CONFIDENTIAL. Limited circulation. For review only.

Routing Apps May Cause Oscillatory Congestions in Traffic Networks

Gianluca Bianchin, Fabio Pasqualetti

Abstract— This paper studies the stability of traffic networks
when the travelers follow congestion-dependent routing recom-
mendations provided by routing apps. Despite the widespread
use of app-based navigation systems, which allow drivers
to react in real-time to fluctuations in traffic congestion, a
thorough characterization of the benefits and impact of these
devices on general and capacitated traffic systems has remained
elusive until now. We first propose a dynamical routing model
to describe the instantaneous route-update mechanism that
is at the core of navigation apps, and then we leverage the
theory of passivity for nonlinear dynamical systems to provide
a theoretical framework for the analysis of traffic stability. We
prove for the first time the existence of oscillatory trajectories
due to the general adoption of routing apps, which demonstrate
how drivers continuously switch between highways in the
attempt of minimizing their travel time to destination. These
findings are used to explain oscillatory behaviors observed in the
highway system in Southern California, and inform the design
of novel app-based congestion control strategies. Empirical data
and illustrative examples demonstrate our theoretical findings.

I. INTRODUCTION

Traffic networks are fundamental components of modern
societies, making economic activity possible by enabling
the transfer of passengers, goods, and services in a timely
and reliable fashion. During the last decade, traffic networks
have withstood an unprecedented growth of traffic demands,
often caused by the increasing aggregation of populations
in cities and by growing transportation needs, forcing these
systems to operate close or beyond their maximum capacity.
Accompanied by a traffic network that operates close to
its physical limits is a degradation of the travel times in
its highways, which forces travelers to shift the time of
their morning commute or to alter their routing decisions in
relationship to the current traffic congestion. Unlike decades
ago when vehicle routing was based on paper maps or relied
on the drivers’ experience about typical traffic conditions,
the proliferation of smartphone technologies has allowed
the development and use of routing apps (such as Google
Maps, Inrix, Waze, etc.) that provide effective minimum-time
routing suggestions based on real-time sensing of congestion.

A fundamental question in traffic theory concerns how
drivers behave in response to fluctuations in traffic con-
gestion, and to what extent navigation apps can benefit
the overall traffic network. In a classical framework, these
questions are addressed by adopting simplified traffic mod-
els and by considering a game-theoretic setting known as
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Fig. 1. (a) West bounds of SR60-W and I10-W in Southern California. (b)
Densities reconstructed from sensory data on March 6, 2020. (c) Estimated
travel times on two freeways. (d) Routing fractions predicted by our model.

the routing game [1], [2], where traffic flows propagate
instantaneously across the network, and drivers update their
routing choices from day to day based on their personal
congestion observations. The resulting system operates at
an equilibrium point known as the Wardrop equilibrium, a
condition where the travel time on all origin-destination paths
in the network is identical at all times. Unfortunately, this
simplified framework is not sufficient to explain and predict
complex behaviors emerging in modern traffic networks,
where app-informed travelers can now respond instanta-
neously to sudden changes in traffic congestion. In this work,
we propose the use of evolutionary selection models at the
junction level to describe the response of travelers to real-
time information, and borrow tools and concepts from control
theory to explain the complex interplay between congestion
and routing decisions. Our work is motivated, in part, by the
empirical observations illustrated in the following example.

Motivating Example. Consider the traffic network in
Fig. 1(a), which describes the west bounds of freeways
SR60-W and I10-W in the Los Angeles metropolitan area.
Let z¢p and x1o be the average traffic density in the section
of SR60-W (absolute miles 13.1 — 22.4) and in the sec-
tion of 110-W (absolute miles 24.4 — 36.02), respectively.
Fig. 1(b) illustrates the time-evolution of the traffic densities
(reconstructed from sensory data!) on Friday, March 6, 2020.
The figure suggests that congestion consistently alternates
between the two highways: a dynamical phenomenon that
cannot be captured through the classical equilibrium analysis
due to its static nature. The absence of an equilibrium is
further supported by Fig. 1(c), where the travel times on the

