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ABSTRACT

The human brain displays rich communication dynamics that are thought to be particularly well-reflected15

in its marked community structure. Yet, the precise relationship between community structure in16

structural brain networks and the communication dynamics that can emerge therefrom is not17

well-understood. In addition to offering insight into the structure-function relationship of networked18

systems, such an understanding is a critical step towards the ability to manipulate the brain’s large-scale19

dynamical activity in a targeted manner. We investigate the role of community structure in the20

controllability of structural brain networks. At the region level, we find that certain network measures of21

community structure are sometimes statistically correlated with measures of linear controllability.22

However, we then demonstrate that this relationship depends on the distribution of network edge weights.23

We highlight the complexity of the relationship between community structure and controllability by24

performing numerical simulations using canonical graph models with varying mesoscale architectures25
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and edge weight distributions. Finally, we demonstrate that weighted subgraph centrality, a measure26

rooted in the graph spectrum, and which captures higher-order graph architecture, is a stronger and more27

consistent predictor of controllability. Our study contributes to an understanding of how the brain’s28

diverse mesoscale structure supports transient communication dynamics.29

AUTHOR SUMMARY

A central question in network neuroscience is how the structure of the brain constrains the patterns of30

communication dynamics that underlie function. At the mesoscale of network organization, this question31

has been examined through the lens of modularity. Recent work has demonstrated a diversity in the32

mesoscale architecture of the human connectome. Further diversity in the characterization of structural33

brain networks is introduced by the fact that the distribution of edge weights in a network depends on the34

precise empirical measurement whose value is assigned to an edge. This paper explores network35

controllability in light of the variety of community interaction motifs and edge weight distributions that36

may be used to characterize structural brain networks.37

The brain is a complex system of interconnected components that can be studied at a variety of spatial38

and temporal scales (Betzel & Bassett, 2017) [Jargon: Complex System= A collection of interconnected39

components that interact in non-trivial ways.] . Signals between communicating neuronal populations40

propagate along the white matter structure of the brain and give rise to the complex repertoire of41

functional dynamics that underlie cognition (Bassett & Gazzaniga, 2011; Chialvo, 2010; Fries, 2015;42

Tononi, Boly, Massimini, & Koch, 2016). A key goal of network neuroscience is to elucidate the43

relationship between brain network structure and function (Bansal, Medaglia, Bassett, Vettel, &44

Muldoon, 2018; Honey, Kötter, Breakspear, & Sporns, 2007; Honey et al., 2009; Sporns, Tononi, &45

Edelman, 2000). At any scale of interest, the patterns of inter-connectivity between components constrain46

the functional dynamics that may evolve on the underlying network topology (Wang & Kennedy, 2016),47

and thus the patterns of communication between neural units. Indeed, structural brain networks display48

striking features such as small-worldness (Bassett & Bullmore, 2017), hierarchical organization49

(Meunier, Lambiotte, & Bullmore, 2010), spatial and topological scaling relationships (Bassett et al.,50

2010), and modularity (Sporns & Betzel, 2016). Modularity, in particular, is a commonly studied feature51
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of interest at the mesoscale of brain network organization that impacts potential patterns of52

communication [Jargon: Modularity= The property of nodes in networks to be separated into groups53

based on shared connections.] .54
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Figure 1. Structural brain networks exhibit a diversity of mesoscale architectures. (a) Assortative communities are internally densely and externally sparsely

connected, whereas (b) disassortative communities are internally sparsely but externally densely connected. (c) Core-periphery organization is characterized by a dense

core of well-connected nodes, and a periphery of sparsely connected nodes. (d) Structural brain networks have been observed to possess a mixed mesoscale architecture

that combines assortative, disassortative, and core-periphery organization [Figure reproduced with permission from Betzel et al. (2018)].
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The term “mesoscale” refers to the topological level higher than that of a single node, but lower than59

that of the entire network. Community detection techniques have been applied extensively to both60

structural and functional brain networks in order to group together nodes that share common features;61

each group is commonly referred to as a community or module. The predominant view is that the brain is62

composed of assortative modules, in which nodes connect densely to other nodes within their own63

community and sparsely to nodes outside of their community. Assortative modules are observed across64

species ranging from humans (Sporns, 2013; van den Heuvel & Sporns, 2011) and non-human primates65

such as macaques (Harriger, van den Heuvel, & Sporns, 2012), to the nematode C. elegans (Towlson,66
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Vértes, Ahnert, Schafer, & Bullmore, 2013), and are thought to enable information integration and67

segregation in support of flexible cognition and behavior (Park & Friston, 2013). However, the field’s68

focus on assortative modules could in part be an artifact of our methodologies; popular community69

detection algorithms expressly seek internally dense and externally sparse sub-networks and are agnostic70

to other forms of mesoscale structure (Newman, 2006; Newman & Girvan, 2004; Rosvall & Bergstrom,71

2008). Recent work has suggested that while most brain communities are indeed assortative, others form72

disassortative and core-periphery structures (Betzel et al., 2018; Faskowitz & Sporns, 2019; Faskowitz,73

Yan, Zuo, & Sporns, 2018; Pavlovic, Vértes, Bullmore, Schafer, & Nichols, 2014) (Figure 1). The74

existence of such a diverse mesoscale architecture could explain the diversity of the brain’s functional75

repertoire (Betzel et al., 2018; Deco, Tononi, Boly, & Kringelbach, 2015).76

Yet, precisely how the community structure [Jargon: Community Structure= The segregation of85

network nodes into groups, that are referred to as communities or modules.] of brain networks86

constrains, supports, and explicates the communication dynamics that we observe in empirical87

measurements is not well understood. Whole-brain models of neural dynamics provide an avenue to88

bridge this knowledge gap by stipulating how neural activity propagates along the underlying structural89

network (Andrea, Misic, & Sporns, 2018; C. W. Lynn & Bassett, 2019). Further insight into how transient90

dynamics evolve on networks can be obtained by perturbing the dynamical model with exogenous inputs.91

Linear systems theory and its associated network control framework can be used to probe the relationship92

between the structure of networks and the transient dynamics that they support (Kailath, 1980; Liu,93

Slotine, & Barabási, 2011) (Figure 2b). The approach requires that the brain be represented as a network94

of regions connected by edges, which are commonly derived from empirical estimates reflecting the95

strength, volume, or integrity of white matter tracts (Bassett & Sporns, 2017; Bassett, Zurn, & Gold,96

2018) (Figure 2a). Control inputs, which are representative of changing levels of activity, can then be97

added to network nodes to study the evolution of activity dynamics (Gu et al., 2015; Tang & Bassett,98

2018) (Figure 2c). From a biophysical perspective, these inputs may represent an endogenous shift in99

neural activity from one cognitive state to another (Cornblath et al., 2019; Gu et al., 2015), or even direct100

exogenous inputs such as during electrical stimulation (Khambhati et al., 2019; Stiso et al., 2019).101

We hypothesize that brain regions have different controllability statistics depending on the extent to102

which they participate in interactions with nodes from other communities. We reason that a diversity in103
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Figure 2. Schematic of methods and approach. (a) A variety of empirical measurements are used to estimate and study brain network structure. This data is then

compiled into a weighted network adjacency matrixAwhose entriesAij describe the connection strength of region i and region j, thus characterizing the brain’s structural

network. (b) While brain dynamics are non-linear, linearization is a convenient modeling approach that has been demonstrated to yield biologically meaningful insights,

and one that allows us to systematically investigate relationships between model parameters and model behavior. Linear systems theory provides a natural language in

which to characterize state transitions in the brain. (c) The level of activity in each brain region is combined into a state vector x and modeled using a linear dynamical

system. Linear control theory can be used to assess the effect of exogenous inputs on the brain’s functional dynamics. Controllability may be quantified using metrics

such as average and modal controllability, and the minimum energy required to effect a state transition [Figure reproduced with permission from C. W. Lynn and Bassett

(2019)].
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connections ought to lead to greater ability for a node to control the rest of the network. To test this104

hypothesis, we partition brain regions into communities by applying the weighted stochastic block model105

(WSBM) to structural connectivity matrices extracted from non-invasive magnetic resonance imaging106

(MRI) measurements in humans. Block modeling is a flexible community detection technique that is able107

to uncover diverse mesoscale motifs beyond the commonly studied assortative type (Aicher, Jacobs, &108

Clauset, 2014; Hastings, 2006). The connectivity matrices we study encode networks whose nodes109

represent brain regions. Edges can represent diverse estimates of inter-node connections, such as white110

matter streamline counts between regions, mean quantitative anisotropy (QA) values along the111

streamlines, and generalized fractional anisotropy values (GFA) (Hagmann et al., 2007; Smith, Tournier,112

Calamante, & Connelly, 2012; Tuch, 2004; Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 2013).113

Unfortunately, there is no consensus in the field yet regarding whether one type of edge weight has more114

utility than another type of edge weight, and therefore the literature contains studies that use a variety.115

