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Abstract— This paper studies the controllability degree of
complex networks as a function of the network diameter and
weights. We quantify the controllability degree of a network
with the worst-case control energy to drive the network to
an arbitrary state. We show that certain networks, including
acyclic networks, are difficult to control whenever their diam-
eter is a sublinear function of the network size, as the control
energy grows exponentially with the network cardinality when
the number of control nodes remains constant. Conversely, we
show that certain anisotropic networks where the diameter
depends linearly on the network cardinality are easy to control,
as the control energy is bounded independently of the network
cardinality and number of control nodes. We conjecture that
the network diameter is a key topological property determining
the controllability degree of a network.

I. INTRODUCTION

Real-world networks exhibit complex topological features
and dynamics across diverse engineering applications and
natural systems. The ability to control and reconfigure com-
plex networks via external controls is fundamental to guar-
antee reliable and efficient network functionalities. Despite
important advances in the theory of control of dynamical
systems, a thorough characterization of the intricate relation
between relevant dynamical properties and different topo-
logical features is a long standing problem, which limits our
ability to control and design complex network systems.

In this work we quantify the effort to control large
networks with respect to their topology. In particular, we
measure the degree of controllability of a network based
on the energy required by a group of nodes to control the
network to a desired state. For our metric, we investigate how
the controllability degree depends on the network diameter,
and on the choice of network weights [1], [2] . We find
that networks with long diameter and anisotropic weights
are easier to control than networks with short diameter
or isotropic weights. We define weights to be isotropic if
they allow a (control) signal to propagate equally in all
directions, and to be anisotropic otherwise [3]. Together with
our prior results [3], our findings constitute a counterintuitive
exception to recent works showing that complex networks are
difficult to control from few nodes [4], [5].
Related work The classic controllability notion for dynam-
ical systems, e.g., see [1], [6], has found renewed interest in
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the context of complex networks, where classic methods are
often inapplicable due to the system dimension, and where a
graph-inspired understanding of controllability rather than a
matrix-theoretical one is preferable. In [7] controllability of
complex networks is addressed from a graph-theoretic per-
spective by employing tools from structured control theory
[6]. As discussed in [4], the approach to controllability un-
dertaken in [7] has several limitations, including the fact that
the presented results are generic [8], and do not account for
the network weights. As we also show in this work, networks
with the same interconnection structure but different weights
may exhibit drastically different controllability properties.

The binary notion of controllability proposed in [2] and
adopted in most work studying controllability of complex
networks, including [9], [10], [11], [12], does not character-
ize the difficulty of the control task. In practice, although a
network may be controllable by any single node, the actual
control input may not be implementable due to actuator con-
straints and limitations. A quantitative approach to network
controllability has recently been adopted in [3], [4], [13],
[14], [15], [16], among others, where it is shown how certain
controllability metrics depend upon the network cardinality,
location of the control nodes, and network weights. We
continue the work along these directions by studying the
relation between a notion of controllability degree of a
network, its diameter, and its edge weights.
Contributions The contribution of this paper is twofold.
First, we study the relation between the controllability degree
of a network and its diameter. We prove that, under a
technical condition on the edge weights, network topologies
where the diameter is a sublinear function of the network
cardinality are difficult to control, as the control energy
grows exponentially with the network cardinality for a fixed
number of control nodes (Section III). Second, we prove
that certain networks whose diameter is a linear function of
the network cardinality are easy to control (Section IV). In
particular, we show that ring networks, in addition to line
networks and certain grids analyzed in [3], can be efficiently
controlled by a single node when the network weights satisfy
a given inequality, as the control energy remains bounded
independently of the network cardinality. As a final contribu-
tion, we provide evidence that acyclic random networks are
difficult to control when the network cardinality increases
and the number of control nodes remains bounded.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

Consider an undirected graph G = (V, E), with V =
{1, . . . , n} and E ⊆ V × V . Let A ∈ Rn×n be the weighted
adjacency matrix of G, where A = [Aij ], with Aij = 0 if
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(i, j) 6∈ E , and Aij ∈ R otherwise. Let K = {k1, . . . , km} ⊆
{1, . . . , n} be the set of control nodes, and consider the
following network dynamic

x(t+ 1) = Ax(t) +BKuK(t),

where BK ∈ Rn×m is the network input matrix defined as

BK :=
[
ek1 . . . ekm

]
,

and ei is the i-th canonical vector of dimension n. Let CK,T
andWK,T be the T -steps controllability matrix and Gramian,
respectively, where [1]

