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Abstract—The theory of structural controllability allows us
to assess controllability of a network as a function of its
interconnection graph and independently of the edge weights.
Yet, existing structural controllability results require the weights
to be selected arbitrarily and independently from one another,
and provide no guarantees when these conditions are not satisfied.
In this note we develop a new theory for structural controllability
of networks with symmetric, thus constrained, weights. First, we
show that network controllability remains a generic property
even when the weights are symmetric. Then, we characterize
necessary and sufficient graph-theoretic conditions for structural
controllability of networks with symmetric weights: a symmetric
network is structurally controllable if and only if it is structurally
controllable without weight constraints. Finally, we use our
results to assess structural controllability from one region of a
class of empirically-reconstructed brain networks.

Index Terms—Network controllability; structural controllabil-
ity; interconnected systems; graph theory; symmetric networks.

I. INTRODUCTION

The question of controllability of complex network systems
arising in engineering, social, and biological domains has been
the subject of intensive study in the last few years [1]–[3].
One key question motivating the investigation is to charac-
terize relationships and tradeoffs between the interconnection
structure of a network and its controllability [4]–[6]. To this
end, graphical tools from structural systems theory [7]–[10] are
typically preferred over algebraic controllability tests, which
suffer from numerical instabilities when the network cardinal-
ity grows, require exact knowledge of the network weights,
and are agnostic to the graph supporting the dynamics.

While the theory of structured systems and generic proper-
ties of linear systems is well-developed and understood [11],
all results assume the possibility of assigning the network
weights arbitrarily and independently from one another. In
fact, when this condition is violated, the conclusions drawn
from structural analysis may lead to incorrect results [7],
[12]. Unfortunately, it is often the case that this assumption
is violated in real networks due to physical, technological,
or biological reasons. For instance, the small-signal network-
preserving model of a power network contains a Laplacian
submatrix, whose entries are symmetric and satisfy linear con-
straints (row sums equal to zero) [13], [14]. Similar constraints
appear also when studying synchronization in networks of
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Kuramoto oscillators [15] and general systems with consensus
dynamics [16]. Novel theories and tools are needed to study
controllability of networks with constrained weights.

In this paper we focus on networks with symmetric weights
and derive graph-theoretic conditions for their structural con-
trollability from dedicated control inputs. While (group) sym-
metry has previously been found to be responsible for network
uncontrollability [17], [18], the question of how symmetric
edge weights affect structural controllability has not been
investigated, with the exception of [19]. In [19], however,
the proposed conditions for structural controllability of undi-
rected (symmetric) networks are implicit and based on the
generalized zero forcing sets to estimate the dimension of
the controllable subspace. Similarly, although the recent paper
[20] studies structural controllability for a class of networks
with constrained parameters, this class of network matrices
does not contain the set of symmetric matrices considered
in this work. Thus, the necessary and sufficient conditions
derived in this paper are the first graph-theoretic conditions for
structural controllability of networks with symmetric weights.

The contribution of this paper is three-fold. First, we show
that controllability of symmetric networks is a generic prop-
erty. That is, either the network is controllable for almost
all symmetric choices of interconnection weights, or it is
not controllable for all symmetric weights. This first result
can be easily extended to different classes of constraints
other than symmetry. Second, we show that a network with
symmetric weights is structurally controllable if and only if it
is spanned by a (symmetric) cactus rooted at the control node.
By comparing our result with those in [21], our analysis shows
that a network is structurally controllable with symmetric
weights if and only if it is structurally controllable with
unconstrained weights. Third, we use our results to show
that a class of (symmetric) brain networks reconstructed from
diffusion MRI data is structurally controllable from a single
dedicated control region. Finally, we note that, due to duality
between controllability and observability, the results of this
paper extend directly to the study of structural observability
of networks with symmetric weights and a dedicated sensor.

The rest of the paper is organized as follows. Section II
contains our network model and preliminary notions. Section
III contains our analysis and conditions for structural con-
trollability of networks with symmetric weights, and some
examples. Finally, Section IV contains an illustrative example
featuring brain networks, and Section V concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

We study controllability of symmetric network systems,
which are described by a weighted directed graph (digraph)
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G = (V, E), where V = {1, . . . , n} and E ⊆ V × V are the
vertex and edge sets, respectively, and a symmetric weighted
adjacency matrix A = [aij ] with aij = 0 if (i, j) 6∈ E and
aij ∈ R if (i, j) ∈ E . Let x ∈ Rn be the vector containing
the state of the network nodes over time, and let i ∈ V be
the control node. We let x evolve according to linear time-
invariant dynamics:

δ(x) = Ax+ biu, (1)

where δ(x) denotes the time derivative (resp. time shift)
operator for continuous-time (resp. discrete-time) dynamics,
and bi = ei, with ei the i-th canonical vector of dimension n.
Finally, let the controllability matrix of (1) be

C(A, bi) =
[
bi Abi · · · An−1bi

]
, (2)

and recall that the network (1) is controllable if and only if
its controllability matrix C(A, bi) is invertible [22].