The distribution of edge weights in the network depends on the precise quantity that the edge represents,116

and this fact hampers formal comparison of results across studies. For example, structural brain networks117

with QA values (Kim et al., 2018; Stiso et al., 2019) and those with streamline counts have differing edge118

weight distributions. Both have been previously used for network control theoretic studies (Cornblath et119

al., 2019; Gu et al., 2015; Jeganathan et al., 2018; Karrer et al., 2020; Kim et al., 2018; W. H. Lee,120

Rodrigue, Glahn, Bassett, & Frangou, 2019; Shine et al., 2019; Stiso et al., 2019), but direct comparisons121

between the two have not been performed. Here we seek to obtain a more comprehensive understanding122

of the relations between community structure and controllability that is independent of the choice of edge123

weight, and the associated differences in edge weight distribution. Thus, we use multiple data sets124

containing networks with distinct edge definitions.125

We further hypothesize that disrupting the amount of a particular mesoscale motif such as assortativity,126

disassortativity, or core-peripheriness in a network ought to result in a motif-specific controllability127

profile. We perform numerical simulations to gradually alter the mesoscale structure of networks along128

specific continuums of interest while preserving their binary density and the distribution from which129

network edge weights are drawn. At each stage, we examine their controllability. In one set of130

simulations we alter the binary topology on an axis ranging from disassortative to assortative. In another131

set of simulations, network topology ranges from disassortative to core-periphery. We perform both sets132
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of simulations on networks where edge weights are drawn from the normal distribution as well as the133

geometric distribution. The latter distribution is an example of a fat-tailed distribution, which resembles134

the weighted degree distributions of many biologically observed networks (Broido & Clauset, 2019). If135

binary topology of networks is the key driver of controllability, we expect to observe that regardless of136

the choice of distribution used to assign edge weights; similar alterations to network topology along a137

structural continuum ought to similarly affect patterns of network controllability.138

MATHEMATICAL FRAMEWORK

While brain network dynamics are known to be nonlinear (Figure 2b) (Rabinovich, Varona, Selverston, &139

Abarbanel, 2006), the simplification to a linearized network model is often a useful approximation140

(Abdelnour, Voss, & Raj, 2014; Galán, 2008). We offer a discussion of the utility of the linear framework141

in the ‘Discussion’ section; for a more comprehensive discussion we point the reader to the Supplement.142

A linear model may be created by linearizing the non-linear system of interest about a fixed point.143

System dynamics are then characterized in terms of deviations about this fixed point. Linear modeling144

provides a tractable simplification for the analysis of non-linear dynamical systems, allowing the use of145

well-developed theoretical tools from linear systems and control theory to investigate network dynamics146

in response to exogenous control inputs (Kailath, 1980). In the context of brain networks, the linear147

model allows one to study how signals can propagate along structural links connecting brain regions.148

Suppose we have a node set V = {1, · · · , n} with undirected weighted edges E ⊆ V × V , compiled in

a graph G = (V , E) and represented by a symmetric weighted adjacency matrix A ∈ Rn×n [Jargon:

Graph= A mathematical description of a network, where elements are represented as nodes, and

interactions between elements are represented as edges.] . Elements of V denote brain regions and

elements of E represent the strengths of the connection between them. The dynamics of a discrete-time

linear time-invariant LTI system are written as

x(t+ 1) = Ax(t) +Bu(t), (1)

where A is the n× n symmetric and weighted network adjacency matrix, which acts as the system matrix149

in the LTI framework, and B is an n× k matrix, where k is the number of independent control inputs. A150

full control set implies that all n network nodes receive input, for instance in the case when B = In, the151
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identity matrix of dimension n. The terms x(t) and u(t) represent the state of the system and the152

exogenous input at time t, respectively (see ‘Discussion’ for biophysical interpretations of x(t) and u(t)).153

A particularly useful element of the linear control framework is the matrix defined as,

WC(T ) =
T−1∑
t=0

AtBB>(A>)t (2)

called the finite time controllability Gramian, where T refers to the time horizon of control (Kailath,

1980). The Gramian plays a vital role in determining the unique control input of minimum energy that

transitions the network state from some initial state x0 at t = 0 to a final state xf at a later time t = T

(Karrer et al., 2020; Stiso et al., 2019). We create target state vectors by placing a 1 in xf corresponding

to the location of each brain region i in turn, and 0s elsewhere. These one-hot vectors may be thought to

represent the activation of a single brain region with a full control set. With x0 = 0, the minimum energy

of the input required to attain a state xf at time T is written as,

Ei = xf
>WC

−1(T )xf . (3)

We demonstrate in the Supplement that the energies thus computed, by performing N state transitions to154

N one-hot vectors, form an upper bound on the energy required to perform arbitrary non-negative state155

transitions.156

In addition to the useful energy-related interpretation, other controllability metrics are often defined157

using the Gramian (Pasqualetti, Zampieri, & Bullo, 2014). Average controllability, which is the average158

energy input over all possible target states (Marx, Koenig, & Georges, 2004; Shaker & Tahavori, 2012),159

is one such metric. It has been used in previous studies examining the controllability of structural brain160

networks (Bernhardt et al., 2019; Jeganathan et al., 2018; B. Lee, Kang, Chang, & Cho, 2019; W. H. Lee161

et al., 2019; Shine et al., 2019). Average controllability is proportional to the trace of the inverse of the162

controllability Gramian, Tr(W−1
C ). In practice however, this quantity is replaced by the trace of the163

controllability Gramian, Tr(WC), since computing the inverse of WC is typically ill-conditioned, and the164

two quantities satisfy a bounded relation of inverse proportionality (Pasqualetti et al., 2014; Summers &165

Lygeros, 2014). We compute average controllability for an individual node by setting B = bi, where bi is166

a one-hot vector with a 1 in the location corresponding to a node. Smaller values of average167
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controllability for a node may be thought of as implying that the network is less controllable on average168

from that node.169

Another controllability measure that is often used in the context of structural brain networks is modal170

controllability (Gu et al., 2015; Karrer et al., 2020; Khambhati et al., 2019; Pasqualetti et al., 2014; Shine171

et al., 2019; Stiso et al., 2019). Modal controllability quantifies the extent to which a network’s172

eigenmodes, weighted by the rate of their decay, are influenced by input into a brain region. For a node i,173

modal controllability is defined as: φi =
∑N

j=1

(
1− λ2j(A)

)
v2ij (Karrer et al., 2020). We note that this174

functional form of modal controllability is defined specifically for symmetric matrices. Here, λj175

represents an eigenvalue of the weighted adjacency matrix and vij represents the i-th component of the176

j-th eigenvector of A. Since the weighted adjacency matrix is symmetric, all of its eigenvalues are real.177

The eigenvectors of A represent independent directions in the state-space along which system dynamics178

evolve according to the rate specified by the corresponding eigenvalues. A quickly decaying mode is179

harder to control since, intuitively, it requires more input energy to sustain its activity. As a result, this180

metric has been previously described as a measure of the controllability to the ‘hard-to-reach’ states of a181

system (Cornblath et al., 2019; Gu et al., 2015; Tang et al., 2017).182

In order to ensure comparability of time scales across networks, we scale the network adjacency183

matrices by their largest eigenvalues. In this study we set T = 4 for average controllability and minimum184

energy computations. However, we demonstrate that our results remain robust to a broad range of choices185

of T in the Supplement. We also note that whereas average/modal controllability consider control from a186

single node, minimum control energy considers controllability from a larger node set. All minimum187

control energy results presented in this paper are computed using a full control set, B = In.188

RESULTS

Relationship between network controllability and community structure for edge weights drawn from a normal distribution189

Results presented in this section are obtained from analyses performed on Data Set 1 (see subsection190

‘Data’ in the ‘Methods’ for details), which is comprised of structural brain networks where edges191

represent estimates of mean quantitative anisotropy (QA) values. An element [Aij] of the weighted192

adjacency matrix for these networks represents the mean QA weighting across streamlines connecting193

two regions i and j. Note that edge weights with QA values approximate a normal distribution.194
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Measures of controllability are not consistently correlated with measures of modularity for structural brain networks with195

normally distributed edge weights Prior work has reported a statistical correlation between some196

controllability metrics and modularity, a summary measure of assortative community structure (Tang et197

al., 2017); yet, importantly in that study results held even after regressing out the effects of modularity.198