CK,T :=
[
BK ABK · · · AT−1BK

]
, and

WK,T := CK,TCTK,T .
In this paper we study the relation between the small-

est eigenvalue of the controllability Gramian, namely
λmin(WK,T ), as a function of the network weights and graph
topological properties. We employ a classic result in systems
theory that relates the control energy with the smallest
eigenvalue of the controllability Gramian. Let the network
be controllable in T steps, and let xf be the desired final
state at time T , with ‖xf‖2 = 1. Define the energy of the
control input uK as

E(uK, T ) := ‖uK‖22,T =

T−1∑
τ=0

‖uK(τ)‖22, (1)

where T is the control horizon. The unique control input that
steers the network state from x(0) = 0 to x(T ) = xf with
minimum energy is

u∗K(xf, t) := BT
K(AT)T−t−1W−1K,T xf,

with t ∈ {0, . . . , T − 1}. It can be verified that

E(u∗K, T ) =

T−1∑
τ=0

‖u∗K(xf, τ)‖22 = xTf W−1K,Txf ≤ λ−1min(WK,T ),

(2)

where equality is achieved whenever xf is an eigenvector
of WK,T associated with λmin(WK,T ). As recently shown,
e.g., see [3], [4], [14], the controllability Gramian and the
underlying network structure are related in a nontrivial and
at times counterintuitive fashion. In particular, in Section III
we show that networks with short diameter (we will make
this statement precise in Theorem 3.1) are difficult to control
with few control nodes. On the other hand, as we prove
in Section IV, certain networks with long diameter may be
easy to control with a single control node, depending on
the network weights (see Section IV). As formally discussed
in [3], we say that a network is easy to control if, for a
fixed number of control nodes, the control energy (1) is
bounded – equivalently, the smallest eigenvalue λmin(WK,T )
admits a positive lower bound – independently of the network
cardinality and target state. On the other hand, a network is
difficult to control if the control energy grows unbounded
whenever the network cardinality increases and the number
of control nodes is fixed.

The following graph-theoretic notions will be used
throughout the paper [17]. For a graph G = (V, E), a path of
length p is a sequence of p vertices {i1, i2, . . . , ip} ⊆ V , such
that subsequent vertices are connected, that is (ik, ik+1) ∈ E
for all k ∈ {1, . . . , p−1}. The diameter of a graph equals the
length of the longest shortest path between any two distinct
vertices. A cycle is a path where the first and last vertices
coincide. Finally, a cycle is simple if it has no repeated
vertices, except for the first and last ones.

III. NETWORK CONTROLLABILITY AND DIAMETER:
DIFFICULT-TO-CONTROL NETWORKS

In this section we characterize the relation between the
controllability degree of a network system and its diameter,
for certain classes of networks. We start with the following
preliminary definition.

Definition 1: (DSS matrix) A matrix M ∈ Rn×n is
diagonally similar to a symmetric matrix (DSS) if there
exists a nonsingular diagonal matrix D = diag{d1, . . . , dn}
satisfying DMD−1 =

(
DMD−1

)T
= D−1MTD. �

For a matrix M ∈ Rn×n, let cond(M) denote its condition
number defined as cond(M) = ‖M‖‖M−1‖. The next theo-
rem characterizes the controllability degree of DSS networks.

Theorem 3.1: (Controllability of DSS networks) Let G =
(V, E) be a weighted, undirected and connected graph. Let
A ∈ Rn×n be the weighted adjacency matrix of G. Assume
that A is DSS with diagonal matrix D ∈ Rn×n. LetWK,T be
the controllability Gramian associated with the pair (A,BK).
Then, for all T ∈ N>0 and for all µ ∈ [λmin(A), 1) it holds

λmin(WK,T ) ≤ cond2(D)
µ2(d nµ|K|e−1)

1− µ2
,

where nµ = |{λ : λ ∈ spec(A), |λ| ≤ µ}|.
Proof: Let A = D−1SD, where S is a symmetric

matrix. Let W be an eigenvector matrix of S, and notice
that V = D−1W is an eigenvector matrix of A. Since S
is symmetric, there exists an eigenvector matrix W with
cond(W ) = 1. Thus,

cond(V ) = ‖D−1W‖‖W−1D‖ ≤ ‖D‖‖D−1‖‖W‖‖W−1‖
≤ ‖D‖2‖D−1‖cond(W ) ≤ ‖D‖‖D−1‖.