'Source: Caltrans Freeway Performance Measurement System (PeMS).
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two freeways are typically different during congestion. These
observations urge the development of novel models that can
predict oscillating congestion particularly in the presence
of non-recurrent conditions or possible disruptions. In this
paper we propose and analyze a novel dynamical routing
model, whose output is illustrated in Fig. 1(d). This figure
shows how the fraction of travelers choosing freeway SR60-
W (denoted by rg0) and the fraction of travelers choosing
110-W (denoted by ri1g, where r1g = 1 — rgg) oscillate over
time, which is in agreement with the collected empirical data.
Related Work. This work brings together and extends two
streams of literature. On the one hand, routing decisions have
been studied in the routing game setting by exclusively fo-
cusing on traffic systems operating at equilibrium. Recently,
Evolutionary Game-Theory [3] was applied to the routing
game [4], [5], to study not only the equilibria, but also the
asymptotic behavior of the system. Although these works
represent a significant step towards understanding dynamical
behaviors in traffic routing, they critically rely on a static
traffic model, thus limiting their applicability to cases where
drivers respond to congestion slowly or from day to day.
On the other hand, dynamical traffic models have been
widely studied after the popularization of the Cell Transmis-
sion Model [6]. In this line of research, the routing model
is time-invariant, and the main emphasis has been on the
development of precise numerical models that can capture the
behavior of the traffic system in several regimes [7], and on
characterizing the properties of its equilibria [8]. An impor-
tant contribution to study the interplay between routing and
dynamical networks is made in [9], [10], which are however
limited to routing models based on local information.
Contribution. The contribution of this work is threefold.
First, we propose a dynamical decision model to capture the
behavior of app-informed travelers in response to congestion.
Our model is inspired by evolutionary models in biology and
game theory, and captures a setting where routing apps use
the observations of other travelers to instantaneously adjust
their routing recommendations. Second, we characterize the
fixed points of a traffic system where our routing decision
model is coupled with a dynamical traffic model, and we
relate these points to the classical notion of Wardrop equi-
librium [11]. Third, we characterize the stability of the fixed
points of the coupled traffic system. Our analysis relies on
the theory of passivity for nonlinear systems [12], and it
shows that equilibrium points are stable but not necessarily
asymptotically stable, thus allowing for non-vanishing os-
cillatory behaviors. In fact, we demonstrate the existence of
limit cycles for a tractable example. Due to space constraints,
some proofs are omitted here and are made available in [13].
Organization. This paper is organized as follows. Section
Il illustrates our traffic network model and our routing
decision model. Section III characterizes the properties of
the equilibrium points, and relates these points to the notion
of Wardrop equilibrium. Section IV contains the stability
analysis, while Section V illustrates the existence of peri-
odic orbits through an example and numerical simulations.
Finally, Section VI concludes the paper.

II. TRAFFIC NETWORK AND APP ROUTING MODELS

In this section we present our model of traffic network.

A. Traffic Network Model

We model a traffic network by means of a directed acyclic
graph G = (W, L), where £ = {1,...n} C ¥V x V models
the set of traffic freeways (or links), and V = {v1,...,v,}
models the set of traffic junctions (or nodes). For a node v,
we denote by v = {(z,w) € L : z = v} the set of its
outgoing links, and by v = {(w,2) € L : z = v} the set of
its incoming links. Each traffic junction is composed of a set
of ramps, each interconnecting a pair of freeways. We denote
the set of traffic ramps (or adjacent links) by A C £ x £, and
we let Ay C L be the set of ramps available upon exiting ¢:

A:={{,m) : v eV st £cv™and m € v},
Ap:={meL : 3 (¢,m)e A}

We describe the macroscopic behavior of each link ¢ €
L by means of a dynamical equation that captures the
conservation of flows between upstream and downstream:

ip = fi'(x) — fi" (x),
where xp : Ry — X, X C Ry, is the traffic density in the
link, fé“ : X = F, F C Ry, is the inflow of traffic at the
link upstream, and fé’“‘ : X — F is the outflow of traffic at
the link downstream. We make the following assumption.
(Al) For all £ € L, f"(x¢) = 0 only if 2, = 0. More-

over, f9" is differentiable, non-decreasing, and upper
bounded by the flow capacity C, € R>:

ifg‘)“‘(:w) >0 and sup f{"(z¢) = Co.
d.%‘g Ty
We associate a scalar variable ., € [0, 1] (routing ratio)
to each pair of adjacent links (¢,m) € A to describe the
fraction of traffic flow entering link m upon exiting ¢, with
> m Tem = 1. We combine the routing ratios into a matrix
R = [rem] € R™ ™, where we let 14, = 0 if ¢ and m are
not adjacent (¢,m) ¢ A, and we denote by Rg the set of
feasible routing ratios for the network defined by G. That is,