Here we began our investigation by assessing whether controllability of structural brain networks is199

statistically related to community structure in a different data set than the one used by Tang et al., and200

when using a larger set of measures of a network’s community structure. Specifically, we compute three201

metrics of network control for each brain region: minimum control energy to activate the region, average202

controllability, and modal controllability. We then study the relationships between these measures, and203

the weighted variant of the participation coefficient and the intra-module strength Z-score. Participation204

coefficient measures the diversity of the distribution of a node’s strength amongst network modules. A205

value of 0 for a node implies that all its connection strength is associated with other nodes in its own206

module, whereas a value of 1 implies that connection strength is distributed uniformly among all207

modules. Intra-module strength Z-score measures the connectivity strength of a node to other nodes in its208

own module (Guimerà & Nunes Amaral, 2005; Rubinov & Sporns, 2011). We compute participation209

coefficient for brain regions and the intra-module strength Z-score after partitioning the networks into210

communities using the weighted stochastic block model (WSBM). We use the normal distribution as the211

choice of prior for the edge weight distribution when applying the WSBM, since edge weights in QA212

weighted networks are approximately normally distributed.213

We begin by testing the relationships between participation coefficient and the intra-module strength214

Z-score, and the three measures of network controllability. We observe that participation coefficient215

relates negatively with minimum control energy (ρ = −0.807, p ≈ 0) and with modal controllability216

(ρ = −0.810, p ≈ 0), whereas it relates positively with average controllability (ρ = 0.815, p ≈ 0).217

Similarly, intra-module strength Z-score relates negatively with both minimum control energy218

(ρ = −0.338, p ≈ 0) and modal controllability (ρ = −0.323, p ≈ 0), and relates positively with average219

controllability (ρ = 0.244, p ≈ 0). These observations suggest the presence of a statistical relationship220

between community structure and controllability.221

However, it is possible for community structure and controllability to be related due the influence of a222

third variable. We hypothesize that node strength could be such a shared driver since prior work has223
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reported a correlation between network controllability and node strength (Gu et al., 2015; Jeganathan et224

al., 2018; W. H. Lee et al., 2019; Muldoon et al., 2016). In this dataset, node strength relates negatively225

with minimum control energy (ρ = −0.998, p ≈ 0) and with modal controllability (ρ = −0.998, p ≈ 0),226

whereas it relates positively with average controllability (ρ = 0.986, p ≈ 0). Further, we find that node227

strength is also positively related to both participation coefficient (ρ = 0.807, p ≈ 0) and intra-module228

strength Z-score (ρ = 0.333, p ≈ 0). As a result, node strength may be the potential driver of any229

relationship between community structure and controllability.230

Therefore, we run partial Spearman correlations between metrics of community structure and237

controllability, correcting for node strength (Figure 3). We find that when node strength is accounted for,238

participation coefficient no longer relates to minimum control energy (ρ = −0.052, p = 0.426) (Figure239

3a). It continues to relate significantly with average controllability (ρ = 0.192, p = 0.003) and modal240

controllability (ρ = −0.132, p = 0.044) (Figure 3b, c). Intra-module strength Z-score follows a similar241

trend; it does not relate significantly with minimum control energy (ρ = −0.089, p = 0.174), but242

continues to relate with average controllability (ρ = −0.530, p ≈ 0) and modal controllability243

(ρ = 0.165, p = 0.011) even when controlling for node strength (Figure 3d, e, f).244

From the findings in this section, we conclude that for the examined structural brain networks where245

edge weights are approximately normally distributed, region-level measures of modularity such as246

participation coefficient and intra-module strength Z-score correlate in a statistically significant manner247

with average and modal controllability, but not with minimum control energy.248

Numerical simulations using edges drawn from a normal distribution Next, we seek to better understand the249

relationship between controllability and community structure by parsing community structure into250

distinct motifs, such as assortativity, or core-peripheriness. We generate synthetic networks with a251

specifically determined community structure and examine their controllability. In silico experiments252

where network topologies are precisely enforced and edge weights are drawn from distributions with253

precisely known parameters are useful benchmarks in understanding the relationship between mesoscale254

organization and controllability. We begin by generating networks with a 2× 2 block structure in their255

adjacency matrices, and with normally distributed edge weights (see subsection ‘Numerical Simulations’256

in the ‘Methods’ for details).257
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Controllability and Community Structure for Gaussian Edge Weight Distribution

ρ = -0.052 
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Figure 3. Relationships between metrics of regional controllability and metrics of community structure for edge weights approximating a normal distribution.

(a, b, c) Participation coefficient does not relate in a statistically significant manner with minimum control energy (ρ = −0.052, p = 0.426) when accounting for node

strength. On the other hand, correlations between participation coefficient with average (ρ = 0.192, p = 0.003) and modal controllability (ρ = −0.132, p = 0.044)

survive corrections for node strength. (d, e, f) Intra-module strength Z-score follows a similar pattern; it does not relate with minimum control energy (ρ = −0.089,

p = 0.174), but relates significantly with average (ρ = −0.530, p ≈ 0) and modal controllability (ρ = 0.165, p = 0.011). Each dot in the scatter plots represents the

mean value of a controllability and modularity measure across 24 (8 subjects in triplicate) network instantiations for a single brain region resulting in 234 data points.
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Recall that when the diagonal blocks of a network are denser relative to the off-diagonal blocks,258

networks possess an assortative block structure (Figure 1a). By contrast, when the off-diagonal blocks259

are denser relative to the diagonal blocks, network communities interact disassortatively (Figure 1b).260

Another form of mesoscale topology is the core-periphery structure (Figure 1c). Nodes in the core are261

connected more densely to each other than they are to the rest of the network. Nodes in the periphery262

predominantly connect with nodes in the core but not with each other. We quantify the notion of263

modularity in the form of the modularity quality index (Q), which is a network-level measure of how264

well a given community partition segregates nodes into modules. It quantifies the extent of modularity by265

relating the observed strength of within-module connections in a network to the strength of266

within-module connections expected under a null model (Newman & Girvan, 2004). The quantity Q can267

be positive or negative, with positive values implying the presence of an assortative community structure268

(Newman, 2006). We characterize the relationship between Q and the fraction of network edges inside of269

modules (or the core) in the Supplement.270

In the first set of simulations, we generate networks on a range from disassortative to assortative (see278

subsection ‘Numerical Simulations’ in the ‘Methods’ for details). At each point along the structural279

continuum, we generate an ensemble of 100 different sparse weighted networks with a known value of280

the modularity quality index Q. First, for each network in the ensemble we compute the mean of the 234281

obtained values of minimum control energy, average controllability, and modal controllability. Minimum282

control energy and average controllability values are computed using T = 4 as the choice of time horizon283

for consistency. We then compute the mean of the three network-level controllability metrics across the284

100 network instantiations in the ensemble. We observe that as network topology becomes more285

assortative from disassortative, minimum control energy and average controllability first decrease, and286

then increase with a minimum value at Q ≈ 0 (Figure 4a, b). The trough corresponds to Q ≈ 0 where the287

network topology is random. Modal controllability has no discernible trend with changing network288

topology along the disassortative-assortative continuum (Figure 4c).289

In the second set of simulations, we generate networks on a range from disassortative to core (see290

subsection ‘Numerical Simulations’ in the ‘Methods’ for details). Along this structural continuum, when291

the fraction of edges in the core ([1, 1]-block) is closer to 0, a network is disassortative, whereas when the292

fraction is closer to 1, it has a dense core reminiscent of a core-periphery network. Networks are nearly293
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Figure 4. Controllability for normally weighted networks as a function of changing mesoscale topology. (a, b) As network topology changes from disassortative

to assortative, mean network control energy and average controllability first decrease, and then increase tracing out U-shaped curves. Their values are the lowest when

Q ≈ 0, which corresponds to the point of randomness. Networks with a balance between disassortativity and coreness occur when Q ≈ −0.28. (d) Minimum control

energy increases as networks become less disassortative and more core-like. (e) Average controllability first decreases and then rapidly increases past Q ≈ −0.28. (c,

f) Modal controllability, on the other hand, exhibits no discernible trends with changing network topology. Each point in the scatter plots represents a Z-scored mean

network controllability value computed across 100 network instantiations at each Q-value. Error bars correspond to the standard deviation of the mean controllability

value for networks in a given ensemble.
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random when the fraction is 1/3 for the 2× 2 block adjacency matrix with a single on-diagonal block294

([2, 2]-block) having zero density. In terms of the modularity quality index Q, the extremes correspond to295

values of −0.5 (disassortative) and 0 (core), respectively. The extent of disassortativity and coreness is in296

balance when Q ≈ −0.28. Similar to the first set of simulations, we generate 100 network instantiations297

as the topology gradually changes from disassortative to more core-like. We observe that as networks298

become more core-like, mean minimum control energy increases (Figure 4d). There is little change in the299

mean control energy value in the disassortative regime; however, this is followed by a sharp rise past300

Q ≈ −0.20. Average controllability, in contrast, first decreases gradually to Q ≈ −0.28, followed by a301

sharp increase (Figure 4e). Similar to the disassortative-assortative structural continuum, modal302

controllability does not exhibit a significant trend along the disassortative-core continuum (Figure 4f).303

In summary, disruptions to particular mesoscale motifs in networks where edges are drawn from a304

normal distribution result in motif-specific profiles of network controllability.305