The statement then follows from [4, Theorem 3.1].
As an important consequence of Theorem 3.1, if nµ grows

with the network cardinality for some µ, the number of
control nodes is fixed, and the condition number cond(D)
admits an upper bound independent of the network cardinal-
ity, then the control energy must grow exponentially with the
network cardinality. Thus, the network is difficult to control.
We are now ready to characterize the relation between the
controllability Gramian of a DSS network and its diameter.
For notational convenience, we define

Amax := max
(i,j)∈E

|Aij |, and Amin := min
(i,j)∈E

|Aij |

and let sgn(·) denote the sign function.
Theorem 3.2: (DSS matrix and cycles) Let G = (V, E)

be a weighted, undirected and connected graph. Let A ∈
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(a) Binary tree (b) Grid spanning tree

Fig. 1. Fig. 1(a) and Fig. 1(b) show a binary tree and a spanning tree of a
two dimensional grid network, respectively. Since the diameter of the binary
tree (resp. two dimensional grid network) is O(log(n)) (resp. O(

√
n)), and

due to Corollary 3.3 and Theorem 3.1, both networks are difficult to control,
for a fixed number of control nodes.

Rn×n be the weighted adjacency matrix of G, and assume
that sgn(Aij) = sgn(Aji) for all (i, j) ∈ E . The following
statements are equivalent:

(i) the matrix A is DSS, and
(ii) for all simple cycles {i1, i2, . . . , is, i1} of G, it holds

s∏
h=1

Aih,ih+1
=

s∏
h=1

Aih+1,ih .

Moreover, if A is DSS, then for all T ∈ N>0 and for all
µ ∈ [λmin(A), 1) it holds

λmin(WK,T ) ≤
(
Amax

Amin

)2 · diam(G)
µ2(d nµ|K|e−1)

1− µ2
,

where nµ = |{λ : λ ∈ spec(A), |λ| ≤ µ}|.
Proof: We start by showing that statement (i) implies

statement (ii). Let DAD−1 = D−1ATD, with D a non-
singular diagonal matrix. Notice that D2A = ATD2 and,
consequently, Aijd2i = Ajid

2
j for all i, j ∈ {1, . . . , n}. Let

{i1, i2, . . . , is, i1} be a simple cycle of G. We have

Ai1i2
Ai2i1

Ai2i3
Ai3i2

· · · Aisi1
Ai1is

=
d2i2
d2i1

d2i3
d2i2
· · · d

2
i1

d2is
= 1,

which concludes the proof of statement (i).
To show that (ii) implies (i), let T = (V, ET ) be a breath-

first spanning tree of G rooted at the node 1 [17]. Let d1 = 1,
and construct the entries di, with i ∈ {2, . . . , n}, recursively
as follows. Let i be a node at distance ` ≥ 1 from 1 on T , and
let j be at distance `− 1 from 1 on T , with (i, j) ∈ ET . Let
di = dj

√
Aji/Aij . Notice that

√
Aji/Aij is a real number

because sgn(Aij) = sgn(Aji). By construction, Aijd2i =
Ajid

2
j for all (i, j) ∈ ET . Let (i, j) 6∈ ET , and let {i1, . . . , is}

be a path on T from i1 = i to is = j. Due to assumption
(ii) on the cycles of G we have

1 =
Ai1i2
Ai2i1

Ai2i3
Ai3i2

· · · Ais−1is

Aisis−1

Aisi1
Ai1is

=
d2i2
d2i

d2i3
d2i2
· · ·

d2j
d2is−1

Aji
Aij

=
d2j
d2i

Aji
Aij

.

Since Aijd2i = Ajid
2
j for all (i, j) ∈ {1, . . . , n}, we have

that D2A = ATD2, and finally that (i) is equivalent to (ii).
To prove the last part of the theorem, let A = D−1SD,

where S is a symmetric matrix. Since D is diagonal, ‖D‖ =
dmax, and ‖D−1‖ = 1/dmin, where dmax = max{d1, . . . , dn}
and dmin = min{d1, . . . , dn}. Let i be at distance ` from the
root node 1. By the above construction, it can be verified
that di ≤ dj

√
Amax/Amin, where (i, j) ∈ T , j is at distance

` − 1 from the root node 1, and Amax (resp. Amin) is the
largest (resp. smallest) entry of A. Recall that the distance
between the root node 1 and any other node is bounded by
diam(G). Consequently, since d1 = 1, we have

dmax ≤ (Amax/Amin)
diam(G)/2

,

dmin ≥ (Amin/Amax)
diam(G)/2

,

and, consequently,

cond(D) = dmax/dmin ≤ (Amax/Amin)
diam(G)

.