Rg :={rem : rem = 0if (¢, m) & A, Z Tom = 1} (1)
meL

At every ramp, traffic flows are transferred from the incoming

link to the outgoing link as described by the routing ratios:

(@) = rem £ (xe).
LeL

We focus on single-commodity networks, where an inflow
of vehicles ) : R>o — F enters the network at a (unique)
source link s € £, and traffic flows exit the network at a
(unique) destination link d € L. In the remainder, we adopt
the convention s = 1 and d = n. We describe the overall
network dynamics by combining the dynamical models of
all links in a vector equation of the form

&= (R" = I)f(z)+ X, (2)
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Fig. 2. (a) Network discussed in examples 2.1 and 2.3. (b) Perceived costs.

where I € R"*™ denotes the identity matrix, x =
[z1,...,2,]7 is the vector of traffic densities in the links,
=1 0‘“, oo, fOUT is the vector of link outflows, and A\ =
A, ...,0T denotes the inflow vector. Finally, we illustrate
our model of traffic network in the following example.
Example 2.1: (Dynamical Traffic Model) Consider the
seven-link network illustrated in Fig. 2. The traffic network

model (2) reads as:

= ) +

iy = —f3" (22) +7"12f°m(931),

i3 = —f§"(x3) + ris 1" (z1),

Eq = —fy"(x4) 4+ roa 5" (22),

i = —f2"(x5) + ro5 5" (22),

j:’ﬁ — Out(xﬁ) Out( 3) + Oul( )
i‘? — Out(x’r) Out( 4) Out( )

where r19 + 713 = 1 and To4 + To5 = 1. O

B. Congestion-Responsive Routing Model

In what follows, we present our dynamical model for app-
informed routing. To this aim, we associate a state-dependent
travel cost to each link of the network,

TZZX—)T,TgRZ(),

which describes the instantaneous travel cost (or travel delay)
of traversing link £. We denote by 7(z) = [r1,..., 7, the
joint vector of costs, and we make the following assumption.
(A2) For all £ € L, the travel cost 7¢(z/) is differentiable and
non-decreasing.

To capture the fact that travelers wish to minimize the
overall (total) travel time between their current location and
their destination, we associate a scalar quantity to each link /,

m: X" =T,

which describes the cost of link ¢ that is perceived by the
travelers. The perceived cost is, in general, the combination
of the travel delays of multiple links (e.g. a path in the graph).
In this work, we model the perceived costs as:

mo(x) = To(ze) + wrbléiﬂg T (). 3)

The above definition is stated in a recursive fashion (see Fig.
2(b) for an illustration), and it can be shown that the right-
hand side of (3) coincides with the instantaneous minimum
travel cost between ¢ and destination [14]. The form of
definition (3) suggests that a driver traveling through the
network will update her routing at every upcoming junction
in order to minimize her travel time to destination.

To model the aggregate behavior of app-informed travel-
ers, we assume that at every node of the network drivers
will instantaneously update their routing by avoiding the
links with higher perceived cost. To this aim, we model the
routing ratios as time-varying quantities 74, : R>o — [0, 1]
that follow a selection mechanism inspired by the replicator
dynamics [3]:

7;'£m = Tim (Z TegTqg — 71—m)a (4)

q
apm ()

where ag, : X™ — R is a function that describes the appeal
of entering link m upon exiting /.

The dynamical equation (4) models a selection mecha-
nism, where routing apps continuously revise their routing
recommendations by increasingly suggesting the links that
have a more desirable travel time to destination, as detailed
next. A positive appeal (a¢,, > 0) implies that the perceived
travel delay of link m is smaller than the perceived delay of
alternative links at that junction (precisely, 7, < >_ 4 "taTq)>
and thus the fraction of travelers choosing m will increase
over time (74, > 0). Hence, the appeal ay,, is interpreted
as the aggregate interest in selecting link m upon exiting £.

In compact form, the set of dynamical equations (4)
describing the routing parameters reads as follows:

7= o(r,m), (5)

where 7 = [...,7¢m,...]T, ({,m) € A, denotes the joint
vector of routing ratios. The following lemma formalizes that
(5) evolves within the feasible set of routing ratios.

Lemma 2.2: (Conservation of Flows) Let Rg be as in (1)
and let r satisfy (5). If (0) € Rg, then r € Rg at all times.

