≻ 0 are tunable (positive semidefinite and
positive definite, respectively) matrices that penalize output
deviation and input usage, respectively, y1:T�1 ¼ ½yð1ÞT
yð2ÞT � � � yðT � 1ÞT�T, and yT= y(T). Problem (2) generalizes
the classic (open-loop) linear–quadratic control framework by
including the possibility of minimizing a linear function of the
state (as opposed to the whole state) in addition to the control
input. Further, we remark that increasing R in Eq. (2) leads to
optimal control inputs that achieve the desired final state with
increasingly smaller magnitudes. Similarly, the matrix Q in Eq.
(2) weighs the norm of the output (state), so that increasing Q
forces the optimization problem to generate inputs that limit the
norm of the output (state), at the expenses of using a larger
control input36. In particular, if Q= 0 and R= I, then u?0:T�1
coincides with the minimum-energy control to reach yf in T
steps9,37.

Equation (2) admits a closed-form solution whose computation
requires the exact knowledge of the network matrix A and suffers
from numerical instabilities (“Methods”). In the following
section, we address this limitation by deriving model-free and
reliable expressions of u?0:T�1 that solely rely on experimental data
collected during the network operation.

Learning optimal controls from non-optimal data. We assume
that the network matrix A is unknown and that N control
experiments have been performed with the dynamical network in
Eq. (1). The ith experiment consists of generating and applying the
input sequence uðiÞ0:T�1, and measuring the resulting output trajec-
tory yðiÞ0:T (Fig. 2a). Here, as in ref. 38, we consider episodic experi-
ments where the network state is reset to zero before running a new
trial, and refer to Supplementary Note 5 for an extension to the
nonepisodic setting and to the case of episodic experiments with
nonzero initial state resets. We let U0:T−1, Y1:T−1, and YT denote the
matrices containing, respectively, the experimental inputs, the
output measurements in the time interval [1,T− 1], and the output
measurements at time T. Namely,

U0:T�1 ¼ uð1Þ0:T�1 � � � uðNÞ
0:T�1

h i
;

Y1:T�1 ¼ yð1Þ1:T�1 � � � yðNÞ
1:T�1

h i
;

YT ¼ yð1ÞT � � � yðNÞ
T

h i
:

ð3Þ

An important aspect of our analysis is that we do not require the
input experiments to be optimal, in the sense of Eq. (2), nor do we
investigate the problem of experiment design, i.e., generating data
that are informative for our problem. In our setting, data are given,
and these are generated from arbitrary, possibly random, or care-
fully chosen experiments.

By relying on the data matrices in Eq. (3), we derive the
following data-driven candidate solution to the minimization
problem in Eq. (2) (Supplementary Note 2):

û0:T�1 ¼ U0:T�1ðI� KYT
ðLKYT

ÞyLÞYy
T yf ; ð4Þ

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21554-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1429 | https://doi.org/10.1038/s41467-021-21554-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


where L is any matrix satisfying LTL ¼ YT
1:T�1QY1:T�1þ

UT
0:T�1RU0:T�1, KYT

denotes a matrix whose columns form a
basis of the kernel of YT, and the superscript symbol ⋅ † stands for
the Moore–Penrose pseudoinverse operation39. We remark that
the dependence of Eq. (4) on the (unknown) network parameters
A, B, and C is implicit and encoded in the collected data U0:T−1,
Y1:T−1, and YT. Further, we stress that û0:T�1 in Eq. (4) does not,
in general, coincide with the optimal solution u?0:T�1 in Eq. (2).
However, if enough linearly independent data are collected, then
û0:T�1 ¼ u?0:T�1, as we illustrate next.

Minimum number of the data to learn optimal controls and a
data-based controllability condition. Finite data suffice to
exactly reconstruct the optimal control input via the data-driven
expression in Eq. (4). The minimum number of data Nmin
required to accomplish such a task depends both on the target yf
and the available data matrices, which are in turn implicitly
dependent on the (unknown) parameters A, B, and C. However,
it is possible to establish a simple upper bound on Nmin. Namely,
if the input data matrix in Eq. (3) contains mT linearly inde-
pendent experiments, that is, if U0:T−1 has full row rank, then
Nmin ≤mT (Supplementary Note 3). We stress that linear inde-
pendence of the control experiments is a mild condition that is
normally satisfied when the experiments are generated randomly.
Further, if the number of independent trials is smaller than mT

but such that yf belongs to the range space of YT, then the data-
driven control û0:T�1 still correctly steers the network output to yf
in T steps, but with a cost that is typically larger than the optimal
one (Supplementary Note 3). In this case, û0:T�1 is a suboptimal
solution to Eq. (2), which becomes optimal if the collected data
are made of control experiments that are optimal as well. We
stress that for a number N ≥ p of randomly chosen control
experiments, any (output controllable) yf normally belongs to the
range space of YT. In Fig. 2c, we illustrate the above observations
for the class of Erdös–Rényi networks of Fig. 2b.