The claimed statement follows from Theorem 3.1.
We next analyze the case of acyclic networks.
Corollary 3.3: (Acyclic network) Let G = (V, E) be an

undirected, connected and acyclic graph. Let A ∈ Rn×n be
the weighted adjacency matrix of G. Then, A is DSS.

Proof: The statement follows from Theorem 3.2, and
the fact that an acyclic graph contains no simple cycles.

Theorem 3.2 and Corollary 3.3 have important conse-
quences for the controllability of networks with bounded
weights, that is, when Amax ≤ A and Amin ≥ A, for some
A,A ∈ R. In fact, for networks of increasing cardinality, if
the network diameter is a sublinear function of the network
cardinality, and n(µ) grows linearly with n for some µ < 1,
then the network is difficult to control, as the control energy
grows exponentially with the network cardinality, for a fixed
number of control nodes. This result is in accordance with
recent findings [4], [5], and it provides a novel insight into
the different reasons that render a network system difficult
to control. The case of networks whose diameter is a linear
function of the network cardinality is considered in the next
section.

To conclude this section, we show that an accurate choice
of (anisotropic) network weights is necessary to guarantee
that a network is easy to control.1 In fact, from the proof
of Theorem 3.2 and Corollary 3.3 we observe that an
acyclic network with random entries that are independent and
identically distributed is difficult to control. Indeed, notice
from Theorem 3.1 that, for some constant c ∈ R,

E[log λmin(WK,T )] ≤ c+ 2E[log cond(D)]− E[n(µ)]
|K| logµ−1,

where E denotes the expectation operator. Thus, to show
that a network with random weights is difficult to control it
is sufficient to prove that E[log λmin(WK,T )] tends to −∞.

Typically, for random matrices of increasing dimension,
the eigenvalues distribution is described by a probability

1A network is easy to control if the control energy admits an upper
bound independent of the network cardinality, for a fixed number of control
nodes [3].
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Fig. 2. Eigenvalues density function of a tridiagonal matrix (1000
rows) with i.i.d. entries. The diagonal entries are normally distributed with
zero mean and unit variance. The off-diagonal entries are exponentials of
normally distributed random variables with zero mean and unit variance.

density function; see Fig. 2 for a numerical example. If
the support of this asymptotic density function intersects the
open interval ]0, µ[, then E[n(µ)] tends to be proportional
to n, that is, E[n(µ)] ' γn, where γ is the integral of the
density function in the interval ] − µ, µ[. In these cases, in
order to prove that an acyclic network is difficult to control,
it suffices to show that E[log cond(D)] is sublinear.

From the proof of Theorem 3.2, the entries of the diagonal
matrix D are recursively constructed based on a spanning
tree T rooted at node 1. In particular, let {i1, i2, . . . , is} be
a path on T , with i1 = 1. We have

dik =

√
Ai1i2 · · ·Aik−1ik

Ai2i1 · · ·Aikik−1

,

from which we obtain

`ik =

k−1∑
h=1

xh,

where `ih := log dih and

xih :=
1

2
(logAihih+1

− logAih+1ih).

Observe that xih are independent and identically distributed
random variables with zero mean. Consequently, `ik repre-
sents a random walk. Let

`max := max{`i1 , `i2 , . . . , `ik−1
}, and

`min := min{`i1 , `i2 , . . . , `ik−1
}.

From [18] we know that E[`max − `min] grows as the square
root of the path length, which is always less that n. Hence,

E[log cond(D)] = E[`max − `min]

grows at most as
√
n, which is a sublinear function. To-

gether with Theorem 3.2, this discussion shows that acyclic
networks with random weights are difficult to control.

IV. NETWORK CONTROLLABILITY AND DIAMETER:
EASY-TO-CONTROL NETWORKS

In the previous section we showed that, if the network
diameter is a sublinear function of the network cardinality,
then the network is difficult to control. In this section,
instead, we present an example of network that is easy to

1

2 3

4

n
n− 1

Fig. 3. Ring network topology. This figure presents the control node marked
in black and nodes enumeration choice as described in (3).