We conclude this section with an example, where we illus-
trate our routing decision model, and with a remark, where
we relate our model (4) to the standard replicator equation.

Example 2.3: (Dynamical Routing Model) Consider the
seven-link network illustrated in Fig. 2 and discussed in
Example 2.1. The perceived costs (3) read as:

m =71 +min{my, w3}, W = 7o + min{my, w5},

T3 = T3 + T, Ty = Ty + 77,
s = T5 + g, g = T + 77,

Ty = T7.
The dynamical decision model (5) reads as:

712 = r12((r12m2 + r137M3) — o),
713 = r13((r12me + r13m3) — m3),
o4 = 124((roa™y + T2575) — M4),
a5 = T25((roamy + ro57s5) — 75).

Finally, we note that Lemma 2.2 ensures r12 + 713 = 1 and
ro4 + ro5 = 1 at all times. U

Remark 2.4: (Game-Theoretic Interpretation) The repli-
cator equation (4) was originally developed to study selection
in game-theory and biological evolution. As recently shown
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Fig. 3. Feedback interconnection between traffic and routing dynamics.

in [15], the replicator dynamics also capture the qualitative
behavior of reinforcement learning or other machine learning
techniques when aggregated over large populations.

We can establish a link between our routing equation (4)
and the classical replicator equation by interpreting the driver
population as the set of players (who perform the decisions),
the set of routing ratios as the set of strategies, and the set of
travel costs as the payoffs (with opposite sign). With respect
to the standard replicator dynamics, where the payoffs are a
function of the strategy, in our model the strategies affect the
traffic dynamics, and thus indirectly influence the payoffs. [

III. EXISTENCE AND PROPERTIES OF THE EQUILIBRIA

In this section, we characterize the fixed points of the
feedback interconnection between the traffic dynamics (2)
and the routing dynamics (5), which reads as

i=(R" = I)f(x)+ A,
7= o(r,m).

™ =m(x),
(6)

Fig. 3 graphically illustrates the interactions between the two
systems and depicts the quantities that establish the coupling.

A. Characterization of Restricted Equilibria

Let (z*,r*) be a fixed point of (6). It follows from the
routing model (4) that, for all pairs of adjacent links (¢, m) €
A, the following condition is satisfied at equilibrium:

either 77, = 0, or agy,(z*) = 0.

The next lemma shows that equilibrium points where one
link has a positive appeal function are unstable.

Lemma 3.1: (Unstable Equilibria) Let (z*,r*) be a fixed
point of (6), and assume that there exists (¢,m) € A such
that v}, = 0 and agy, (2*) > 0. Then, («*,r*) is unstable.

Unstable equilibria can be interpreted in practice as a sit-
vation where a link has preferable travel cost (i.e. az, > 0),
but no driver is currently traversing that link (i.e. rg,, = 0).
Since r¢,,, = 0, navigation apps lack of observations to start
routing vehicles towards link m, thus ignoring its availability.

In what follows, we focus only on restricted equilibria,
where each link (¢, m) € A satisfies the following condition:

@)

Remark 3.2: (Relationship to Game Dynamics) Follow-
ing the game-theoretic interpretation presented in Remark
2.4, the restricted equilibria (7) can be related to the Nash
equilibria [3] of the game described by (4). Since in our

either ag,,(z*) =0, or r¢, = 0 and ag,, (™) < 0.

model the strategies indirectly affect the payoffs (see Remark
2.4), Lemma 3.1 supports and extends the available results
in the literature by showing that the set of rest points that are
not Nash equilibria are unstable also when the payoffs do not
depend directly on the strategy (e.g. see the Folk Theorem
of evolutionary game theory [3] and the specific conclusions
drawn for the routing game by Fischer in [4]). O

B. Existence of Restricted Equilibria

We now characterize the existence of restricted equilibria
of (6). Our result relies on the following assumption.

(A3) The link travel costs are finite, namely, for all £ € £
Te(mg) < 00 if mp < 00.

Assumption (A3) disregards unbounded travel times, which
correspond to situation where (4) may become ill-posed.
Next, we recall the graph-theoretic notion of min-cut
capacity [14]. Let the set of nodes V be partitioned into
two subsets S C V and S = V — S, such that the network
source s € S and the network destination d € S. Let
S = {(v,u) € L : v Sandu € S} be a cut, namely,
the set of all links from S to S, and let Cs = 3, gou Ct be
the capacity of the cut. The min-cut capacity is defined as

Checut = msin Cs.