Assessing controllability of network systems is numerically
difficult because the controllability matrix typically becomes
ill-conditioned as the network cardinality increases; e.g., see
[4], [23]. Because different controllability tests suffer similar
numerical difficulties, a convenient tool to study controllability
of networks is to resort to the theory of structural systems. To
formalize this discussion, let aE = {aij : (i, j) ∈ E}ordered
denote the set of nonzero entries of A in lexicographic order,
and notice that the determinant det(C(A, bi)) = φ(aE) is
a polynomial function with variables aE . From the above
reasoning, the network (1) is uncontrollable when the weights
aE are chosen so that φ(aE) = 0. Let S contain the choices
of weights that render the network (1) uncontrollable; that is,

S = {z ∈ Rd : φ(z1, . . . , zd) = 0}, (3)

where d = |E| = |aE |. Notice that S describes an algebraic
variety of Rd [24]. This implies that controllability of (1) is a
generic property, as it fails to hold on an algebraic variety of
the parameter space [24]–[26]. Consequently, when assessing
controllability of the network (1) as a function of the weights,
only two mutually exclusive cases are possible:

(i) either there is no choice of weights aij , with aij = 0 if
(i, j) 6∈ E , rendering the network (1) controllable; or

(ii) the network (1) is controllable for all choices of weights
aij , with aij = 0 if (i, j) 6∈ E , except, possibly, those
belonging to the proper algebraic variety S ⊂ Rd.1

Loosely speaking, if one can find a choice of weights such
that the network (1) is controllable, then almost all choices of
weights yield a controllable network. In this case, the network
is said to be structurally controllable [7], [21], [27].

Classical results on structural controllability cannot be di-
rectly applied to networks where the weights are constrained
[7], [12]. In fact, these results assume that the network weights
can be selected arbitrarily and independently from one another,
a condition that cannot be satisfied, for instance, when the
weights need to be symmetric. In this note we overcome this
limitation, and extend the results on structural controllability
to symmetric networks. In particular we show that a network

1The variety S of Rd is proper when S 6= Rd [24].

is structurally controllable with symmetric weights if and only
if it is structurally controllable with unconstrained weights.

III. STRUCTURAL CONTROLLABILITY OF SYMMETRIC
NETWORKS

In this section we derive necessary and sufficient graph-
theoretic conditions for structural controllability of networks
with symmetric weights. We proceed as follows. First, we
show that network controllability remains a generic prop-
erty when the weights are symmetric. Second, we provide
conditions to construct controllable networks with symmetric
weights. Finally, combining these results yields conditions for
structural controllability of networks with symmetric weights.

Theorem 3.1: (Symmetry and genericity) Controllability of
the network (1) with symmetric matrix A is a generic property.

Proof: Let d = |E| and ds = |{i : (i, i) ∈ E}|.
Notice that a network with symmetric weights is uniquely
specified by (d + ds)/2 parameters, for instance, by the set
a′E = {aij : (i, j) ∈ E , i ≤ j}ordered in lexicographic
order. Further, because of the symmetry constraint, the de-
terminant of the controllability matrix of (1) is a polynomial
function φ′(a′E), which can be obtained, for instance, from
the determinant det(C(A, bi)) by substituting aij with aji
whenever i > j. Thus, even for symmetric networks, the
determinant of the controllability matrix is a polynomial
function of the network weights, and the weights that render
the network uncontrollable define the algebraic variety P =
{z ∈ R(d+ds)/2 : φ′(z1, . . . , z(d+ds)/2) = 0}. To conclude,
either P = R(d+ds)/2, and the network is uncontrollable for
all choices of symmetric weights, or P is a proper algebraic
variety of R(d+ds)/2, and the network is controllable for all
choices of symmetric weights except, if any, those belonging
to the set P of zero Lebesgue measure [24].

Theorem 3.1 shows that controllability remains a generic
property even when the weights are constrained to be sym-
metric. This result will be key in the derivation of our condi-
tions for structural controllability of networks with symmetric
weights. In fact, because controllability remains a generic
property, it will be sufficient to show that a network is control-
lable for a specific choice of symmetric weights to guarantee
that controllability holds for almost all choices of weights.
In the next example we illustrate that the set of symmetric
weights preventing controllability forms an algebraic variety.