Relationship between network controllability and community structure for edge weights drawn from a fat-tailed distribution306

In the context of structural brain networks, multiple empirical estimates may be used to quantify the307

strength of connections between two regions, such as white matter streamline counts between regions,308

mean quantitative anisotropy (QA) values along the streamlines, and generalized fractional anisotropy309

(GFA) values. These measures reflect the strength, volume, or integrity of white matter tracts connecting310

one region of the brain to another. This diversity in the characterization of structural networks introduces311

further complexity in the modeling of large-scale communication dynamics in the brain. The distribution312

of edge weights in a structural brain network is contingent on the choice of edge definition, which has the313

potential to cause conflict in results that relate network topology to controllability.314

In order to examine the relationship between the edge weight distribution that underlies a mesoscale315

topology and network controllability, we next turn to brain networks with an edge weight distribution316

distinct from the already examined normal distribution from Data Set 1. Results presented in this section317

are obtained from analyses performed on Data Set 2 (see subsection ‘Data’ in the ‘Methods’ for details),318

which is comprised of structural brain networks where edges represent estimates of streamline counts319

between regions. An element [Aij] of an adjacency matrix for these networks represents the number of320

streamlines connecting two brain regions i and j. Edge weights with streamline counts approximate a321
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fat-tailed distribution. Recent work has indicated that real-world networks with fat-tailed distributions322

can often be approximated using the log-normal distribution (Broido & Clauset, 2019). As a result, we323

use the log-normal distribution as the choice of edge weight distribution prior when inferring324

communities using the weighted stochastic block model (WSBM). We demonstrate the robustness of our325

results to the choice of the edge weight distribution prior in the Supplement.326

Measures of controllability are not consistently correlated with measures of modularity for structural brain networks with a327

fat-tailed distribution of edge weights Similar to our observations in structural brain networks with normally328

distributed edge weights (Data Set 1), here we find that the participation coefficient relates negatively329

with minimum control energy (ρ = −0.433, p ≈ 0) and with modal controllability (ρ = −0.435, p ≈ 0),330

and positively with average controllability (ρ = 0.450, p ≈ 0) for networks with a fat-tailed edge weight331

distribution (Data Set 2). Intra-module strength Z-score relates negatively with both minimum control332

energy (ρ = −0.638, p ≈ 0) and modal controllability (ρ = −0.630, p ≈ 0), and relates positively with333

average controllability (ρ = 0.565, p ≈ 0). These observations, yet again, suggest the presence of a334

statistical relationship between community structure and controllability.335

Similar to Data Set 1, however, it is possible for these statistical relations between controllability and342

community structure to be driven by a third variable such as node strength. Indeed in Data Set 2, we also343

observe that node strength is related to measures of network controllability. Node strength relates344

negatively with minimum control energy (ρ = −0.993, p ≈ 0) and modal controllability (ρ = −0.993,345

p ≈ 0), and relates positively with average controllability (ρ = 0.984, p ≈ 0). Node strength is also a346

predictor of the participation coefficient (ρ = 0.440, p ≈ 0) and the intra-module strength Z-score347

(ρ = 0.625, p ≈ 0). Similar to earlier analyses, we run partial Spearman correlations in order to account348

for the effects of node strength when characterizing the relationship between measures of controllability349

and those of community structure. We find that participation coefficient no longer significantly relates to350

minimum control energy (ρ = 0.038, p = 0.563) (Figure 5a), average controllability (ρ = 0.103,351

p = 0.117) (Figure 5b), or modal controllability (ρ = 0.023, p = 0.728) (Figure 5c). Intra-module352

strength Z-score continues to relate in a statistically significant manner with minimum control energy353

(ρ = −0.190, p = 0.004) (Figure 5d) and average controllability (ρ = −0.366, p ≈ 0) (Figure 5e), but354
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ρ = 0.038 
p = 0.563

ρ = -0.110 
p = 0.095

ρ = 0.103 
p = 0.117

ρ = 0.023 
p = 0.728

ρ = -0.366 
p � 0

ρ = -0.190 
p = 0.004

Figure 5. Relationships between metrics of regional controllability and metrics of community structure for edge weights approximating a fat-tailed distribution.

(a, b, c) Participation coefficient does not relate in a statistically significant manner with minimum control energy (ρ = 0.038, p = 0.563), average controllability

(ρ = 0.103, p = 0.117), or modal controllability (ρ = 0.023, p = 0.728). (d, e) Intra-module strength Z-score relates significantly with minimum control energy

(ρ = −0.190, p = 0.004) and average controllability (ρ = −0.366, p ≈ 0). (f) It does not relate with modal controllability (ρ = −0.110, p = 0.095). Each point in

the scatter plots represents the mean value of a controllability and modularity measure across 24 (8 subjects in triplicate) network instantiations for a single brain region

resulting in 234 data points.
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not with modal controllability (ρ = −0.110, p = 0.095) (Figure 5f) when accounting for the effect of355

node strength.356

From the findings in this section, we conclude that for structural brain networks with a fat-tailed edge357

weight distribution, region-level minimum control energy and average controllability are related in a358

statistically significant manner with intra-module strength Z-score. However, unlike Data Set 1 no359

measure of controllability relates with participation coefficient in a statistically significant manner.360

Therefore, the hypothesized relationship between a node’s participation in the community structure, and361

its associated controllability metrics, is not general and is also strongly contingent on the distribution362

from which network edges are drawn.363

Numerical simulations using edges drawn from a geometric distribution In parallel to the previous set of numerical364

simulations on networks with normally distributed edge weights, we next sought to describe the365

relationship between mesoscale architecture and network controllability for networks with a fat-tailed366

edge weight distribution. We use the geometric distribution as a representative fat-tailed distribution367

when drawing network edge weights.368

In the first set of simulations, we generate networks on a range from disassortative to assortative. At375

each value of the modularity quality index Q, we generate an ensemble of 100 sparse weighted networks376

with edge weights drawn from the geometric distribution (see subsection ‘Numerical Simulations’ in the377

‘Methods’ for details). We begin by computing the mean of the nodal values of minimum control energy,378

average controllability, and modal controllability. We then compute the mean of the three controllability379

measures across the 100 instantiations in an ensemble, and repeat this process at every Q value.380

We observe that as the network topology becomes more assortative from disassortative, minimum381

control energy and modal controllability first increase, and then decrease with a peak at Q ≈ 0, which382

corresponds to the point of randomness (Figure 6a, c). Average controllability, on the other hand, follows383

the opposite trend, and is the highest at points of greatest disassortativity and assortativity, with a low at384

Q ≈ 0 (Figure 6b). Importantly, the trends in network controllability observed for networks with a385

fat-tailed distribution (Figure 6) of edge weights are not similar to those observed for networks with a386

normal distribution of edge weights (Figure 4).387
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Figure 6. Controllability for weighted networks with a geometric distribution of edge weights as a function of changing mesoscale topology. (a, c) As network

topology changes from disassortative to assortative, the mean network control energy and modal controllability first increase and then decrease on either side of Q ≈ 0,

which marks the point of randomness. (b) By contrast, average controllability exhibits the opposite trend; first decreasing and then increasing as networks become more

assortative from disassortative. (d, f) Along the continuum from disassortativity to coreness, minimum control energy and modal controllability decrease, whereas (e)

average controllability increases. Each point in the scatter plots represents a Z-scored mean network controllability value computed across 100 network instantiations.

Error bars correspond to the standard deviation of the mean controllability value for networks in a given ensemble.
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In the second set of simulations, we generate networks on a range from disassortative to core-like (see388

subsection ‘Numerical Simulations’ in the ‘Methods’ for details). Along this structural continuum, when389

the modularity quality Q index is closer to −0.5, a network is disassortative, whereas when the index is390

closer to 0, it has a dense core reminiscent of a core-periphery network. Networks are nearly random391

when the index is −0.28. We find that networks with increasingly dense cores have lower mean392

minimum control energy and mean modal controllability (Figure 6d, f). Average controllability, in393

contrast, increases with an increasingly dense core (Figure 6e). Trends in the mean network394

controllability values along the disassortative-core continuum appear to form traces of U-shaped curves.395

For networks where edge weights are drawn from the geometric distribution, disruptions to particular396

mesoscale motifs results in motif-specific profiles of network controllability. However, these profiles are397

distinct from those observed for networks with normally distributed edge weights. Had binary topology398

been a unique predictor of network controllability, the trends in the curves in Figures 4 and 6 would have399

been similar for similarly altered networks along the continuums.400

Weighted subgraph centrality as a predictor of network controllability401

Based on the results thus far, and contrary to the initial hypothesis, the extent of a node’s participation in402

the network’s community structure is not a consistent predictor of its metrics of controllability. In403

addition, at the network-level, binary topology does not uniquely determine controllability. It is apparent404

that the distribution of edge weights is as important to network controllability as the binary distribution of405

edges themselves. Since modularity and controllability do not uniquely explain one another, perhaps a406

different but complementary feature of network organization relates the two. Since eigenvalues and407

eigenvectors fully and uniquely describe a matrix, the spectrum of the weighted network adjacency408

matrix, which acts as the system matrix A for our discrete-time LTI system, encodes all features of the409

network including those that consistently predict controllability. Therefore, we hypothesize that a410

node-level metric that is rooted in the graph spectrum ought to relate to controllability statistics411

regardless of the distribution of edge weights, or the binary distribution of edges.412