The following result relates the existence of fixed points
to the magnitude of the exogenous inflow to the network.

Theorem 3.3: (Existence of Equilibria) Let Assumptions
(A1)-(A3) be satisfied. The interconnected system (6) admits
an equilibrium point that satisfies (7) if and only if the
network inflow is no larger than the min-cut capacity:

5\ S Cvm—cut~

Theorem 3.3 has two main implications. First, it shows
that our traffic model admits a restricted equilibrium only
when the inflow is no larger that the min-cut capacity of the
network, which is a well-known limitation for the throughput
of any static network. Second, it shows that when the traffic
demand is too large (A > Clyecut), then the network does not
admit equilibrium points; in fact, it operates at a condition
in which traffic densities grow unbounded.

C. Relationship Between Restricted and Wardrop Equilibria

In this section, we relate our model to the well-established
routing game. The routing game [11] consists of a time-
invariant traffic model combined with a path-decision model.
In the decision model, a new traveler entering the network
selects a origin-destination path based on the instantaneous
traffic congestion and, because the traffic model is static,
drivers do not update their path while they are traversing the
network. Once this path-selection mechanism terminates, the
network is at an equilibrium point known as the Wardrop
equilibrium, a condition where all the used paths have
identical travel time. We next recall the Wardrop equilibrium.
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To comply with the static nature of the routing game,
we will assume that the dynamical system (6) is at an
equilibrium point. Let * be an equilibrium of (2), and let

fi = 1" (=), teL,

be the set of equilibrium flows on the links. Moreover, let
P ={p1,....pc}, ¢ €N, be the set of paths between origin
and destination, and let {f; ..., f; } be the set of flows
on the paths. The path flows are related to the flows on the
links by means of the following relationship:

fr=">_

peEP:ULED

which establishes that the flow on a link is the superposition
of all the flows in the paths passing through that link.

We extend the definition of link travel costs to the origin-
destination paths by letting the travel cost of a path be the
sum of the cost of all the links in that path:

T, = ZT@(ZE*).

lep

The Wardrop first principle states that (i) all paths with
nonzero flow have identical cost, and (ii) paths with zero
flow have suboptimal cost. The principle is formalized next.

Definition 1: (Wardrop First Principle) Let z* be an
equilibrium of (2). The vector z* is a Wardrop equilibrium
if, for all pairs of origin-destination paths p,p € P, the
following condition is satisfied:

f;(T; —Tg) <0.

The following result relates the fixed points of the dynam-
ical system (6) with the notion of Wardrop equilibrium.

Theorem 3.4: (Relationship Between Fixed Points and
Wardrop Equilibria) Consider the interconnected system (6).
The following statements are equivalent:

(1) z* € X is a Wardrop equilibrium;

(ii) The pair (z*,r*) is a fixed point of (6) for some r* €

Rg. Moreover, (z*,r*) satisfies (7).

The above theorem has two main implications. First, it
shows that if a dynamical network starts at a Wardrop
equilibrium, then it will remain at that equilibrium at all
times, hence demonstrating that our model is consistent
with Wardrop’s framework. Second, it shows that if trav-
elers update their routing at every junction by minimizing
the instantaneous perceived costs, then the equilibria of
the dynamical system satisfy the Wardrop conditions. This
observation shows that the perceived costs (3) are quantities
that accurately model economical decisions in traffic routing.

IV. STABILITY OF RESTRICTED EQUILIBRIA

In this section, we characterize the stability of the fixed
points of the feedback interconnection (6). Our main findings
are summarized in the following theorem.

Theorem 4.1: (Stability of Interconnected Dynamics) Let
(z*,r*) be a fixed point of (6) satisfying the restricted
equilibria conditions (7). Then, (z*,r*) is stable.

The proof of this theorem is postponed to Section IV-D. It
should be noticed that Theorem 4.1 does not ensure asymp-
totic stability of restricted equilibrium points. This allows
for the existence of non-decaying congestion behaviors, as
demonstrated in our motivating example in Fig. 1 and for-
mally proven in Section V. In the remainder of this section,
we present the key technical results that prove Theorem 4.1.
In short, the stability of restricted fixed points follows from
the passivity of the traffic and routing dynamics.