Finally, as a by-product of the above analysis, it follows that the
(output) controllability of a network system can be checked
directly and simply from the data. Specifically, if N ≥mT linearly
independent input experiments are collected with T ≥ n, then the
system is output controllable if and only if the columns of the
output data matrix YT span the entire space Rp; that is, if and
only if YT has full row rank (Supplementary Note 4). For p= n,
the latter condition can be used to assess the classic controllability
of a network system from data.

Data-driven minimum-energy control. By letting Q= 0 and R
= I in Eq. (4), we recover a data-driven expression for the T-step
minimum-energy control to reach yf. We remark that the family
of minimum-energy controls has been extensively employed to
characterize the fundamental capabilities and limitations of

Fig. 2 Experimental setup and optimal data-driven network controls. Panel (a) illustrates the data-collection process. With reference to the ith control
experiment, a T-step input sequence uðiÞ0:T excites the network dynamics in Eq. (1), and the time samples of the resulting output trajectory yðiÞ0:T are recorded.
The input trajectory uðiÞ0:T may be generated randomly, so that the final output yðiÞT does not normally coincide with the desired target output yf. Red nodes
denote the control or input nodes (forming matrix B) and the blue nodes denote the measured or output nodes (forming matrix C). Panel (b) shows a
realization of the Erdös–Rényi graph model G(n, pedge) used in our examples, where n is the number of nodes, pedge is the edge probability. We set the edge
probability to pedge ¼ ln n=nþ ε, ε= 0.05, to ensure connectedness with high probability, and normalize the resulting adjacency matrix by

ffiffiffi
n

p
. Panel (c)

shows the value of the cost function (left) and the (norm of the) error in the final state (right) for the data-driven input (4) and the model-based control as
a function of the number of data points. The symbol yf denotes the desired final target and ŷf the output reached by the (model-based or data-driven)
control input. We choose Q= R= I, n= 1000, T= 10, m= 50, and p= 200, and consider Erdös–Rényi networks as in panel (b). For additional details, see
“Methods”.
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controlling networks, e.g., see9,11,14. After some algebraic
manipulations, the data-driven minimum-energy control input
can be compactly rewritten as (Supplementary Note 5)

û0:T�1 ¼ ðYTU
y
0:T�1Þ

y
yf : ð5Þ

The latter expression relies on the final output measurements
only (matrix YT) and, thus, it does not exploit the full output data
(matrix Y1:T−1). An alternative control expression is

~u0:T�1 ¼ U0:T�1Y
y
T yf : ð6Þ

This is a simple, suboptimal data-based control sequence that
correctly steers the network to yf in T steps, as long as yf belongs

to the range space of YT (a condition that is normally satisfied
when p randomly generated data are available). Further, and
more importantly, when the input data samples are drawn ran-
domly and independently from a Gaussian distribution with zero
mean and finite variance, Eq. (6) converges to the minimum-
energy control in the limit of infinite data (Supplementary
Note 6).

Figure 3a compares the performance (in terms of control effort
and error in the final state) of the two data-driven expressions in
Eqs. (5) and (6), and the model-based control as a function of the
data size N. While the data-driven control in Eq. (5) becomes
optimal for a finite number of data (precisely, for N=mT
independent data), the approximate expression in Eq. (6) tends to

Fig. 3 Performance of minimum-energy data-driven network controls. Panel (a) shows the value of the cost function (left) and the (norm of the) error in
the final state (right) for the minimum-energy data-driven controls (5) and (6), and the model-based one as a function of the data size N. We consider
Erdös–Rényi networks as in Fig. 2b with ε= 0.05, and parameters n= 1000, T= 10, m= 50, p= 200. In panels (b–d), we assume C= I and compare the
error in the final state generated by the data-driven minimum-energy controls (5) and (6) and model-based expression for a fixed number of control nodes
m= 100 and increasing dimension n∈ [100, 1000]. The model-based control has been computed by first estimating matrices A and B from data according
to the subspace-based technique in “Methods”, and then using the model-based control expression. In panel (b), we consider Erdös–Rényi networks
with average degree 〈k〉= 10 (top) and 〈k〉= 20 (bottom). In panel (c), we consider Barabasi–Albert networks71 with the initial number of nodes m0= 20
and average degree 〈k〉= 10 (top) and 〈k〉= 20 (bottom). In panel (d), we consider Watts–Strogatz networks72 with rewiring probability prew= 0.2 and
average degree 〈k〉= 10 (top) and 〈k〉= 20 (bottom). In all plots, we use a control horizon T= 15 and a number of the data N=mT+ 200. To limit the
influence of eigenvalues in the computation of optimal controls across different network models, we normalize matrix A by its norm ∥A∥. The curves
represent the average of over 100 realizations of networks, data, control nodes, and final states. Panel (e), left, compares the time needed to compute the
optimal controls via data-driven and model-based strategies as a function of the network size, for one realization of the Erdös–Rényi model of Fig. 2b and
data. Panel (e), right, shows the errors in the final state. We use the following parameters: ε= 0.05, m= ⌊n/100⌋, p= ⌊n/50⌋, T= 50, and N=mT+ 100.
For additional details, see “Methods”.
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the optimal control only asymptotically in the number of data
(Fig. 3a, left). In both cases, the error in the final state goes to zero
after collecting N= p data (Fig. 3a, right). For the approximate
control in Eq. (6), we also establish upper bounds on the size of
the dataset to get a prescribed deviation from the optimal control,
in the case of Gaussian input data. Our nonasymptotic analysis
indicates that this deviation is proportional to the worst-case
control energy required to reach a unit-norm target. This, in turn,
implies that networks that are easy to control require fewer trials
to attain a prescribed approximation error (Supplementary
Note 6).