With a full control set B = In, the controllability Gramian can be written as,

WC(T ) =
T−1∑
t=0

AtBB>(A>)t =
T−1∑
t=0

A2t = I + A2 + A4 + · · · . (4)
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Further, in a weighted adjacency matrix A, the entry in the i-th row and j-th column of An represents the

strength of closed walks from node j to node i along paths of length n. Subgraph centrality (SC) is a

measure of centrality defined for unweighted networks that incorporates higher-order path lengths

through a factorial discounted sum of the powers of the adjacency matrix (Estrada &

Rodrı́guez-Velázquez, 2005). We extend the definition of subgraph centrality to a weighted adjacency

matrix A in order to compute weighted subgraph centrality as follows:

WSC(i) =
∞∑
k=0

(Ak)ii
k!

= 1 + (A)ii +
(A2)ii

2!
+

(A3)ii
3!

+
(A4)ii

4!
+ · · · . (5)

We note that Equation 5 can also be written in terms of the eigenvalues and eigenvectors of A (Estrada &

Rodrı́guez-Velázquez, 2005).

WSC(i) =
∞∑
k=0

(Ak)ii
k!

=
∞∑
k=0

(
N∑
j=1

λkj
(
vij
)2

k!

)
, (6)

where N is the number of network nodes, and λj and vj are an eigenvalue and associated eigenvector,413

respectively. Practically, we compute weighted subgraph centrality by noting that the above definition is414

equivalent to selecting the diagonal entries of the matrix exponential of A, WSC(i) = [expm(A)]ii.415

Since minimum control energy and average controllability are explicitly defined in terms of the416

controllability Gramian, and since modal controllability is defined explicitly in terms of the network417

spectrum, Equations 4, 5, and 6 suggest that the weighted variant of subgraph centrality is a promising418

node level predictor of measures of network controllability. Hence, in the results that follow, we compute419

weighted subgraph centrality on the weighted adjacency matrix A.420

We test weighted subgraph centrality to examine whether it is an accurate predictor of controllability429

that generalizes across structural brain network data sets with distinct edge weight distributions. Initially430

we note that weighted subgraph centrality is related negatively with minimum control energy431

(ρ = −0.998, p ≈ 0) and modal controllability (ρ = −0.999, p ≈ 0), and positively with average432

controllability (ρ = 0.992, p ≈ 0) for Data Set 1, in which the edge weight distribution approximates a433

normal distribution. However, it is also related to node strength (ρ = 0.998, p ≈ 0). In order to account434

for the effects of node strength, we perform partial Spearman rank correlations, and find that weighted435

subgraph centrality continues to relate negatively with minimum control energy (ρ = −0.461, p ≈ 0)436
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Figure 7. Relationships between metrics of regional controllability and weighted subgraph centrality for networks approximating normal and fat-tailed

distributions of edge weights. (a, b, c) Weighted subgraph centrality is related in a statistically significant manner to controllability when controlling for node strength in

networks with normally distributed edge weights. (a, c) It relates negatively with minimum control energy (ρ = −0.461, p ≈ 0) and modal controllability (ρ = −0.795,

p ≈ 0), and (b) positively with average controllability (ρ = 0.707, p ≈ 0). (d, e, f) Weighted subgraph centrality is also related in a statistically significant manner

to controllability when controlling for node strength in networks with a fat-tailed distribution of edge weights. The relationships follow similar trends as networks with

normally distributed edge weights; (d) negative with minimum control energy (ρ = −0.898, p ≈ 0) and (f) modal controllability (ρ = −0.954, p ≈ 0), and positive

with (f) average controllability (ρ = 0.806, p ≈ 0). Each point in the scatter plots represents the mean value of a controllability measure and weighted subgraph centrality

across 24 (8 subjects in triplicate) network instantiations for a single brain region resulting in 234 data points.
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(Figure 7a) and modal controllability (ρ = −0.795, p ≈ 0) (Figure 7c), and positively with average437

controllability (ρ = 0.707, p ≈ 0) (Figure 7b).438

We then repeat the analyses performed above on Data Set 2, where the distribution of edge weights439

approximates a fat-tailed distribution. We find that weighted subgraph centrality relates negatively with440

minimum control energy (ρ = −0.999, p ≈ 0) and modal controllability (ρ = −0.999, p ≈ 0), and441

positively with average controllability (ρ = 0.994, p ≈ 0). Since it also relates to node strength442

(ρ = 0.993, p ≈ 0), we examine partial Spearman correlations between weighted subgraph centrality and443

measures of network controllability. Similar to results with Data Set 1, we find that weighted subgraph444

centrality continues to predict measures of network controllability in a statistically significant manner for445

Data Set 2. It relates negatively with minimum control energy (ρ = −0.898, p ≈ 0) (Figure 7d) and446

modal controllability (ρ = −0.954, p ≈ 0) (Figure 7f), and positively with average controllability447

(ρ = 0.806, p ≈ 0) (Figure 7e). Additionally, we examine the robustness of weighted subgraph centrality448

in predicting controllability of potentially directed structural brain networks in the Supplement. We also449

examine performance in an independent high resolution data set (Data Set 3) to verify generalizability of450

the weighted subgraph centrality - controllability relationship.451

In summary, unlike participation coefficient and intra-module strength Z-score, weighted subgraph452

centrality reliably and significantly explains measures of network controllability regardless of the453

distribution of network edge weights.454

DISCUSSION

The topology of structural brain networks shapes and constrains the patterns of signalling between distant455

neuronal populations (Ritter, Schirner, McIntosh, & Jirsa, 2013; Schirner, McIntosh, Jirsa, Deco, &456

Ritter, 2018). These patterns, in turn, give rise to the diverse and complex large-scale functional dynamics457

of the brain that underlie cognition (Bansal, Nakuci, & Muldoon, 2018; Griffa & Van den Heuvel, 2018).458

In this study, we sought to probe the relationship between brain network structure and the transient459

communication dynamics that the topology can support at the mesoscale of network organization.460

While the structure-function relationship for brain networks is of interest at all scales of network461

organization, recent advances in community detection techniques have made the mesoscale particularly462
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relevant (Betzel et al., 2018; Faskowitz et al., 2018). Distinct motifs of mesoscale structure serve463

different roles in the context of communication dynamics; assortative (or modular) interactions allow for464

information integration and segregation (Goñi et al., 2013; Park & Friston, 2013), core-periphery motifs465

with rich-club hubs (Colizza, Flammini, Serrano, & Vespignani, 2006) allow for information broadcast466

and receipt (van den Heuvel, Kahn, Goñi, & Sporns, 2012; van den Heuvel & Sporns, 2013), while467

disassortative motifs support information transmission. Controllability, by contrast, influences state468

transitions (Towlson et al., 2018), and has been related to the notion of cognitive control, where the brain469

shifts from one cognitive state to another (Cornblath et al., 2019). Through our numerical simulations,470

we demonstrate that distinct features of community structure are likely to be implicated in distinct471

aspects of neural computation.472

A mesoscale feature is any topological feature that cannot be explained by the local neighborhood of a473

node, and is better explained by larger neighborhoods around the node, than it is by the total global474

architecture (Lohse, Bassett, Lim, & Carlson, 2014; Schlesinger, Turner, Grafton, Miller, & Carlson,475

2017). Much of the literature has focused on modularity and core-periphery structure as the canonical476

forms of mesoscale structure (Girvan & Newman, 2002; Newman & Girvan, 2004). But our results477

suggest that another distinct form of mesoscale structure must be considered, and that is the feature that478

drives controllability statistics (Kim et al., 2018). Here we demonstrate that weighted subgraph479

centrality, can potentially assess this distinct dimension of mesoscale architecture in future studies.480

Recent work has sought to define measures of network topology, such as disassortativity and481

core-peripheriness, both at the scale of nodes and at the scale of communities (Foster, Foster, Grassberger,482

& Paczuski, 2010; C. Sarkar & Jalan, 2018; S. Sarkar, Henderson, & Robinson, 2013; Zhang, Guo, & Yi,483