Example 1: (Structural controllability with symmetric
weights) Consider a network with symmetric adjacency matrix

A =

 0 a12 a13

a12 0 a23

a13 a23 0

 , (4)

and input vector b1 =
[
1 0 0

]T
. From (2), the controllabil-

ity matrix of the pair (A, b1) is

C(A, b1) =

1 0 a2
12 + a2

13

0 a12 a13a23

0 a13 a12a23

 , (5)

with determinant det(C(A, b1)) = a23a
2
12 − a23a

2
13. Thus,

the network is controllable (i.e., det(C(A, b1)) 6= 0) for all
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Fig. 1. Algebraic variety defined by a23a212−a23a213 = 0, which determines
the weights for which the network in Example 1 is not controllable. The
network is controllable for all weights outside of this algebraic variety.

symmetric choices of weights a12, a13, and a23, except those
lying on the proper algebraic variety shown in Fig. 1 and
defined by the equation a23a

2
12 − a23a

2
13 = 0. �

Remark 1: (Structural controllability of consensus systems)
A multi-agent consensus network with leader nodes is de-
scribed by a linear time-invariant dynamical system, where
the nonzero entries of A have a specified sign and the sums
along the rows of A equal to a constant (1 for discrete-time
networks, and 0 in the case of continuous-time networks)
[28], [29]. Theorem 3.1 can be easily extended to include
constraints on the sign of the entries of A and on their sums.
In fact, if

∑n
j=1 aij = c, for some constant c ∈ R, then2

ai1 = c − ∑n
j=2 aij can be substituted in the polynomial

det(C(A, bi)), showing that the set of parameters preventing
controllability forms an algebraic variety of the free parameter
space, and that controllability remains a generic property
despite the constraints. Similarly, when some entries have a
specified sign or need to assume identical values, the set of
parameters preventing controllability can be shown to be a
subset of an algebraic variety, which either equals the set of
feasible parameters, or remains of zero Lebesgue measure. �

Example 2: (Structural controllability of consensus sys-
tems) Consider a linear discrete-time consensus system with
node 1 as a leader and adjacency matrix

A =

 0 a12 a13

a21 0 a23

a31 a32 0

 .
Because the rows of A need to sum to 1, it is possible to
rewrite 3 parameters as a function of the others. For instance,
rewrite a13 = 1 − a12, a23 = 1 − a21, and a32 = 1 − a31.
By doing so, the determinant det(C(A, b1)) = −a2

21a31 +
a2

21 + a21a
2
31 − a2

31, and the set of weights that make such
determinant vanish defines a proper algebraic variety of the
parameter space R3. �

We next introduce some graph-theoretic notions [7], [30].
Given a digraph, a path is an ordered sequence of nodes such
that any pair of consecutive nodes in the sequence is a directed
edge of the digraph. A digraph is strongly connected if there
exists a directed path from any node to any other node. Fur-
thermore, given the digraphs G1, . . . ,Gm, let G =

⋃m

i=1Gi be
the connected digraph (V, E) defined as follows: V =

⋃m
i=1 Vi

2If ai1 = 0, then select a different nonzero entry.

u G1
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Fig. 2. A sym-cactus G =
⋃ 5

i=1Gi rooted at the control node. Sym-cycles
G2, . . . ,G5 are highlighted with different colors. Notice that G1 is not a sym-
cycle because it comprises 1 node without a self-loop. See Definition 2.

and E =
⋃m
i=1 Ei ∪ Ē , where |Ē | = 2(m − 1) and, for all

i ∈ {2, . . . ,m}, there is a unique pair of edges (pi, qi) ∈ Ē
and (qi, pi) ∈ Ē with pi ∈ Vi and qi ∈

⋃i−1
j=1 Vj . Finally,

we present some definitions that are inspired by [21] and will
be used to derive our structural controllability conditions for
networks with symmetric weights.

Definition 1: (Sym-cycle) A sym-cycle is a strongly con-
nected digraph with n ≥ 1 nodes, edge set {(i, j) : |i− j| =
1} ∪ {(1, n), (n, 1)}}, and symmetric weights aij = aji. �

From Definition 1, the adjacency matrix of a sym-cycle is

A =

{
aij 6= 0 if |i− j| = 1 or (i, j) ∈ {(1, n), (n, 1)},
aij = 0 otherwise.

(6)

Definition 2: (Sym-cactus) A sym-cactus is a strongly
connected digraph G = (V, E) defined as G =

⋃m

i=1Gi and
satisfying the following properties:

(i) G1 = (V1, E1) is a sym-cycle if |V1| > 1 (if |V1| = 1,
we allow G1 to contain no edges, that is, E1 = ∅),

(ii) Gi = (Vi, Ei) is a sym-cycle for every i ∈ {2, . . . ,m},
(iii) the node sets satisfy Vi ∩ Vj = ∅, whenever i 6= j. �

Notice that, if |V1| = 1, the graph G1 in Definition 2 can either
be a sym-cycle (thus having a self-loop), or a node without
self-loop.