Numerical and computational benefits of data-driven controls.
By relying on the same set of experimental data, in Fig. 3b–d, we
compare the numerical accuracy, as measured by the error in the
final state, of the data-driven controls in Eqs. (5) and (6) and the
minimum-energy control computed via a standard two-step
approach comprising a network identification step followed by
model-based control design. First, we point out that if some nodes
of the network are not accessible (C ≠ I) and no prior information
about the network structure is available, then it is impossible to
exactly reconstruct the network matrix A using (any number of)
data40. In contrast, the computation of minimum-energy inputs is
always feasible via our data-driven expression, provided that
enough independent data are collected. We thus focus on the case
in which the state of all nodes can be measured (i.e., C= I). We
first consider Erdös–Rényi networks with a fixed number of
control nodes m= 100 and increasing dimension n∈ [100, 1000].
To reconstruct the network matrices A and B, we employ the
subspace-based identification technique described in “Methods”.
Although both the data-driven and the model-based controls
yield a poor numerical accuracy for increasing values of n/m
(which is due to the fact that the energy to control a network
typically grows exponentially with the ratio n/m9,11,20,21) the
model-based input exhibits a faster growth of the error when
compared to the data-driven ones for sufficiently large values of
n/m (Fig. 3b). We find similar tradeoffs for other random net-
work models, namely scale-free (Barabási–Albert model) and
small-world (Watts–Strogatz model), as illustrated in Figs. 3c and
d, respectively. This poor performance of the standard approach
is somehow expected because, independently of the network
identification procedure, the standard two-step approach requires
a number of operations larger than those required by the data-
driven approach, resulting in a potentially higher sensitivity to
round-off errors. Also, we empirically observe that the gain in
numerical accuracy offered by data-driven control inputs is more
significant for dense networks (see also Supplementary Fig. 1).
Finally, it is worth noting that the approximate data-driven
control given in Eq. (6), even though suboptimal, yields the best
accuracy. This is particularly interesting since, for a finite number
of the data, Eq. (6) does not have a model-based counterpart.

A further advantage in using data-driven controls over model-
based ones arises when dealing with massive networks featuring a
small fraction of input and output nodes. Specifically, in Fig. 3e
we plot the time needed to numerically compute the data-driven
and model-based controls as a function of the size of the network.
We focus on Erdös–Rényi networks as in Fig. 2b of dimension n
≥ 1000 with ⌊n/100⌋ input and output nodes and a control
horizon T= 50. The model-based control input requires the
computation of the first T− 1 powers of A (“Methods”). The
computation of the data-driven expressions in Eqs. (5) and (6)
involves, instead, linear-algebraic operations on two matrices (U0:

T−1 and YT) that are typically smaller than A when n is very large
(precisely, when T < n/m and N < n). Thus, the computation of
the control input via the data-driven approach is normally faster

than the classic model-based computation (Fig. 3e, left). In
particular, the data-driven control given in Eq. (6), although
suboptimal, yields the most favorable performance due to its
particularly simple expression. Finally, we note that the error in
the final state committed by the data-driven controls is always
upper bounded by 10−5 and thus it has a negligible effect on the
control accuracy (Fig. 3e, right).

Data-driven controls with noisy data. The analysis so far has
focused on noiseless data. A natural question is how the data-
driven controls behave in the case of noisy data. If the noise is
unknown but small in magnitude, then the established data-
driven expressions will deviate slightly from the correct values
(Supplementary Note 7). However, if some prior information on
the noise is known, this information can be exploited to return
more accurate control expressions. A particularly relevant case is
when data are corrupted by additive i.i.d. noise with zero mean
and known variance. Namely, the available data read as

U0:T�1 ¼ �U0:T�1 þ ΔU;

Y1:T�1 ¼ �Y1:T�1 þ ΔY;

YT ¼ �YT þ ΔYT
;

ð7Þ

where �U0:T�1, �Y1:T�1, and �YT denote the ground truth values, and
ΔU, ΔY, and ΔYT

are random matrices with i.i.d. entries with zero
mean and variance σ2U, σ

2
Y, and σ2YT

, respectively. In this setting, it
can be shown that the data-driven control in Eq. (4) and the data-
driven minimum-energy controls in Eqs. (5) and (6) are typically
not consistent; that is, they do not converge to the true control
inputs as the data size tends to infinity (see Supplementary Note 7
for a concrete example). However, by suitably modifying these
expressions, it is possible to recover asymptotically correct data-
driven formulas (Supplementary Note 7). The key idea is to add
correction terms that compensate for the noise variance arising
from the pseudoinverse operations. In particular, the asymptoti-
cally correct version of the data-driven controls in Eqs. (5) and
(6) read, respectively, as