2015). A natural direction to extend this work is to examine the distribution of eigenvalues as the network484

topology gradually alters to become more assortative or core-periphery from disassortative. Moments of485

the eigenvalue distribution such as the mean, variance, skewness, and kurtosis may hold valuable insights486

into the behavior of network control metrics as functions of mesoscale architecture and edge-weight487

distribution. More theoretical work is needed in order to relate the spectra of weighted graphs to488

properties of network controllability. Recent work has attempted to create closed-form characterizations489

of spectral properties for both assortative (Van Mieghem, Wang, Ge, Tang, & Kuipers, 2010) and490

core-periphery networks. In addition, since structural brain networks simultaneously possess a variety of491
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community interaction motifs (Betzel et al., 2018), future work might involve characterizing the effects492

of mixed interactions in numerical simulations similar to those performed in this work.493

Controllability statistics cannot be explained simply by node strength, nor can they be explained by494

mesoscale structure. Through our results, we verify that node strength is a significant predictor of495

network controllability in the classes of graphs we study. However, it does not uniquely explain496

controllability. In all our analyses, after verifying the dependence of controllability on node strength, we497

proceed to regress out its effects when examining any dependence on other metrics of interest. We498

demonstrate in the Supplement that weighted subgraph centrality correlates more strongly, as well as499

linearly, with measures of network controllability than node strength does across a range of values of the500

time horizon of control. Additionally, whereas weighted subgraph centrality survives corrections for501

node strength, and continues to significantly predict controllability, modularity often does not. This502

distinction indicates that weighted subgraph centrality explains parts of network controllability that503

neither node strength nor any modularity metric we evaluated are able to.504

Our results indicate that higher-order path-dependent network structure, as captured by weighted505

subgraph centrality, is strongly related to transient communication dynamics. Indeed, it explains506

controllability better than descriptive statistics such as node strength and measures of modularity. At the507

network-level communicability is able to separate patients of stroke from healthy controls (Crofts et al.,508

2011). Communicability metrics have been shown to be sensitive indicators of lesions in patients with509

relapsing-remitting multiple sclerosis (Y. Li et al., 2013). It has also been shown that communicability is510

disrupted in patients of Alzheimer’s disease (Lella et al., 2018). Weighted subgraph centrality is the511

weighted extension of the notion of self-communicability. The consistently strong relationship between512

weighted subgraph centrality and measures of network controllability, suggests that statistics derived513

from linear control theory (such as average and modal controllability, and minimum energy) are also514

likely useful tools in investigating the disruptions to brain network dynamics in disease.515

The distinction between modularity and controllability impacts our interpretation of previous reports516

that provide evidence that these two features change appreciably over normative neurodevelopment. A517

naive hypothesis could be that the change in modularity drives a change in controllability, or vice versa.518

However, Tang et al. show that their network controllability results hold after regressing out modularity519

(Tang et al., 2017). Moreover, we find more generally using multiple data sets and systematic variation of520
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network modularity in simulations, that the two variables cannot be explained by one another. In the521

context of development, our results suggest that the process of brain development may reflect a more522

complex optimization function that coordinates a change in modularity alongside a change in523

controllability. What that function is, and what the mechanism of coordination is, remains to be clearly524

specified, but would be an important area for future work. The distinction between modularity and525

controllability also calls for care when interpreting reports of either of these features changing as a526

function of aging (Baum et al., 2017), training (Arnemann et al., 2015), treatment (Baliki, Babbitt, &527

Cherney, 2018; Tao & Rapp, 2019), injury (Gratton, Nomura, Pérez, & D’Esposito, 2012), or disease528

(Vértes et al., 2012).529

Biophysical interpretation of model parameters530

In the discrete-time LTI framework, the variable x(t) is a real N -dimensional vector, whose i-th element531

corresponds to the level of activity of brain region i. The level of activity of each brain region can be532

defined in multiple ways, such as the average blood oxygen level dependent (BOLD) signal from533

functional magnetic resonance imaging (fMRI) (Braun et al., 2019; Cui et al., 2020), or the average534

electrical activity from electrophysiological recordings (Khambhati et al., 2019; Stiso et al., 2019). As for535

the inputs, the variable u(t) represents independent control inputs whose influence can be linearly536

separated from the activity along white matter tracts. For instance, these influences may be endogenous537

neurotransmitter activity (Braun et al., 2019), task-based internal modulation of the brain state (Cornblath538

et al., 2020; Cui et al., 2020), or exogenous inputs such as pharmacological agents (Braun et al., 2019),539

direct electrical stimulation or transcranial magnetic stimulation (Khambhati et al., 2019; Stiso et al.,540

2019).541

Hence, while the most immediate and straightforward interpretation of u(t) is as an external electrical542

or pharmacological perturbation, we do not discount the possibility of other internal neural mechanisms543

(e.g., local dynamics of gray-matter neurons) that are independent of and take advantage of these544

white-matter tracts to influence global dynamics. Keeping both possibilities in mind, we refer to u(t) as545

the “exogenous input” for conceptual tractability. In addition, if it is easier for an exogenous input to546

globally influence the system by changing the activity of a node (less energetic cost, more spread of547

activity), then it is similarly easier for the endogenous activity of that node to globally influence the548
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system. If the endogenous nodal activity is generated by a process that is independent of the white-matter549

tracts, it can be modeled as a separate input u(t) to the linear dynamical system without making550

additional assumptions beyond an interpretation of exogenous inputs.551

In the context of structural brain networks and computations of control energy for state transitions,552

more work is needed to neurobiologically motivate the choices for initial and target states. Prior work has553

made imaging-based choices for states to model cognitive states of the brain, such as band-limited power554

(Stiso et al., 2019) or beta weights from a general linear model of BOLD activation from functional555

magnetic resonance imaging (Braun et al., 2019). Alternatively, binary activation of regions556

corresponding to functional modules has also been examined (Betzel, Gu, Medaglia, Pasqualetti, &557

Bassett, 2016). However, since the focus of this paper is to examine network controllability from the558

perspective of network community structure, a thorough investigation of state-pair choices is beyond the559

current scope. Our specific choice here is motivated by prior work probing the generic control properties560

of a system by formulating an influence maximization problem (C. Lynn & Lee, 2016). We compute561

minimum control energies by performing N state transitions to N one-hot vectors for each brain region i,562

such that the energies Ei form an upper bound on the energy required to perform arbitrary non-negative563

state transitions x∗ (see Supplement for more discussion).564

Methodological considerations565

The choice of the weighted stochastic block model (WSBM) to uncover network communities is566

motivated by the desire to uncover community interaction motifs extending beyond the traditionally567

examined assortative type. We hypothesized that disruptions to specific motifs ought to result in568

motif-specific profiles of network controllability. In the context of empirical brain data, the WSBM569

uncovers a diverse community structure reflecting the diversity of the functional dynamics supported.570

The WSBM is an incredibly flexible community detection technique. However, this flexibility comes at571

the price of having to choose a number of parameters a priori, including the number of communities that572

are anticipated to exist in the network, and a prior regarding the nature of the edge weight distribution.573

[Jargon: Prior= The probability distribution or density on the causes of data that encode beliefs about574

those causes prior to observing the data.] We fix the number of communities by sweeping over a range575

of values and choosing the value that maximizes the likelihood of observing the given network data.576

27



Additionally, we verify salient analyses performed in the paper in the Supplement with a different choice577

of edge weight distribution prior.578

In our network-level numerical simulations, we adopt the geometric distribution as a representative579

fat-tailed distribution from which to draw edge weights. The geometric distribution is the discrete580

counterpart to the exponential distribution. Another fat-tailed distribution that is commonly explored in581

network neuroscience is the scale-free distribution characterized by a power-law (Sizemore, Giusti, &582

Bassett, 2016; Wu-Yan et al., 2018). However, recent work has demonstrated that scale-free networks are583

not as ubiquitous as previously thought, and that the exponential distribution is often a suitable alternative584

(Broido & Clauset, 2019). Our motivation in considering the normal and geometric distributions was to585

examine controllability of networks with two different edge weight distributions. Future work could586

characterize controllability performance explicitly for networks with a scale-free distribution of edge587

weights, instead of relying on a stand-in fat-tailed distribution (Wu-Yan et al., 2018).588

While a linear model of network dynamics lends itself well to control-theoretic studies of589

communication dynamics, empirical results have shown that brain activity is non-linear (Rabinovich et590

al., 2006). However, recent work has demonstrated that a linear approximation is often useful (Galán,591

2008; Honey et al., 2009; Muldoon et al., 2016). In addition, the linear framework can be adapted to592

incorporate more complex features of neural dynamics (A. Li, Cornelius, Liu, Wang, & Barabási, 2017;593

Yang et al., 2019; Zañudo, Yang, & Albert, 2017). Similar to the WSBM, applying linear network control594

theory to empirical data involves setting a variety of hyper-parameters, such as the time horizon over595

which control is exerted, the target state vector in computations of minimum control energy, or the596

normalization scheme employed. Our hyper-parameter choices are motivated by the desire to investigate597

and compare network topology across data sets with very distinct edge weight distributions. As a result,598

we choose a non-zero short time horizon after scaling down the network adjacency matrices by their599

largest eigenvalues. This step ensures that the fastest evolving modes across systems stay consistent.600