A. Passivity in Nonlinear Systems

In this brief subsection, we recall the notion of passivity
for nonlinear dynamical systems and we present a concise
version of the passivity theorem [12], which will be instru-
mental for the stability analysis presented in this section.

Definition 2: (Passive System [12]) A dynamical system
z = f(z,u), y = g(z,u), 2 € X CTR", u € U CR™,
y € Y C RP, is passive with respect to the input-output pair
(u,y) if there exists a differentiable function V' : X — Rx,
called the storage function, such that for all (0) = zo € X,
all w € U, and all t > 0, the following inequality holds

V(z(t)) — V(xg) < /0 u(a)Ty(a)do. )

Loosely speaking, a system is passive if the increase in
storage function in the interval [0, ¢] (left-hand side of (8)) is
no larger than the energy supplied to the system (right-hand
side of (8)). Passivity is a useful tool to assess the Lyapunov
stability of a feedback interconnection. The passivity theorem
[12, Proposition 4.3.1] is summarized next.

Theorem 4.2: (Passivity Theorem) Consider a pair of
nonlinear dynamical systems coupled by means of a negative
feedback interconnection:

&y = fo(xa,ua),

Yo = gz(wz,uz),

U2 = Y1,

1= fi(zr,uw),
Y1 =g1(l‘17u1)7
Uy = —Y2,

where z; € X;, C R", u; € U; C R™, y; € V; C R™,
i € {1,2}. If each system is passive with storage function
Vi & = Ryo and Vo 1 Xy — Ry, respectively, and Vi,
V> have strict local minimum at z7, x5, then (z7,x3) is a
(Lyapunov) stable fixed point of the interconnection.

B. Passivity of Routing Dynamics

We now show that the routing dynamics satisfy the passiv-
ity property (8). To this aim, we first prove that the group of
routing equations at a single junction are passive. For a given
link ¢ € L, recall that A, is the set of links available at the
downstream junction, and let | A;| := « be its cardinality. We
interpret the set of o dynamical equations associated with ¢:

Tom = rgm(z TeqTq — Tm,), for all m € Ay, (9)
q

as a dynamical system with input and output, respectively,

T

Up = [Tmyye oy Tma] s

Yo = [rémla cee 7r£7rLa]T~ (10)
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The following result proves the passivity of equations (9).
Lemma 4.3: (Passivity of Single-Junction Routing Dy-
namics) The single-junction routing dynamics (9) is passive
with respect to the input-output pair (—ug, y¢).
Proof: We let [r7,, ,...,7,, ] denote a fixed point of

(9), and we show that
Z Tpm 10 < )

meA,

Y

is a storage function for the dynamical system defined by (9).
We begin by observing that V; is differentiable because it is a
linear combination of natural logarithm functions. Moreover,
by using the log-sum inequality, we have

ngmln (Tem)
> ngmln( mé:)

=1In(1) =0,
where we used the fact that >~ 7, =" re, =1, which
shows that V} is an appropriate choice of storage function.
To show the passivity property, we first incorporate the
negative sign of the input vector into the dynamical equation,
and we rewrite (9) as

Tom = Tom (Tm — Z TeqTq), for all m € Aj.
q
Next, we show that the above equations are passive with
respect to the input-output pair (ug,y¢). The derivative of
the storage function is

E Zm = - § rfm - E TZQWQ)
m em q

*
== E TomTm + E Tém E T'eqTq
m m q
=1
*
= - E TomTm + E TeqTq
m q

< Z TeqTqg = WTZM,
q

where for the last inequality we used the fact that r,, > 0
and 7, > 0. The above bound proves the passivity of (9). B
Next, we leverage the above lemma to show that the joint
routing dynamics (5) also satisfy the passivity property (8).
To this aim, we consider (5) as a dynamical system with

input and output vectors, respectively,
Uy = [ug, ... up,]"

n ?

Y] (12)

where w, and vy, ¢ € {1,...,n}, are defined in (10).
Passivity of the overall routing dynamics is formalized next.

Lemma 4.4: (Passivity of Overall Routing Dynamics) Let
the perceived travel costs be modeled as in (3). Then, the
overall routing dynamics (5) is passive with respect to the
input-output pair (—u., ¥, ).

yT: [yfla"'

Proof: The proof of this statement consists of two
parts. First, we show that the dynamical equations (9) at
two disjoint junctions are independent. To this aim, we will
show that in (10) the quantity wu, is independent of y,,, for
all £ # m. This fact immediately follows by observing that,
when the perceived travel costs follow the model (3), the
perceived cost () is a function that only depends on x,
and it is independent of 7.