Remark 2: (Stem, buds, cactus, and sym-cactus) Our
definitions of sym-cycle and sym-cactus are compatible with
the classic notions of stem, bud, and cactus as defined in [21].
In particular, because we focus on networks with symmetric
weights, stems, buds, and cacti [21] become equivalent to
interconnected sym-cycles. �

We say that a graph G = (V, E) is spanned by G′ = (V ′, E ′)
if V ′ = V and E ′ ⊆ E . Further, the sym-cactus G =

⋃m

i=1Gi
is rooted at the node i if i is a node of G1. Fig. 2 illustrates
the definitions of sym-cycle and sym-cactus rooted at node i.

The following lemma shows that every sym-cycle is struc-
turally controllable from any node. That is, for almost all
symmetric choices of network weights, every cycle network is
controllable independently of the location of the control node.

Lemma 3.2: (Every sym-cycle is structurally controllable)
Let A ∈ Rn×n be the adjacency matrix of a sym-cycle. The
pair (A, bi) is structurally controllable for all i ∈ {1, . . . , n}.
Proof: Owing to Theorem 3.1 we need to show that, for
every sym-cycle and control node, there exists a choice of
weights rendering the network controllable. Without affecting
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generality, we assume that the control node is i = 1 (if
i 6= 1, simply apply a similarity transformation PAPT via
a permutation matrix P to reorder the nodes as desired).

If n ≤ 2, the network is clearly controllable. For n > 2,
partition the matrix A as

A =

[
0 A12

A21 A22

]
,

where A12 ∈ R1×(n−1), A21 ∈ R(n−1)×1 and A22 ∈
R(n−1)×(n−1). Notice that A22 is a tridiagonal matrix.

Suppose that the pair (A, b1) is not structurally controllable.
Then, for all choices of weights, there exists an eigenvector3

v of A such that vTb1 = 0 [22]. Thus, v = [v1, v2, . . . , vn]T =
[v1, v̄]T = [0, v̄]T, and the eigenproblem Av = λv becomes[

0 A12

A21 A22

] [
0
v̄

]
=

[
0
λv̄

]
. (7)

From (7), the pair (A, b1) is uncontrollable if and only if
A22 has an eigenvector v̄ that lies in the null space of A12.
Equivalently, A22v̄ = λv̄ and A12v̄ = a12v̄1 + a1nv̄n−1 = 0.

Assign all the weights of A22 as 1 (or any other constant),
and notice that A22 is a Toeplitz tridiagonal matrix with eigen-
vectors v̄i = [v̄ij ] =

[
sin
(
jiπ
n

)]
, for i, j ∈ {1, . . . , n− 1} [31,

Example 7.2.5]. Finally, to ensure controllability of (A, b1),
select a12 and a1n such that, for all i ∈ {1, . . . , n− 1},

a12 sin

(
iπ

n

)
+ a1n sin

(
(n− 1)iπ

n

)
6= 0. (8)

Notice that (8) can be ensured by |a12| 6= |a1n|. In fact,

(i) for i odd, sin
(
iπ
n

)
= sin

(
(n−1)iπ

n

)
because

π − iπ

n
+ 2kπ − (n− 1)iπ

n
= (2k + 1− i)π = 0,

by selecting k = (i− 1)/2;
(ii) for i even, sin

(
iπ
n

)
= − sin

(
(n−1)iπ

n

)
because

(n− 1)iπ

n
− 2kπ +

iπ

n
= (i− 2k)π = 0,

by selecting k = i/2.
This concludes the proof.

Lemma 3.2 implies that every sym-cycle is controllable for
almost every symmetric choice of weights. In particular, the
following choice of weights yields a controllable sym-cycle
from node i (see the proof of Lemma 3.2 and Eq. (8)):

A =

{
aij = a, if |i− j| = 1, and
a1n = an1 = b, with |a| 6= |b|, (9)

for some nonzero constants a and b. We next show that sym-
cacti are also a fundamentally controllable structure contained
in every structurally controllable symmetric network.

Theorem 3.3: (Structural controllability of symmetric net-
works with one control node) The network G with control
node i is structurally controllable with symmetric weights if
and only if it is spanned by a sym-cactus rooted at i.

3Since A = AT, we do not distinguish between left and right eigenvectors.

The proof of Theorem 3.3 is postponed to the Appendix. In
Theorem 3.3 we show that a necessary and sufficient condi-
tion for structural controllability of networks with symmetric
weights is the existence of a spanning sym-cactus rooted at the
control node. This result implies that the symmetry constraint
on the network weights does not prevent controllability if
the same unconstrained network is structurally controllable. It
should be noticed that a sym-cactus is not, in general, strongly
structurally controllable [32]. That is, there exist choices of
weights that render a sym-cactus uncontrollable. We next
illustrate a systematic procedure to construct an uncontrollable
sym-cactus composed of controllable sym-cycles.