However, we note the need for further work to motivate parameter choices from a neurophysiological601

perspective.602

Our results demonstrate that the choice of empirical measurement that is used to characterize structural603

edges in brain networks is crucial to investigations of network control. For instance, whereas results604

derived from quantitative anisotropy (QA) weighted networks may lead us to conclude that modularity as605
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measured by the participation coefficient and average controllability are related (Figure 3), streamline606

count weighted networks present contrary results (Figure 5). It is unclear if one type of empirical607

estimate for network edges in structural brain networks is better than another. It is possible that some608

measures better assess signal speed, others better assess bundle volume, and yet others better assess609

micro-structure integrity (Johansen-Berg, 2010). Perhaps the choice of edge weight definition also has610

implications for community detection. For instance, are network partitions likely to be different611

depending on the distribution of edge weights? More work is needed to contextualize the impact of edge612

weights on our interpretations of modularity, core-periphery structure, and network controllability, and613

their relationships to communication, computation, and dynamics. The WSBM continues to remain a614

promising tool in this endeavor since it is comprised of a generative model with a prior over the edge615

weight distribution built into its framework.616

CONCLUSION

We began with the hypothesis that the extent of a node’s participation in the network community617

structure ought to be related to its controllability. We find that modularity as measured by the618

participation coefficient and intra-module strength Z-score is a significant predictor of minimum control619

energy and average controllability for structural brain networks where the distribution of edge weights620

approximates a normal distribution. For these networks, whereas intra-module strength Z-score relates621

significantly with modal controllability, participation coefficient does not. For networks where edge622

weights approximate a fat-tailed distribution, we find that modularity as quantified by participation623

coefficient and intra-module node strength, relates to minimum control energy and average controllability624

in a statistically significant manner, but not to modal controllability. Collectively, these results signify625

that measures of modularity do not generally relate in a statistically significant manner to measures of626

network controllability.627

By contrast, weighted subgraph centrality is a statistically robust predictor of network controllability,628

regardless of the distribution of network edge weights. The relationships between weighted subgraph629

centrality and measures of network controllability, indicate that higher-order path-dependent network630

structure predicts transient communication dynamics. At the network level, through numerical631

simulations, we demonstrate that binary topology alone is not a predictor of mean network632
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controllability. Along a structural continuum from disassortative to assortative, or from disassortative to633

core, mean controllability profiles are heavily dependent on the distribution of network edge weights.634

Our study contributes to an understanding of how the diverse mesoscale structural architecture of the635

brain, characterized by a variety of community interaction motifs and edge weight distributions, supports636

transient dynamics in the brain.637

METHODS

Data638

Structural brain networks used in the analyses are constructed from diffusion spectrum imaging (DSI)639

data acquired in triplicate from eight subjects (mean age 27± 5 years, two female, two left handed) along640

with T1-weighted anatomical scans at each scanning session. DSI scans sampled 257 directions using a641

Q5 half-shell acquisition scheme with a maximum b-value of 5000 s
mm2 and an isotropic voxel size of 2.4642

mm. Axial acquisition with the following parameters was employed: repetition time (TR) = 11.4 s, echo643

time (TE) = 138 ms, 51 slices, field of view (FoV) (231, 231, 123 mm). All participants volunteered with644

informed consent in accordance with the Institutional Review Board/Human Subjects Committee,645

University of California, Santa Barbara. Data acquisition and network construction methods are646

described elsewhere in further detail (Gu et al., 2015).647

The data contain brain networks where edges represent diverse estimates of inter-node connections,648

including white matter streamline counts between regions, mean quantitative anistropy (QA) values along649

the streamlines, and generalized fractional anisotropy (GFA) values. The choice of edge definition has650

implications for the distribution of edge weights in the networks. Streamline counts have a fat-tailed edge651

weight distribution, whereas QA values are normally distributed. In the present study, we investigate the652

implications of edge weight distribution on network controllability by using networks with QA values as653

well as streamline counts. We refer to networks with QA values as Data Set 1, and to networks with654

streamline counts as Data Set 2.655

Additionally, we repeat salient analyses in the Supplement on a higher resolution data set, henceforth656

termed Data Set 3. This data set is acquired from ten healthy human subjects as part of an ongoing data657

collection effort at the University of Pennsylvania; the subjects provided informed consent in writing, in658

accordance with the Institutional Review Board of the University of Pennsylvania. Similar to Data Set 2,659
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Data Set 3 is comprised of structural brain networks where edges reflect streamlines counts between660

regions.661

For Data Set 3, all scans are acquired on a Siemens Magnetom Prisma 3 Tesla scanner with a662

64-channel head/neck array at the University of Pennsylvania. All participants volunteered with informed663

consent in accordance with the Institutional Review Board/Human Subjects Committee, University of664

Pennsylvania. Each data acquisition session includes both a diffusion spectrum imaging (DSI) scan as665

well as a high-resolution T1-weighted anatomical scan. The diffusion scan is 730-directional with a666

maximum b-value of 5010 s
mm2 and TE/TR = 102/4300 ms, which includes 21 b = 0 images. Matrix size667

is 144× 144 with a slice number of 87. Field of view is 260× 260 mm2 and slice thickness is 1.80 mm.668

Acquisition time per DTI scan is 53 : 24 min, using a multiband acceleration factor of 3. The anatomical669

scan is a high-resolution three-dimensional T1-weighted sagittal whole-brain image using a670

magnetization prepared rapid acquisition gradient-echo (MPRAGE) sequence. It is acquired with TR =671

2500 ms; TE = 2.18 ms; flip angle = 7 degrees; 208 slices; 0.9 mm thickness. More detail on data672

acquisition and processing is available elsewhere (Kim et al., 2018).673

Weighted Stochastic Block Model674

In our effort to probe the relationship between network controllability and the mesoscale architecture of675

structural brain networks, the first step is to partition the networks into communities. We apply block676

modeling to infer network partitions from data. Block models uncover diverse mesoscale architectures677

(Aicher et al., 2014; Hastings, 2006), which may have implications for network controllability. The678

model assumes that connections between nodes are made independently of one another, and that the679

probability of a connection between two nodes depends only on the communities to which the nodes are680

assigned. Fitting the model involves estimating the parameters that maximize the likelihood of observing681

a given network.682

The Stochastic Block Model (SBM) seeks to partition the nodes of a network into K communities. Let

zi ∈ {1, · · · , K} indicate the community label of node i. Under the block model, the probability

Pij = θzi,zj that any two nodes i and j are connected depends only on their community labels, zi and zj ,

where zi, zj ∈ {1, · · · , K}. To fit the block model to the observed data in A, we estimate θrs for all pairs

of communities {r, s} ∈ {1, · · · , K} and the community labels zi. Assuming that the placement of edges
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is independent of one another, the likelihood of the SBM having generated a network is

P (A | {zi}, {θrs}) =
∏
i,j

(θzizj)
Aij(1− θzizj)1−Aij . (7)

Fitting the SBM involves determining the parameters {zi} and {θrs}. However, the SBM is limited to683

binary networks. By contrast, the weighted stochastic block model (WBSM) (Aicher, Jacobs, & Clauset,684

2013; Aicher et al., 2014; Hastings, 2006) incorporates edge weights into its framework making weighted685

graphs such as brain networks accessible to block models for community detection (Betzel et al., 2018;686

Faskowitz & Sporns, 2019; Faskowitz et al., 2018; Pavlovic et al., 2014).687

In the weighted variant (WSBM) of the block model, the likelihood function in Eq. (7) is modified to

P (A | {zi}, {θrs}) ∝ exp

(∑
i,j

T (Aij) . η(θzizj)

)
. (8)

In the binary case (SBM), T and η correspond to the vector-valued function of sufficient statistics and the

vector-valued function of natural parameters for the Bernoulli distribution, respectively. Different choices

of T and η can allow for the edge weights to be drawn from different distributions of the exponential

family. The WSBM, just like its classical variant, is parameterized by the set of community assignments,

{zi}, and the parameters {θrs}. The difference is that each θzizj now specifies the parameters governing

the weight distribution of the edge zizj , and not the probability of edge existence. For the normal

distribution, the vector-valued function of sufficient statistics is T = [x, x2, 1], while the vector-valued

function of natural parameters is η = [µ/σ2,−1/2σ2, µ2/(2σ)2]. Edges are now parameterized by a mean

and variance, θzizj = (µzizj , σ
2
zizj). As a result, the likelihood function in Eq. (7) can be modified to read

P
(
A | {zi}, {µrs}, {σ2

rs}
)