û ðcÞ
0:T�1 ¼ ðYTU

T
0:T�1ðU0:T�1U

T
0:T�1 � Nσ2UIÞ

yÞ
y
yf ; ð8Þ

~u ðcÞ
0:T�1 ¼ U0:T�1Y

T
T ðYTY

T
T � Nσ2YT

IÞy yf ; ð9Þ

where we used the fact that Xy ¼ XTðXXTÞy for any matrix X39,
and Nσ2UI and Nσ2YT

I represent the noise-dependent correction
terms. Note, in particular, that if the noise corrupts the output
data YT only, then Eq. (8) coincides with the original data-driven
control in Eq. (5), so that no correction is needed. Similarly, if the
noise corrupts the input data UT only, then Eq. (9) coincides with
the data-driven control in Eq. (6).

Data-driven pattern control of synchronized activity in Kur-
amoto networks. The problem of inducing desired patterns of
synchronized activity in networks of oscillators has several
applications in many natural and technological networks41,42. For
instance, in the clinical treatment of neurological disorders43–46

and in the administration and dispatch of power in distribution
networks47–49. For these reasons, several methods have been
investigated in the literature for the control of synchronized
patterns of activity46,49–51. Here, we show how the data-driven
framework proposed in this paper can be employed to provide a
solution to this problem.

To this end, we consider a simple yet insightful example, that
is, a ring network of n Kuramoto oscillators. The dynamics of the
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phases of the oscillators are

_θiðtÞ ¼ ωi þ sinðθi�1ðtÞ � θiðtÞÞ þ sinðθiþ1ðtÞ � θiðtÞÞ; i ¼ 1; ¼ ; n;

ð10Þ
where ωi is the natural frequency of the ith oscillator and the
index i is periodic mod n. We consider the case where ωi= ω for
all i. In this case, the network always has a stable synchronous
state given by �θiðtÞ ¼ ωt for all i. However, as n grows other
stable equilibria arise, namely52:

�θq;iðtÞ ¼ ωt þ 2πqi
n

þ c; i ¼ 1; ¼ ; n; ð11Þ

where c is an arbitrary constant and q is the winding number
which takes integer values. These equilibria correspond to phases
linearly spaced on the unit circle and are commonly referred to as
splay states. To simulate the dynamics in Eq. (10) and generate
the data, we discretize the Kuramoto dynamics via the forward
Euler method with discretization step 0.01. In Fig. 4, we consider
a network of n= 10 oscillators with ω= 0. In the top plots, we
assume that we have access to all nodes of the network (m= 10)
and apply an external control input to steer the network: (i) from
the splay state f�θ1;iðtÞg to the synchronous state f�θiðtÞg (Fig. 4b),
and (ii) from the splay state f�θ2;iðtÞg to the splay state f�θ1;iðtÞg
(Fig. 4c). The control input has been computed using the data-
driven expression given in Eq. (4) with T= 50 samples

(corresponding to a control horizon of 0.5 s), and parameters
Q= 5I, R= I. Further, we subtract to each output data sample in
matrix Y1:T−1 the value of the final equilibrium point, so that
choosing a sufficiently large Q favor trajectories with a small
deviation from the equilibrium. We remark that the choice of Q is
particularly important when applying our expressions to non-
linear networks. In this case, choosing a large Q often improves
the applicability and effectiveness of our methods, since a
nonlinear system approximately behaves as a linear one in a
sufficiently small neighborhood of equilibrium (see also Supple-
mentary Fig. 2). Data have been generated through N= 1000
control experiments obtained by perturbing the initial equili-
brium with i.i.d. Gaussian external inputs with zero mean and
standard deviation 0.1. In the right plots of Fig. 4, we repeat the
same experiments using m= 3 control nodes (red nodes in
Fig. 4d). In both scenarios, the control input does not exactly
drive the network to the desired target state (because of the
nonlinearity of the dynamics) but to a state close to it.
Nevertheless, the final state falls within the basin of attraction
of the desired target equilibrium so that the network reaches
asymptotically the desired pattern of synchronization. Finally, we
point out that the above-described procedure can, in principle, be
applied to more complex (possibly random) network topologies.
In such cases, however, it is typically more challenging to
determine the initial and final equilibrium configurations that
specify the considered point-to-point control problem53.