0 10 20 30 40 50 60 70 80 90 100
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−4

n

lo
g(
λ
m
in

(W
K
,
n
))

0 10 20 30 40 50 60 70 80 90 100
0

50

100

n

S
ta
b
le

ei
g
en

v
a
lu
es

in
A

Fig. 4. This figure shows the controllability degree (red) of the ring
network, and the number of stable eigenvalues (dashed blue), as a function
of the cardinality n. Network weights are chosen as d = 0.01, b = 0.01,
c = 1.12, b̄ = 1

2n
, c̄ = 0.01, which satisfy the conditions in Theorem 4.1.

control by a single node and whose diameter is a linear
function of the network cardinality. In particular, we focus
on ring networks (see Fig. 3), and we remark that similar
conclusions have been drawn for line and grid networks in
[3]. Let

A :=


d1 b1 b̄

c1
. . . . . .
. . . . . . bn−1

c̄ cn−1 dn

 , (3)

be the weighted adjacency matrix of a ring network, where
all weights di, ci, bi, c̄, and b̄ are real and positive. In
what follows we consider the case where the set of control
nodes is a singleton and, without affecting generality, we let
K = {1} and WK,T = WT . Moreover, we assume that the
network weights satisfy bi = b, ci = c, and di = d for
some b, c, d ∈ R>0 and for all indices i. Our methods can
be extended to more general edge weights at the cost of a
more involved notation. In the following theorem we relate
the controllability degree of a ring network with the entries
of its adjacency matrix.

Theorem 4.1: (Controllability degree of ring networks)
Consider a ring network with adjacency matrix as in (3),
with bi = b, ci = c, and di = d for some b, c, d ∈ R>0 and
for all indices i. Assume that b ≤ c, c̄ < c, and

1

|c− c̄|

(
1 + b+ d+

b̄c̄

c

)
< 1.

Then, for all T ≥ n, it holds

λmin(WT ) ≥ Ψ,
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where Ψ ∈ R>0 is a constant dependent only on the network
parameters b, c, d, b̄, and c̄.

A numerical validation of Theorem 4.1 is presented in
Fig. 4, where we notice that, for the given choice of
network weights, the smallest eigenvalue of the controlla-
bility Gramian remains bounded as the network cardinality
increases. It should be noticed that the number of stable
eigenvalues of the network matrix increases linearly with
the cardinality. Thus, the fact the controllability degree is
independent of the network size is due to the anisotropic
nature of the edge weights, and not to the instability of
the network system (see the discussion in Section II and
[4, Theorem 3.1]). The proof of Theorem 4.1 builds on two
preliminary results, which we now present.

Lemma 4.2: (Similarity transformation of ring networks)
Let A ∈ Rn×n be the weighted adjacency matrix of a ring
network as in (3). Assume that n is even, and the weights
satisfy bi = b, ci = c, and di = d for some b, c, d ∈ R>0

and for all indices i. Define the invertible matrix N ∈ Rn×n
as

N =



1
. . .

1

gn
2−1

. . .
···

0 g1 1


, (4)

where gi = c−i(bi−1c̄), and

Nij =


1, if i = j,

gj−1, if i = n− j + 2 and j = 2, . . . , n2 ,

0, otherwise.

Then,

Ã = NAN−1 =



d h1 h2

c
. . . b
. . . . . .

h3

h4
. . .

. . . . . . b
c d


, (5)

where

h1 = b+ c̄ c−1b̄,

h2 = b̄,

h3 = c+ c̄ (b/c)
(n/2−1)

,

h4 = c− c̄ (b/c)
(n/2−1)

,

and

Ãij =



d, if i = j,

b, if i = j − 1,

c, if i = j + 1,

h1, if i = 1 and j = 2,

h2, if i = 1 and j = n,

h3, if i = n/2 + 1 and j = n/2,

h4, if i = n/2 + 2 and j = n/2 + 1.

Notice that (A,B), and (Ã, B) are algebraically equivalent
systems [1]. Lemma 4.2 can be verified by inspection; a
detailed proof is omitted here in the interest of space. We
now characterize the controllability matrix of the dynamical
system described by the matrices in Lemma 4.2.