=
∏
i,j

exp

(
Aij ·

µzi,zj
σ2
zizj

− A2
ij ·

1

2σ2
zizj

− 1 ·
µ2
zi,zj

σ2
zizj

)
(9)

for edge weights drawn from the normal distribution.688

An additional challenge in fitting block models to data is the handling of sparse networks (Aicher et

al., 2014). This is particularly important for brain networks since the neural connectome is sparse and

most entries in the adjacency matrix A are zero. This sparsity is handled by modeling edge weights as

described above, and separately modeling edge presence with a Bernoulli distribution. If Te and ηe

represent the edge existence distribution, and Tw and ηw the edge weight distribution, the likelihood
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function for A, can be written as:

logP (A | {zi}, {θrs}) = α
∑
i,j∈E

Te(Aij) . ηe(θzizj) + (1− α)
∑
i,j∈W

Tw(Aij) . ηw(θzizj). (10)

In Eq. (10), E is the set of all edges and W is a subset of E representing the weighted edges. A689

variational Bayes algorithm is then used to estimate the model parameters from data, as outlined in690

Aicher et al. (2013) and Aicher et al. (2014).691

However, this pipeline is still incomplete as fitting the weighted stochastic block model (WSBM) to a692

network requires that the number of blocks K in the community structure be chosen a priori. A693

data-driven approach can help determine the suitable number of blocks present. Since the WSBM is a694

generative model, we can estimate the likelihood of observing a connectivity matrix A for different695

values of K. The K that maximizes the likelihood of observing the data is chosen as the parameter value696

when inferring network partitions downstream. For Data Set 1 and Data Set 2, we run the WSBM on all697

structural connectivity matrices derived from the eight subjects (8 subjects × 3 = 24 matrices) while698

sweeping over a range of K values from K = 6 to K = 15. Since the WSBM is not deterministic, we run699

10 iterations for each subject for each trial at each choice of K. We find that data likelihood is maximized700

when K = 12 for networks with normally distributed edge weights (Data Set 1) with a Gaussian edge701

weight prior, and when K = 14 for networks with a fat-tailed edge weight distribution (Data Set 2) with702

a log-normal edge weight prior. A by-product of the process of selecting K is the partitions of the703

networks into communities that we seek. At the K that maximizes data likelihood, each network already704

has 10 instantiations of partitions. The network partition chosen for the analyses is the one that is the705

most central out of all, as defined by variation of information (Faskowitz et al., 2018). For Data Set 3, we706

run 25 iterations of the WSBM for each K and find that the likelihood is maximized when K = 10 with a707

log-normal edge weight distribution prior.708

Code to infer community structure from networks using the WSBM is freely available at709

http://tuvalu.santafe.edu/˜aaronc/wsbm/ (Aicher et al., 2013, 2014).710

Network Statistics711

Recall that our hypotheses depend on the quantification of the extent to which nodes participate in712

interactions with nodes from other communities. We compute the participation coefficient (Guimerà &713
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Nunes Amaral, 2005), and intra-module strength Z-score (Guimerà & Nunes Amaral, 2005) to quantify714

this extent based on the WSBM-generated partitions of brain networks.715

The participation coefficient for a node i is defined as

PCi = 1−
K∑
z=1

(κiz
κi

)2
, (11)

where κiz is the strength of connection of node i to nodes in community z, and κi is the total strength of

node i. The term K is the number of communities in the partition. Intra-module strength Z-score (Z) for

node i is defined as

Zi =
κizi − κ̄zi
σκzi

, (12)

where κizi is the strength of connection of node i to other nodes in its own community zi, κ̄zi is the716

average strength of connection of all nodes in module zi to other nodes in zi, and σκzi is the standard717

deviation of κizi . We compute these metrics using freely available code from the Brain718

Connectivity Toolbox (https://sites.google.com/site/bctnet/) (Rubinov &719

Sporns, 2010).720

At the network level, the modularity quality index Q measures how well a given partition of a network

compartmentalizes its nodes into modules (Newman, 2006; Newman & Girvan, 2004). We use this

measure in conjunction with numerical simulations to quantify the extent of modularity at the network

level. Q is defined as:

Q =
∑
ij

[Aij −Nij] δ (zi, zj) , (13)

where Nij is the expected strength of connections between nodes i and j under the Newman-Girvan null721

model, which is designed to quantify assortativity (Newman, 2006). The Kronecker delta function equals722

1 when the two nodes belong to the same community, and equals zero otherwise.723

Numerical Simulations724

In order to generate networks with specific edge weight distributions and binary topologies, we make use725

of a 2× 2 block structure, and specify the binary density of each block separately. When the fraction of726

total edges inside of the on-diagonal blocks exceeds the fraction in the off-diagonal blocks, the network727

has an assortative community structure. By contrast, when the fraction of total edges in the off-diagonal728

blocks exceeds the fraction inside of the diagonal blocks, the network has a disassortative community729
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structure. If the fraction of edges inside of the block in the [1, 1] position is higher than the fractions for730

the three remaining blocks, the network has a core-periphery architecture. Upon fixing the value of the731

fraction of total edges inside of a block of interest, the remaining edges are distributed across the network732

such that the network’s binary density remains 0.1485, which is the mean density of structural brain733

networks from Data Set 1.734

For each edge, a corresponding weight value is drawn from a pre-specified distribution, either a normal735

distribution or a family of geometric distributions (see below). Edges drawn from the normal distribution736

are parameterized by µ = 0.5 and σ = 0.12 (Wu-Yan et al., 2018). The geometric distribution was737

chosen as a representative of the family of fat-tailed distributions that are ubiquitous in biological738

systems (Broido & Clauset, 2019; Sizemore et al., 2016; Wu-Yan et al., 2018). Geometric distributions739

are parameterized by a single number p, which represents the probability of success of a Bernoulli trial.740

Weights are then assigned to edges by incrementing the value of an edge until the first failure of a741

Bernoulli trial. Therefore, when p is closer to 0 edge weights tend to remain small, and when p is closer742

to 1 edge weights tend to take on large values.743

During the course of numerical simulations along a structural continuum from disassortative to744

assortative, or from disassortative to core-periphery, new networks are created at each stage with new745

binary densities for the four blocks. In the case of the continuum from disassortative to assortative746

networks, the fraction of total edges in the on-diagonal blocks is gradually altered. When this fraction is747

0, all network edges lie in the off-diagonal blocks giving the network a disassortative architecture. By748

contrast, when the fraction is 1 and all edges lie inside of the on-diagonal blocks, the network is perfectly749

modular and possesses an assortative mesoscale structure. In the case of the continuum from750

disassortative to core-periphery networks, the fraction inside of the [1, 1]-block is gradually altered, and751

the [2, 2]-block is left empty. When the fraction of total edges inside of the [1, 1]-block is 0, the network752

is disassortative, whereas when the fraction is 1, the network only has a single densely connected core.753

Alternatively, this process may be thought of as moving edges from the off-diagonal blocks to either the754

on-diagonal blocks, or the [1, 1]-block, depending on the structural continuum under consideration.755

At each stage along the continuum, 50 networks are created using the set of parameters that define the756

network topology of the ensemble. The process of creating ensembles is intended to ensure roughly757

similar degree distributions for networks across a structural continuum. In case of simulations for758
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networks with geometrically distributed edge weights, a further constraint is enforced. In order to align759

network topology to the network geometry, when drawing edge weights for the numerical simulations,760

we use multiple geometric distributions. For each block in the 2× 2 block adjacency matrix, p is chosen761

to be the desired binary density (fraction of total edges) corresponding to the block (Wu-Yan et al., 2018).762

We summarize the extent of modularity in each network in an ensemble along the continuum using the763

modularity quality index Q. Since networks are generated with partitions that are known a priori, we do764

not perform a re-partitioning of the networks in order to determine Q. We characterize the relationship765

between Q, and the fraction of edges inside of modules (as well as inside the core) in the Supplement.766
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CITATION DIVERSITY STATEMENT

Recent work in neuroscience and other fields has identified a bias in citation practices such that papers767

from women and other minorities are under-cited relative to the number of such papers in the field768

(Caplar, Tacchella, & Birrer, 2017; Chakravartty, Kuo, Grubbs, & McIlwain, 2018; Dworkin et al., 2020;769

Maliniak, Powers, & Walter, 2013; Thiem, Sealey, Ferrer, Trott, & Kennison, 2018). Here we sought to770

proactively consider choosing references that reflect the diversity of the field in thought, form of771

contribution, gender, race, geography, and other factors. We used automatic classification of gender based772

on the first names of the first and last authors (Dworkin et al., 2020), with code freely available at773

https://github.com/dalejn/cleanBib. Possible combinations for the first and senior authors774

include male/male, male/female, female/male, and female/female. After excluding self-citations to the775

first and senior authors of our current paper, the references in this work contain 58.6% male/male, 8%776

male/female, 18.4% female/male, 3.4% female/female, and 11.5% unknown citation categorizations. We777

look forward to future work that could help us better understand how to support equitable practices in778

science.779
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