Example 3: (Uncontrollable sym-cactus) Consider the sym-
cactus G = G1∪G2 with control node 1 and adjacency matrix

A =


0 1 2 0 0 0
1 0 1 c2 0 0
2 1 0 0 0 0
0 c2 0 0 3 −4
0 0 0 3 0 3
0 0 0 −4 3 0

 ,

where the diagonal blocks are the adjacency matrices of the
sym-cycles G1 and G2, and the remaining blocks denote the
interconnection between G1 and G2 with weight c2. It can be
verified that λ0 = −2 is a transmission zero of the system [22]

δ(x) =

[
0 1
1 0

]
x+

[
1
0

]
,

y =
[
1 2

]
x,

and that the pair (A, b1) is uncontrollable when c2 satisfies
 2 3 −4

3 2 3
−4 3 2

−1

1,1

[
2 1
1 2

]−1

2,2


− 1

2

= 6.292853089,

where [M ]−1
i,i denotes the i-th diagonal entry of the matrix

M−1. The reader is referred to the proof of Theorem 3.3,
Case 2.a, for a detailed derivation of this result. �

Following the above discussion and the derivation in the
proof of Theorem 3.3, we next describe an algorithm to assign
the weights of a sym-cactus to guarantee controllability. To this
aim, let spec(M) denote the spectrum of the matrix M , and
notice that the adjacency matrix A of the sym-cactus mbox
G =

⋃m

i=1Gi can be written recursively as (k = 2, . . . ,m)

Ak =

[
Ak−1 ckeqke

T
1

cke1e
T
qk

Hk

]
, (10)

where Hk is the adjacency matrix of Gk, A1 = H1, Am = A,
and ck 6= 0, for some index qk ∈ {1, . . . ,

∑k−1
j=1 |Vj |}.4 Let

Ak−1 =

[
A11 A12

A21 A22

]
, (11)

where A11 is a scalar, and let Zk = {λ : A12(A22 −
λI)−1eqk = 0} be the zeros of the single-input single-output
system (A22, eqk , A12). Then, the pair (A, b1) can be made

4This recursive construction follows directly from Definition 2.
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Algorithm 1: Design of controllable sym-cactus
Input : {Hk : k = 1, . . . ,m, Hk satisfying (6)};
Output : Controllable pair (A, b1), with A adjacency matrix

of the sym-cactus G =
⋃m

i=1Gi rooted at 1;

1 Select the weights of H1 as in (9);
2 Set A1 = H1;

for k = 2 : m do
3 Partition Ak−1 according to (11) ;

4 Select qk ∈ {1, . . . ,
∑k−1
j=1 |Vj |};

5 Select the weights of Hk as in (9) and so that
spec(Hk) ∩ spec(A22) = ∅;

6 Compute Z = {λ : A12(A22 − λI)−1eqk = 0};
7 Select ck 6= cλ for every λ ∈ Z , where

cλ =
([
Hk − λI

]−1

1,1

[
A22 − λI

]−1

qk,qk

)− 1
2 ;

8 Generate Ak as in (10);

9 return A = Am. The pair (A, b1) is controllable;

controllable by selecting the weights in Gk to recursively
satisfy the following conditions:

(i) (Hk, b
1) is controllable (see (9) for a choice of weights),

(ii) spec(Hk) ∩ spec(A22) = ∅, and
(iii) for all λ ∈ Zk, c−2

k 6=
[
Hk − λI

]−1

1,1

[
A22 − λI

]−1

qk,qk
,

A procedure to construct a controllable sym-cactus is summa-
rized in Algorithm 1, whose complexity is linear in the number
of sym-cycles and cubic in their dimension.

Remark 3: (Structural controllability of symmetric net-
works with multiple dedicated control nodes) Theorem 3.3
can be extended to the case of multiple dedicated con-
trol nodes; that is, when the input matrix in (1) satisfies
B =

[
ec1 · · · ecm

]
and {c1, . . . , cm} ⊆ V is the set of

control nodes. In particular, a network G with m control
nodes {c1, . . . , cm} is structurally controllable with symmetric
weights if and only if it is spanned by a disjoint union of
sym-cacti rooted at the nodes {c1, . . . , cm}. The necessity of
this result follows directly from [33, Theorem 1], while its
sufficiency is obtained by applying the same steps as in the
proof of Theorem 3.3 to each disjoint cactus. �

We conclude this section with an example of structural
controllability in the case of multiple dedicated control nodes.