Second, we combine the fact that (9) at two disjoint
junctions are independent with the fact that (9) are passive
to show that the overall routing (5) is passive. To this aim,
we consider the following storage function for (5):

r) = Vir)

lel

13)

where V, denotes the storage function associated to junction
£. By taking the time derivative of the above storage function:

) =S Vi) < S ufye = uly.,

tel LeLl

where the inequality follows from the passivity of the indi-
vidual junctions, which proves the passivity of (5). [ ]

C. PFassivity of Traffic Dynamics

In this subsection, we show that the traffic dynamics (2)
satisfy the passivity property (8). To this aim, we interpret
(2) as an input-output system with input described by the set
of routing ratios, and output described by the set of perceived
link costs. Formally, we associate the scalar output 7, to the
scalar input 74, or, in vector form,

Tnn]T

, .

Uy = [7‘11,’[‘12,...77"1",7‘21,...,

Yo = [m1, T2, ...

s Ty Ty (14)
The following result formalizes the passivity of (2).
Lemma 4.5: (Passivity of the Traffic Dynamics) Assume
that all links ¢ € £ have finite flow capacity C; < co. Then,
the traffic network (2) is a passive dynamical system with
respect to the input-output pair (s, Yz ).
Proof: We show that the following function

Vi hz/ mo(o

is a storage function for (2), where the constant i € R+ is
chosen as follows:

15)

h = max Cy.
LeL

We note that V, is non-negative and it is differentiable,
because it is the combination of integral functions, and thus
it is an appropriate choice of storage function. By taking the
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time derivative of the storage function we obtain

Vy(z) = % > wolwe)i

el
= %Zw(ww (—fé’”‘(xe) + 3 rmef;;;“(xm))
el meA,

= = 1Y e S o)

lel

b mw) 3 e )

eL meAy
1
< EZTI’@(.T@) Z Tmif;il;l(zm)
LeL meA,
<Y wo(@)rme = ug ya,
leLmeA,

where the first inequality follows from 7 (2¢) fe(2¢) > 0 for
all / € L, and the last inequality follows from the above
choice of h (which implies f,,/h < 1, for all m € L).
Hence, the above bound proves the passivity of (2). [ ]

D. Proof of Theorem 4.1
This brief subsection provides the proof of Theorem 4.1.

Proof of Theorem 4.1: To prove stability, we interpret (6)
as a feedback interconnection between the traffic and the
routing dynamics and we leverage the Passivity Theorem.

We begin by observing that lemmas 4.4 and 4.5 ensure
passivity of the open-loop systems. Next, we show that the
equilibrium points are local minima for the storage functions.
First, we observe that the routing storage function V.(r)
in (13) is the summation of the storage functions at the
junctions (11), which are non-negative quantities that are
identically zero at the equilibrium points V(r*) = 0. Hence,
the equilibrium points are local minima of the function V/.(r).

Second, we show that V(z) attains a minimum at the
equilibrium points. To this aim, we first let A\ = 0 and we
study the equilibrium points of (2). Every equilibrium point
x* satisfies the following identity

0= (R" —I)f(z").

By observing that (RT — I) is invertible (see e.g. [16,
Theorem 1]), and that f(z*) = 0 only if z* = 0 (see
Assumption (A1)), the above equation implies that the unique
equilibrium point of the system satisfies * = 0. The choice
of V;(x) in (15) implies that V,(x) is non-negative and that
Vi (z*) = 0, which shows that z* is a local minima of the
storage function. Lastly, we observe that any nonzero A has
the effect of shifting the equilibrium point, and thus it does
not change the properties of the storage function.

Finally, stability of the equilibrium points follows from the
above observations and by application of Theorem 4.2. W

V. EXISTENCE OF LIMIT CYCLES AND SIMULATIONS

In this section, we prove the existence of limit cycles for
a simple example and we present a numerical simulation.

Fig. 4. Dynamical behavior of two parallel highways (schematized in (c)).
Travel costs are as follows: 72 (z2) = z2 and T3(x3) = 73 = 2. (a) Phase

portrait for non-saturated freeway: A = 0.5, vg = 0.5, (b) Phase portrait
for saturated freeway: A = 1, C2 = 1. Red dots show equilibrium points.