Fig. 4 Data-driven control of synchronized patterns in a ring of Kuramoto oscillators.We consider a ring network of n= 10 Kuramoto oscillators for two
different configurations of control nodes (red nodes), namely m= 10 (a) and m= 3 (d). For both configurations, we apply the data-driven control (Eq. (4)
of the main text) to steer the phases from the splay state f�θ1;iðtÞg to the synchronous state (b, e) and from the splay state f�θ2;iðtÞg to f�θ1;iðtÞg (c, f). The
green region denotes the application of the control. We choose as parameters T= 50 samples of the discretized dynamics (corresponding to a control
horizon of 0.5 s), Q= 5I, R= I, and N= 1000 data obtained by perturbing the initial equilibrium with i.i.d. Gaussian inputs with zero mean and standard
deviation 0.1.
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Data-driven fault recovery in power-grid networks. We address
the problem of restoring the normal operation of a power-grid
network after the occurrence of a fault that desynchronizes part of
the grid. If not mitigated in a timely manner, such desynchro-
nization instabilities may trigger cascading failures that can ulti-
mately cause major blackouts and grid disruptions54–56. In our
case study, we consider a line fault in the New England power-
grid network comprising 39 nodes (29 load nodes and 10 gen-
erator nodes), as depicted in Fig. 5a, and we compute an optimal
point-to-point control from data to recover the correct operation
of the grid. A similar problem is solved in ref. 55 using a more
sophisticated control strategy which requires knowledge of the
network dynamics. As in refs. 54,55, we assume that the phase δi
and the (angular) frequency ωi of each generator i obey the swing

equation dynamics with the parameters given in ref. 54 (except for
generator 1 whose phase and frequency are fixed to a constant, cf.
“Methods”). Initially, each generator operates at a locally stable
steady-state condition determined by the power-flow equations.
At time t= 2 s, a three-phase fault occurs in the transmission line
connecting nodes 16 and 17. After 0.5 s, the fault is cleared;
however, the generators have lost synchrony and deviate from
their steady-state values (Fig. 5b). To recover the normal behavior
of the grid, 0.5 s after the clearance of the fault, we apply a short,
optimal control input to the frequency of the generators to steer
the state (phase and frequency) of the generators back to its
steady-state value. The input is computed from data via Eq. (4)
using N= 4000 input/state experiments collected by locally per-
turbing the state of the generators around its normal operation

Fig. 5 Data-driven fault recovery in the New England power-grid network. Panel (a) depicts the 39-node New England power-grid network (see ref. 70,
Appendix A). The black nodes {1,…, 29} represent load nodes, while the red nodes {30,…, 39} are power generators. The generators are labeled according
to the numbers in the red brackets. The red cross denotes the location of the fault. Panel (b) plots the behavior of the phases and frequencies of generators
{2,…, 10} after the occurrence of the fault. The onset time of the fault is t= 2 s and the fault duration is 0.5 s (red area in the plots). At time t= 2.5 s the
fault is cleared. The phase and frequency of generator 1 (not shown) are fixed to a constant (see “Methods”). The left plots of the panel (c) show the
behavior of the phases and frequencies of generators {2,…, 10} after the application of the data-driven control input (4). The duration of the control action is
0.1 s (green area in the plots) which corresponds to a control horizon T= 400 for the discretized network dynamics with sampling period Ts= 2.5 × 10−4 s.
For the computation of the control input, we employ N= 4000 experimental data collected offline by perturbing the state of the generators locally around its
steady-state value (see “Methods”). We use weighting matrices R= I and Q= εI, with ε= 0.01. The insets illustrate the behavior of the phases and
frequencies during the application of the control. The right plots of the panel (c) show the asymptotic behavior of the phases and frequencies of generators
{2,…, 10} after the application of the data-driven control (4).
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point using the real, nonlinear swing dynamics (see also “Meth-
ods”). We consider data sampled with period Ts= 2.5 × 10−4 s,
and set the control horizon to T= 400 time samples (corre-
sponding to 0.1 s), R= I, and Q= εI with ε= 0.01 to enforce
locality of the controlled trajectories. As shown in Fig. 5c, the
data-driven input drives the state of the generators to a point
close enough to the starting synchronous solution (left, inset) so
as to asymptotically recover the correct operation of the grid
(right). We remark that, because of the nonlinearity of the
dynamics, the data-driven control input is not able to exactly
steer the state the network back to the original synchronous state,
but to a point close to it. The latter point, however, falls within
the basin of attraction of the synchronous solution. Thus, the
control input is able to correctly steer the network to the desired
synchronous state, although not in finite time. Notably, as pre-
viously discussed, the computation of the control input requires
only pre-collected data, is numerically efficient, and optimal (for
the linearized dynamics). More generally, this numerical study
shows that the data-driven strategy in Eq. (4) could represent a
simple, viable, and computationally efficient approach to control
complex nonlinear networks around an operating point.

Controlling functional brain networks via fMRI snapshots. We
investigate the problem of generating prescribed patterns of
activity in functional brain networks directly from task-based
functional magnetic resonance imaging (task-fMRI) time series.
Specifically, we examine a dataset of task-based fMRI experiments
related to motor activity extracted from the Human Connectome
Project (HCP)57 (see Fig. 6a). In these experiments, participants
are presented with visual cues that ask them to execute specific
motor tasks; namely, tap their left or right fingers, squeeze their
left or right toes, and move their tongue. We consider a set of
m= 6 input channels associated with different task-related sti-
muli; that is, the motor tasks’ stimuli and the visual cue preceding
them. As in ref. 58, we encode the input signals as binary time
series taking the value of 1 when the corresponding task-related
stimulus occurs and 0 otherwise. The output signals consist of
minimally pre-processed blood oxygen-level-dependent (BOLD)
time series associated with the fMRI measurements at different
regions of the brain (see also “Methods”). In our numerical study,
we parcellated the brain into p= 148 brain regions (74 regions
per hemisphere) according to the Destrieux 2009 atlas59. Further,
as a baseline for comparison, we approximate the dynamics of the