Example 4: (Structural controllability with symmetric
weights and multiple dedicated control nodes) Consider the
network in Fig. 3(a) with adjacency matrix

A =



0 0 a13 0 0 0 0
0 0 a23 a24 0 0 0
a13 a23 0 a34 a35 0 0
0 a24 a34 0 0 0 0
0 0 a35 0 0 a56 a57

0 0 0 0 a56 0 a67

0 0 0 0 a57 a67 0


and control vector b1 = e1. The pair (A, b1) is structurally
controllable because of Theorem 3.3. In fact, there exists a
sym-cactus G =

⋃ 3

i=1Gi that spans the network and is rooted
at 1. Consider now the network in Fig. 3(c) with adjacency

u1 1

23

4
5

6 7 u2

(a)

G1
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G2

G3

u1

u2

(b)

u1 1

23

4
5

6 7 u2

(c)

G5

G1
<latexit sha1_base64="abWs09r82AIczPiJSq+sGb/ccJQ=">AAAB83icdVDLSsNAFL3xWeur6tLNYBFclaQtSZdFF7qsYB/QhDKZTtqhkwczE6GE/oYbF4q49Wfc+TdO0goqemDgcM693DPHTziTyjQ/jLX1jc2t7dJOeXdv/+CwcnTck3EqCO2SmMdi4GNJOYtoVzHF6SARFIc+p31/dpX7/XsqJIujOzVPqBfiScQCRrDSkuuGWE0J5uh6ZI0qVbPWbLRsx0EFcez6kth2A1k1s0AVVuiMKu/uOCZpSCNFOJZyaJmJ8jIsFCOcLspuKmmCyQxP6FDTCIdUelmReYHOtTJGQSz0ixQq1O8bGQ6lnIe+nswzyt9eLv7lDVMVtLyMRUmqaESWh4KUIxWjvAA0ZoISxeeaYCKYzorIFAtMlK6prEv4+in6n/TqNUvz22a1fbmqowSncAYXYIEDbbiBDnSBQAIP8ATPRmo8Gi/G63J0zVjtnMAPGG+fviqRfg==</latexit><latexit sha1_base64="abWs09r82AIczPiJSq+sGb/ccJQ=">AAAB83icdVDLSsNAFL3xWeur6tLNYBFclaQtSZdFF7qsYB/QhDKZTtqhkwczE6GE/oYbF4q49Wfc+TdO0goqemDgcM693DPHTziTyjQ/jLX1jc2t7dJOeXdv/+CwcnTck3EqCO2SmMdi4GNJOYtoVzHF6SARFIc+p31/dpX7/XsqJIujOzVPqBfiScQCRrDSkuuGWE0J5uh6ZI0qVbPWbLRsx0EFcez6kth2A1k1s0AVVuiMKu/uOCZpSCNFOJZyaJmJ8jIsFCOcLspuKmmCyQxP6FDTCIdUelmReYHOtTJGQSz0ixQq1O8bGQ6lnIe+nswzyt9eLv7lDVMVtLyMRUmqaESWh4KUIxWjvAA0ZoISxeeaYCKYzorIFAtMlK6prEv4+in6n/TqNUvz22a1fbmqowSncAYXYIEDbbiBDnSBQAIP8ATPRmo8Gi/G63J0zVjtnMAPGG+fviqRfg==</latexit><latexit sha1_base64="abWs09r82AIczPiJSq+sGb/ccJQ=">AAAB83icdVDLSsNAFL3xWeur6tLNYBFclaQtSZdFF7qsYB/QhDKZTtqhkwczE6GE/oYbF4q49Wfc+TdO0goqemDgcM693DPHTziTyjQ/jLX1jc2t7dJOeXdv/+CwcnTck3EqCO2SmMdi4GNJOYtoVzHF6SARFIc+p31/dpX7/XsqJIujOzVPqBfiScQCRrDSkuuGWE0J5uh6ZI0qVbPWbLRsx0EFcez6kth2A1k1s0AVVuiMKu/uOCZpSCNFOJZyaJmJ8jIsFCOcLspuKmmCyQxP6FDTCIdUelmReYHOtTJGQSz0ixQq1O8bGQ6lnIe+nswzyt9eLv7lDVMVtLyMRUmqaESWh4KUIxWjvAA0ZoISxeeaYCKYzorIFAtMlK6prEv4+in6n/TqNUvz22a1fbmqowSncAYXYIEDbbiBDnSBQAIP8ATPRmo8Gi/G63J0zVjtnMAPGG+fviqRfg==</latexit><latexit sha1_base64="abWs09r82AIczPiJSq+sGb/ccJQ=">AAAB83icdVDLSsNAFL3xWeur6tLNYBFclaQtSZdFF7qsYB/QhDKZTtqhkwczE6GE/oYbF4q49Wfc+TdO0goqemDgcM693DPHTziTyjQ/jLX1jc2t7dJOeXdv/+CwcnTck3EqCO2SmMdi4GNJOYtoVzHF6SARFIc+p31/dpX7/XsqJIujOzVPqBfiScQCRrDSkuuGWE0J5uh6ZI0qVbPWbLRsx0EFcez6kth2A1k1s0AVVuiMKu/uOCZpSCNFOJZyaJmJ8jIsFCOcLspuKmmCyQxP6FDTCIdUelmReYHOtTJGQSz0ixQq1O8bGQ6lnIe+nswzyt9eLv7lDVMVtLyMRUmqaESWh4KUIxWjvAA0ZoISxeeaYCKYzorIFAtMlK6prEv4+in6n/TqNUvz22a1fbmqowSncAYXYIEDbbiBDnSBQAIP8ATPRmo8Gi/G63J0zVjtnMAPGG+fviqRfg==</latexit>