Lemma 4.3: (Controllability matrix of line and ring
networks) Let Ã be as in (5), and let B = [1 0 · · · 0]T. Let
Ā be the associated tridiagonal matrix defined as Āij = Ãij
if |i− j| ≤ 1, and Āij = 0 otherwise. Let C̃n (resp. C̄n) be
the n-steps controllability matrix of (Ã, B) (resp. (Ā, B)).
Then,

C̃n :=


e1,1 e1,2 · · · e1,n
0 e2,2 · · · e2,n
...

. . . . . . en−1,n
0 · · · 0 en,n

 ,
where e1,1 = 1, and

ei,j = Ãi,i−1ei−1,j−1 + Ãi,iei,j−1 + Ãi,i+1ei+1,j−1.

Moreover,

C̃n = C̄n.
Proof: From definition of Controllability matrix we

have

C̃n(:, j) = ÃC̃n(:, j − 1).

Then, from the structure of the matrix (5) we obtain

C̃n(i, j) =

i+1∑
k=i−1

A(i, k)C̃n(i, j − 1),

which yields the triangular structure of C̃n. To conclude the
proof notice that, since C̃n is an upper triangular matrix,
the nonzero element Ã1n does not appear in C̃n. Thus, by
using an induction argument, B = C̃n(:, 1) = C̄n(:, 1), and
moreover

C̃n(:, j) = ÃC̃n(:, j − 1) = ĀC̄n(:, j − 1) = C̄n(:, j).

As an important consequence of Lemma 4.3, because the
value h2 does not appear in the controllability matrix of the
equivalent pair (Ã, B), the controllability of ring networks
can be studied with the tools developed in [3] for the case
of line networks. We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: Let A be the weighted adjacency
matrix of a ring network with bi = b, ci = c, and di = d,
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and let B = [1 0 · · · 0]T. Let N be as in (4), and consider
the similarity transformation given by N−1. In particular,
Ã = NAN−1 and B̃ = NB = B. It can be verified that

C̃n = NCn, and W̃n = C̃nC̃Tn = NWnN
T,

where Cn and Wn (resp. C̃n and W̃n) denote the n-steps
controllability matrix and Gramian of (A,B) (resp. (Ã, B̃)).

Let xf ∈ Rn, with ‖xf‖2 = 1 be the network target state,
and let u∗(xf, t) be the minimum-energy input to drive the
network to the state xf in n steps. Notice that, for all T ≥ n,

max
‖xf‖2=1

E(u∗(xf, t), T ) ≤ max
‖xf‖2=1

E(u∗(xf, t), n)

= λ−1min(Wn)

= max
‖xf‖2=1

xTfW−1n xf

= max
‖xf‖2=1

xTfN
TW̃−1n Nxf

= max
‖y‖2=‖N‖2

yTW̃−1n y

≤ ‖N‖22λ−1min(W̃n).

Thus,

λmin(Wn) ≥ λmin(W̃n)

‖N‖22
. (6)

From Lemma 4.3 we have C̃n = C̄n, where C̄n is
the controllability matrix of (Ā, B), and Ā is the matrix
containing the tridiagonal structure of Ã. Notice that Ā is the
weighted adjacency matrix of a line network. From (6) and
[3, Theorem 2.1], under the conditions stated in the theorem
we obtain

λmin(Wn) ≥ λmin(W̃n)

‖N‖22
≥ Ψ′

‖N‖22
,

where Ψ′ is a constant depending only on the entries of Ā.
To conclude the proof notice from (4) that [19]

‖N‖2 ≤
√
‖N‖1‖N‖∞ ≤ 1 + c̄/b,

where the last inequality follows from the fact that b ≤ c.

V. CONCLUSION

In this paper we study the relation between the control-
lability degree of a network system, which we measure
based on the control energy needed to drive the network
to an arbitrary target state, and its diameter. We show that,
for a class of networks where the diameter is a sublin-
ear function of the network cardinality, the control energy
depends exponentially on the ratio between the network
cardinality and the number of control nodes. Thus, in these
cases the control energy grows unbounded for networks with
increasing dimension and fixed number of control nodes.
This analysis includes to the case of acyclic networks with
deterministic or random weights. Conversely, we show that
there exist networks where the control energy admits an
upper bound independent of the network cardinality and
target state. These networks feature a diameter that is a linear
function of the network cardinality, and a set of weights that
guarantee an anisotropic propagation of the control signal.
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