Fig. 6 Data-driven control of functional brain networks. Panel (a) provides a schematic of the experimental setup. A set of external stimuli represented by
m different task commands induce brain activity. Functional magnetic resonance (fMRI) blood oxygen level-dependent (BOLD) signals are measured and
recorded at different times and converted into p time series, one for each brain region. The top and center heatmaps of the panel (b) show the inputs and
outputs, respectively, for the first 110 measurements of one subject of the HCP dataset. The inputs are divided into m= 6 channels corresponding to
different task conditions, i.e., CUE (a visual cue preceding the occurrence of other task conditions), LF (squeeze left toe), LH (tap left fingers), RF (squeeze
right toe), RH (tap right finger), and T (move tongue). As in ref. 58, each input is a binary 0–1 signal taking the value 1 when the corresponding task
condition is issued and 0 otherwise. The outputs represent the BOLD signals of the p= 148 brain regions obtained from and enumerated according to the
Destrieux 2009 atlas59. The bottom heatmap of the panel (b) displays the simulated outputs obtained by exciting the approximate low-dimensional linear
model of ref. 58 with the input sequence of the top plot. In panel (c), we compare the performance of the data-driven and model-based strategy, assuming
that the dynamics obey the above-mentioned approximate linear model. We set the control horizon to T= 100 and generate the data matrices by sliding a
time window of size T across the data samples. The target state yf,i is the eigenvector associated with the i-th eigenvalue of the empirical Gramian matrix
ŴT ¼ ĈTT ĈT , where ĈT ¼ YTU

y
0:T�1. The left plot shows the error to reach the targets fyf;ig20i¼1

using the data-driven minimum-energy input in Eq. (5) and the
model-based one. The right plot shows the norm of the two inputs. The colored bars denote the mean over 100 unrelated subjects and the error bars are
the 95% confidence intervals around the mean.
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functional network with a low-dimensional (n= 20) linear model
computed via the approach described in ref. 58, which has been
shown to accurately capture the underlying network dynamics. In
fact, although it is widely acknowledged that brain dynamics are
nonlinear, linear models can provide a reasonable approximation
of the actual nonlinear neural trajectories in certain operating
conditions60,61.

In Fig. 6b, we plot the inputs (top) and outputs (center) of one
subject for the first sequence of five motor tasks. The bottom plot
of the same figure shows the outputs obtained by approximating
the network dynamics with the above-mentioned linear model. In
Fig. 6c, we compare the performance of the minimum-energy
data-driven control in Eq. (5) with the model-based one,
assuming that the network obeys the dynamics of the approx-
imate linear model. We choose a control horizon T= 100, form
the data matrices in Eq. (3) by sliding a window of fixed size T
over the available fMRI data, and consider a set of 20 orthogonal
targets fyf ;ig20i¼1

corresponding to eigenvectors of the estimated T-
step controllability Gramian (see “Methods” for further details).
The top plot of Fig. 6c reports the error (normalized by the
output dimension) in the final state of the two strategies, while
the bottom plot shows the corresponding control energy (that is,
the norm of the control input). In the plots, the targets are
ordered from the most (yf,1) to the least (yf,20) controllable. The
data-driven and the model-based inputs exhibit an almost
identical behavior with reference to the most controllable targets.
As we shift towards the least controllable targets, the data-driven
strategy yields larger errors but, at the same time, requires less
energy to be implemented, thus being potentially more feasible in
practice. Importantly, since the underlying brain dynamics are
not known, errors in the final state are computed using the
identified linear dynamical model. It is thus expected that data-
driven inputs yield larger errors in the final state than model-
based inputs, although these errors may not correspond to
control inaccuracies when applying the data-driven inputs to the
actual brain dynamics. Ultimately, our numerical study suggests
that the data-driven framework could represent a viable
alternative to the classic model-based approach12,46,62 to infer
controllability properties of brain networks, and (by suitably
modulating the reconstructed inputs) enforce desired functional
configurations in a non-invasive manner and without requiring
real-time measurements.

Discussion
In this paper, we present a framework to control complex
dynamical networks from data generated by non-optimal (and
possibly random) experiments. We show that optimal point-to-
point controls to reach the desired target state, including the
widely used minimum-energy control input, can be determined
exactly from data. We provide closed-form and approximate
data-based expressions of these control inputs and characterize
the minimum number of samples needed to compute them.
Further, we show by means of numerical simulations that data-
driven inputs present some numerical advantages with respect to
classic model-based approaches, and can be used to analyze and
manipulate the controllability properties of real networks.