G4 u2

u1

G2

(d)

Fig. 3. The networks considered in Example 4. (a) The network of the pair
(A, b1). (b) The network is structurally controllable because it is spanned by a
sym-cactus rooted at 1. (c) The network of the pair (Ã, b1) is not structurally
controllable with only one control input at node 1. (d) By adding a control
input at node 7, the network recovers structural controllability because it is
spanned by a disjoint union of sym-cacti rooted at nodes 1 and 7, respectively.

matrix Ã = A and disconnect nodes 6 and 7; that is, a67 = 0.
The pair (Ã, b1) is not structurally controllable because there
is no sym-cactus that spans the network and is rooted at
1. However, by connecting an additional input at node 7,
it is possible to span the network with a disjoint union of
sym-cacti. That is, there exist distinct sym-cacti G1∪G2 and
G4∪G5 that span the network and are rooted at 1 and 7,
respectively. Therefore, by setting b2 = e7, the pair (Ã, [b1 b2])
is structurally controllable with symmetric weights. �

IV. APPLICATION TO STRUCTURAL BRAIN NETWORKS

We apply our analysis to a class of structural brain networks
reconstructed from diffusion magnetic resonance imaging
(MRI) data,5 where nodes correspond to well-known brain
regions and edges correspond to white matter connections
between them [35]. The network dynamics can be derived
from the linearization of a general noise-free Wilson-Cowan
system [36] and read as δ(x) = Ax + biu, where A is a
symmetric matrix that represents the anatomical connectivity
of the brain. Further, u : N→ R is the control input applied to
the i-th brain region, and x : N→ Rn is the vector containing
the state of the brain regions over time. Examples of state
values range from the magnitude of electrical activity [37]
to the quantity of oxyhemoglobin and deoxyhemoglobin in
the hemodynamic response [38]. Although brain dynamics

5Diffusion magnetic resonance images were acquired for a total of eight
subjects in triplicate (mean age 27 ± 5 years, two female, two left handed),
and at each scanning session a T1-weighted anatomical scan was acquired.
For each subject, n = 234 regions were registered as areas of interest [34].
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Fig. 4. Axial view of the structural brain network and a spanning Hamiltonian
path. Each node represents a brain region of the anatomical scans. The
Hamiltonian path starts from the region representing the control node (brain
stem). Regions are plotted according to the mean location of voxels in each
of the 234 parcels in the Lausanne atlas [35] and averaged over the cohort of
healthy adult subjects. This figure was obtained with BrainNet Viewer [42].

may be nonlinear at the micro-scale, the study of linear
network models for macro-scale neural dynamics has been
validated in several studies (see e.g. [39]), and has given
access to theoretical and practical tools that are particularly
useful around an operating point [34], [40]. Controllability of
this class of networks has been examined in different studies,
including [34], via numerical controllability tests. Yet, because
of the large cardinality of these networks, most controllability
tests suffer from numerical instabilities, sometimes leading to
competing conclusions [34], [41]. Further, because typical dif-
fusion MRI techniques produce symmetric adjacency matrices,
the graphical investigation of structural controllability for this
type of networks was, up to now, not possible.

As illustrated in Fig. 4, the brain networks in our dataset
are spanned by a Hamiltonian path,6 which is a special case
of a sym-cactus, starting from the control node. Theorem
3.3 implies that, despite having symmetric weights, networks
reconstructed from diffusion MRI data are structurally control-
lable from a single brain region, thus controllable for almost
every symmetric choice of weights.

V. CONCLUSION

In this note we derive necessary and sufficient graph-
theoretic conditions for structural controllability of networks
with symmetric weights and one control node. Because
weights need to be symmetric, classic results from structural
systems theory cannot be directly applied. Surprisingly, we
show that network controllability remains a generic property
even when the weights are symmetric, and that a network with
symmetric weights is structurally controllable if and only if its
unconstrained equivalent network is structurally controllable;
that is, if and only if it is spanned by a (symmetric) cactus.