A. Limit Cycles for Two Parallel Highways

In this subsection, we prove the existence of periodic orbits
for a specific example composed of two highways. Consider
the network illustrated in Fig. 4(c), which exemplifies a
congested freeway (with state xo) and a side road (with state
T3), subject to a constant inflow = R<o. We assume that
the highway outflow function is piecewise-affine:

S"(z2) = min{voza, Co},

where v € R, and that the side road has constant cost:
T3(x3) = T3 > 0.
We let the outflow function f$"'(x3) be free, and assume that
A< Cy + Cs,

so that Theorem 3.3 ensures the existence of an equilibrium
point. We distinguish among two cases: (a) the highway is
operating in free-flow, namely, at all times zo < Cs/va,
and (b) the highway is congested, namely, at all times
29 > Co/vs. Fig. 4 (a) and (b) show a phase portrait of the
system trajectories in case (a) and case (b), respectively. In
case (a), the system admits an equilibrium point described
by 712 = 1 (all vehicles travel on the freeway), and the
trajectories converge asymptotically to this equilibrium point.
In case (b), the system admits an equilibrium point 15 = 0.5
(vehicles divide evenly between the freeway and side road),
and the trajectories of the system are closed periodic orbits.
These observations support Theorem 4.1, and demonstrate
that equilibrium points may not be asymptotically stable.

The existence of periodic orbits in case (b) can be further
formalized. To this aim, we recall the dynamical equations
governing the system in regime (b):

i = —Ca + 112,

i3 = — 9" (x3) + r13,

712 = r12(1 = 712) (T3 — T2(22)),

where we used the fact that f{'" = ) after an initial transient.

To show the existence of a limit cycle, we next show that
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Fig. 5. (a) Seven-link network. (b) Travel cost parameters. (c)-(d)
Oscillations of traffic state. (e)-(f) Oscillations of routing state.

the following quantity is conserved along the trajectories:

U(Z‘g, 7’12) = T3Tg — TQ(ZEQ)—F
(02 — 5\) In T12 — 02 ln(l - T12)a
where T5(z2) denotes a primitive of 79(x2). To this aim, we
compute the time derivative to obtain
. Co— A Cy

U(xg,m12) = T3da — Ta(x2)d2 + 712 + 712
T12 1—roo

Cy — A C
2 n 2 )
712 1—r2

Cy—(1- ?"12)5\)

r12(1 —712)

= @o(T3 — T2(x2)) + 712 (

= &o(T3 — T2(x2)) + 712 (

= &2(T3 — T2(x2)) — T12 (7“12(1—7“12)>
= &o(T3 — T2(x2)) — (T3 — T2(w2)) @2 = 0,

which shows that the quantity U(xs,712) is a constant of
motion, and proves the existence of periodic orbits.

B. Oscillations in Seven-Link Network

Consider the seven-link network illustrated in Fig. 5(a)
and presented in Example 2.1. Let A\ = 6, and assume that
the outflow functions are linear,

fo(x;) =z, foralli e {1,...,7},
and that the travel costs are affine,
Te(xg) = apxe + by, forall i € {1,...,7},

where the parameters a, and by are summarized in Fig.
5(b). Since the flow capacities of the links are unbounded,
Theorem 3.3 ensures the existence of a fixed point. It can be
verified that an equilibrium point that satisfies (7) is:

2] =6,25 =4,25 =2,x; =2,2; =2,25 =4,25 =6,
ri2=2/3, riz=1/3, roaa=1/2, ro5=1/2.

Fig. 5 shows a numerical simulation of the system. The plots
illustrate that the system trajectories do not converge to the
equilibrium points but oscillate over time, thus suggesting
that the equilibrium point is not asymptotically stable.

VI. CONCLUSION

This paper proposes a dynamical routing model to un-
derstand the impact of app-informed travelers in traffic
networks. We demonstrate that, if the network operates at
equilibrium, then our model is consistent with the well-
established Wardrop first principle. Moreover, we study the
stability of our routing model coupled with a dynamical
traffic model, and we show that the general adoption of
routing apps (i) can maximize the throughput of flow across
the traffic system, but (ii) can deteriorate the stability of
the equilibrium points, as it creates non-decaying oscillatory
traffic patterns. Our results give rise to several opportunities
for future work. For instance, by coupling our models with
common infrastructure-control methods (such as variable
speed limits and freeway metering), our results can be used
to design dynamical controllers for congested infrastructures.
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