The data-driven expressions derived in this paper are not only
theoretically intriguing and practically relevant but they may also
provide an alternative set of tools to investigate how different
network properties, such as dimension, heterogeneity, and
structure, affect controllability. These questions, which are cur-
rently being asked in a model-based setting, may find an easier
answer in a data-driven framework due to the simplified math-
ematical expressions of optimal controls. More generally, our
framework and results suggest that many network control

problems may be solved by simply relying on experimental data,
thus promoting a new, exciting, and practical line of research in
the field of complex networks. Because of the abundance of data
in modern applications and the computationally appealing
properties of data-driven controls, we expect that this new line of
research will benefit a broad range of research communities,
spanning from engineering to biology, which employs control-
theoretic methods and tools to comprehend and manipulate
complex networked phenomena.

Some limitations of this study should also be acknowledged
and discussed. First, in our work we consider networks governed
by linear dynamics. On the one hand, this is a restrictive
assumption since many real-world networks are inherently
nonlinear. On the other hand, linear models are used successfully
to approximate the behavior of nonlinear dynamical networks
around desired operating points and capture more explicitly the
impact of the network topology. Second, in our numerical studies,
we employed routines that are commonly used in engineering
and scientific computation. Using higher precision routines can
alleviate and possibly alter our numerical results. However, since
we use the same routines to compare model-based and data-
driven methods, we believe that the comparisons in the paper
remain qualitatively valid (although possibly with different
values) even when using routines with higher precision. Third, in
many cases, a closed-loop control strategy is preferable to a point-
to-point one, especially if the control objective is to stabilize an
equilibrium when external disturbances corrupt the dynamics.
However, we stress that point-to-point controls, in addition to
being able to steer the network to arbitrary configurations, are
extensively used to characterize the fundamental control prop-
erties and limitations in networks of dynamical nodes. For
instance, the expressions we provide for point-to-point control
can also lead to novel, data-based methods to study the energetic
limitations of controlling complex networks9, select sensors and
actuators for optimized estimation and control63, and design
optimized network structures64. Notably, model-based solutions
to these control-related problems have been fruitfully applied to
shed light on the behavior and operation of real (nonlinear)
networks12,60,61,65. Finally, although we provide data-driven
expressions that compensate for the effect of noise in the limit
of infinite data, we do not provide nonasymptotic guarantees on
the reconstruction error. Overcoming these limitations represent
a compelling direction of future work, which can strengthen the
relevance and applicability of our data-driven control framework,
and ultimately lead to viable control methods for complex
networks.

Methods
Model-based expressions of optimal controls. The model-based solution to the
problem in Eq. (2) can be written in a batch form as

u?0:T�1 ¼ ðI� KCT
ðMKCT

ÞyMÞCy
Tyf ; ð12Þ

where CT ¼ ½CBCAB � � � CAT�1B� is the T-step output controllability matrix of
the dynamical network in Eq. (1), KCT

denotes a basis of the kernel of CT , and M is

any matrix satisfying MTM ¼ HT
TQHT þ R, with

HT ¼

0 � � � � � � 0 CB

..

. � � � 0 CB CAB

..

.
: :

:
: :

:
: :

: ..
.

0 CB CAB � � � CAT�2B

2
666664

3
777775
; ð13Þ

and 0 entries denoting p ×m zero matrices. If Q= 0 and R= I (minimum-energy
control input), Eq. (12) simplifies to u?0:T�1 ¼ Cy

Tyf . Alternatively, if the network is
output controllable, the minimum-energy input can be compactly written as

u?ðtÞ ¼ BTAT�t�1CTW�1
T yf ; t ¼ 0; 1; 2; ¼ ; T � 1: ð14Þ

where WT denotes the T-step output controllability Gramian of the dynamical
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network in Eq. (1)

WT ¼ CTC
T
T ¼

XT�1

t¼0

CAtBBTðATÞtCT; ð15Þ

which is invertible if and only if the network is output controllable. Equation (14) is
the classic (Gramian-based) expression of the minimum-energy control input37. It
is well-known that this expression is numerically unstable, even for moderate size
systems20.

Subspace-based system identification. Given the data matrices U0:T−1 and YT as
defined in Eq. (3) and assuming that C= I, a simple deterministic subspace-based
procedure66, Ch. 6] to estimate the matrices A and B from the available data consist
of the following two steps:

1. Compute an estimate of the T-step controllability matrix of the network as
the solution to the minimization problem

ĈT ¼ argmin
CT

YT � CTU0:T�1k k2F ; ð16Þ
where ∥ ⋅ ∥F denotes the Frobenius norm of a matrix. The solution to the
problem in Eq. (16) has the form ĈT ¼ YTU

y
0:T�1.

2. In view of the definition of the controllability matrix, obtain an estimate of
the matrix B by extracting the first m columns of ĈT . Namely, B̂ ¼ ½ĈT;�:;1:m ,
where [X]:,i:j indicates the sub-matrix of X obtained from keeping the entries
from the ith to jth columns and all of its rows. An estimate of matrix A can
be obtained as the solution to the least-squares problem

Â ¼ argmin
A

½ĈT �:;mþ1:mT � A ½ĈT �:;1:ðT�1Þm
���

���
2

F
; ð17Þ

which yields the matrix Â ¼ ½ĈT �:;mþ1:mT ½ĈT �
y
:;1:ðT�1Þm .

If the data are noiseless, the system is controllable in T− 1 steps, and U0:T−1 has
full row rank, then this procedure provably returns correct estimates of A and B66.

Power-grid network dynamics, parameters, and data generation. The short-
term electromechanical behavior of generators {2,…, 10} of the New England
power-grid network are modeled by the swing equations67:

_δi ¼ ωi;

Hi

πf b
_ωi ¼ �Diωi þ Pmi � GiiE

2
i þ

X10
j¼1;j≠i

EiEjðGij cosðδi � δjÞ þ Bij sinðδi � δjÞÞ:

ð18Þ
where δi is the angular position or phase of the rotor in generator i with respect
to generator 1, and where ωi is the deviation of the rotor speed or frequency in
generator i relative to the nominal angular frequency 2πfb. Generator 1 is
assumed to be connected to an infinite bus and has constant phase and fre-
quency. The parameters Hi and Di are the inertia constant and damping coef-
ficient, respectively, of generator i. The parameter Gii is the internal conductance
of generator i, and Gij+ iBij (where i is the imaginary unit) is the transfer
impedance between generators i and j. The parameter Pmi denotes the
mechanical input power of generator i and Ei denotes the internal voltage of
generator i. The values of parameters fb, Hi, Di, Gij, Bij, and Pmi in the non-faulty
and faulty configuration are taken from ref. 54, while the voltages Ei and initial
conditions (δi(0), ωi(0)= 0) are fixed using a power-flow computation. In our
numerical study, we discretize the dynamics in Eq. (18) using a forward Euler
method with sampling time Ts= 2.5 × 10−4 s. Data are generated by applying a
Gaussian i.i.d. perturbation with zero mean and variance 0.01 to each frequency
ωi of the swing dynamics in Eq. (18). The initial condition of each experiment is
computed by adding a Gaussian i.i.d. perturbation with zero mean and variance
0.01 to the steady-state values of δi and ωi of the swing dynamics in Eq. (18).

Task-fMRI dataset, pre-processing pipeline, and identification setup. The
motor task-fMRI data used in our numerical study are extracted from the HCP
S1200 release57,68. The details for data acquisition and experiment design can be
found in ref. 68. The BOLD measurements have been pre-processed according to
the minimal pipeline described in ref. 69, and, as in ref. 58, filtered with a band-pass
filter to attenuate the frequencies outside the 0.06–0.12 Hz band. Specifically, we
use an order 50 FIR-type filter using Matlab®equiripple method, so as to
achieve a 20 dB attenuation outside the passband. The initial stop and pass fre-
quencies considered were fs,1= 0.04 Hz, fp,1= 0.06 Hz, and the final stop and pass
frequencies were fp,2= 0.12 Hz and fs,2= 0.15 Hz, respectively. Further, as common
practice, the effect of the physiological signals (cardiac, respiratory, and head
motion signals) is removed from the BOLD measurements by means of standard
regression procedure58. The data matrices in Eq. (3) are generated via a sliding
window of fixed length T= 100 with initial time in the interval [−90, 10]. We
assume that the inputs and states are zero for times less than or equal to 10, i.e., the
instant at which the first task condition is issued. We approximate the
input–output dynamics with a linear model with state dimension n= 20 computed
using input–output data in the interval [0, 150] and the subspace-based

identification procedure detailed in ref. 58. In particular, we use (Hankel) output
data matrices with columns consisting of s= 3 output samples and a regularization
term γI, γ= 5, in the regression procedure for the estimation of matrix B. When
the estimated network matrix A has unstable eigenvalues, we stabilize A by diving
it by ρ(A)+ 0.01, where ρ(A) denotes the spectral radius of A.

Additional computational and experimental details. All numerical simulations
have been performed via standard linear-algebra LAPACK routines available as
built-in functions in Matlab® R2019b, running on a 2.6 GHz Intel Core i5
processor with 8 GB of RAM. In particular, for the computation of pseu-
doinverses, we use the singular value decomposition method (command pinv
in Matlab®) with a threshold of 10−8. In the numerical simulations of Figs. 2 and
3, if not otherwise stated, the entries of the final state yf and those of the input
data matrix U0:T−1 are standard normal i.i.d. variables, the input/output nodes
are randomly selected with the only constraint that the resulting system is output
controllable, and the curves represent the average over 500 independent reali-
zations of networks, data, input/output nodes, and final states. We ensure output
controllability by choosing networks that are connected and by choosing sets of
input/output nodes that yield the smallest singular value of the resulting output
controllability matrix no smaller than 10−10.

Data availability
The New England power-grid interconnection scheme can be found in Appendix A of
the reference textbook ref. 70 and the grid parameters in the faulty and non-faulty
configurations are described in ref. 54. The HCP data used in our study are part of the
1200 Subjects Release (S1200) and are publicly available on the ConnectomeDB database
(https://db.humanconnectome.org). These data are also available in the public GitHub
repository: https://github.com/baggiogi/data_driven_control.

Code availability
The code used in this study is freely available in the public GitHub repository: https://
github.com/baggiogi/data_driven_control.
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