While our analysis focuses on symmetric weights and a
single control node, as discussed in Remark 1 and 3, our results
extend directly to other classes of parameter constraints and to
the case of multiple dedicated control nodes. The case of non-
dedicated control nodes, however, requires different definitions
and reasoning, and it is left as the subject of future research.

6A path in a graph is Hamiltonian if it visits all the vertices exactly once.

APPENDIX

We now prove some instrumental results and Theorem 3.3.
Lemma A.1: (Controllability of subsystems) Consider the

network G = (V, E) with control nodes K ⊂ V , input matrix
BK =

[
e1 . . . em

]
, and adjacency matrix A partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ Rm×m and A22 ∈ R(n−m)×(n−m). If the pair
(A,BK) is controllable, then (A22, A21) is also controllable.

Proof: If (A22, A21) is not controllable, then there exists an
eigenvector v2 associated with λ ∈ spec(A22) satisfying [22]

vT2
[
A21 A22 − λI

]
= 0.

Let vT =
[
0T vT2

]T
, and notice that[

0T vT2
] [A11 − λI A12

A21 A22 − λI

]
= 0.

Then, v is a left eigenvector of A associated with the eigen-
value λ ∈ spec(A), and it satisfies vTBK = 0. This implies
that (A,BK) is not controllable, and concludes the proof.

Lemma A.2: (Eigenspace of perturbed matrix) Let A ∈
Rn×n be a symmetric matrix, and let ∆ = eie

T
i , with i ∈

{1, . . . , n}. Then, λ ∈ spec(A+ c∆) for all c ∈ R if and only
if there exists v 6= 0 satisfying (A− λI)v = 0 and ∆v = 0.

Proof: (If) The sufficiency of the statement follows by noting
that (A − λI + c∆)v = (A − λI)v = 0. (Only if) Let the
vectors vc 6= 0 and v0 6= 0 satisfy vTc (A− λI + c∆) = 0 and
(A − λI)v0 = 0, respectively. Then, for all c ∈ R, vTc (A −
λI + c∆)v0 = cvTc ∆v0 = 0. Let vc̄ denote the vector vc with
c = c̄ 6= 0. Notice that, because ∆ = eie

T
i , vc̄,iv0,i = 0, where

vc̄,i and v0,i denote the i-th element of vc̄ and v0, respectively.
Let v = v0 if v0,i = 0, and v = vc̄ otherwise. To conclude,
notice that v 6= 0, ∆v = 0, and (A− λI)v = 0.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3: (Only if) Assume that G is structurally
controllable from the node i. From [21], there must exist a
directed cactus D rooted at i that spans G. Because G has
symmetric weights, this also implies the existence of a sym-
cactus, which is obtained by adding edges to D to make it
symmetric. See Remark 2 for a discussion of directed and
symmetric cacti.

(If) Let the network be spanned by the sym-cactus
G =

⋃m

i=1Gi rooted at the control node. Let Ak be the ad-
jacency matrix of

⋃ k

i=1Gi, k ≤ m. Without loss of generality,
we assume bi = b1 (if bi 6= b1, reorder the nodes). We will
construct a controllable realization (Am, b

1), thus proving that
the original network admits a controllable realization. The
claimed statement then follows from Theorem 3.1.

We proceed by induction. In the base step, Lemma 3.2
concludes on the controllability of the pair (A1, b

1). In the
inductive step, we assume that (Ak−1, b

1) is controllable, and
show that (Ak, b

1) is controllable. Let Ak be partitioned as

Ak =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (12)
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where A11 ∈ R, A22 ∈ R(n1−1)×(n1−1), and A33 ∈ Rn2×n2 ,
with n1 and n2 being the dimension of Ak−1 and the differ-
ence between the dimension of Ak and Ak−1, respectively.
Notice that A33 corresponds to Hk in decomposition (10). We
show that Ak has no eigenvector v of the form

v =
[
0 vT1 vT2

]T
, (13)

which, by the eigenvector test, implies that (Ak, b
1) is con-

trollable. Due to the definition of the operator
⋃

(a single
connection between adjacent sym-cycles) and by exploiting
the decomposition of Ak in (10), we have that either

(1) A32 = AT
23 = 0 and A31 = AT

13 = cke1 6= 0, or
(2) A31 = AT

13 = 0 and A32 = AT
23 = cke1e

T
qk
6= 0,

where e1, eqk are canonical vectors of appropriate dimensions.
Case (1) Consider the eigenproblem Akv = λv. For v to

be of the form (13), λ must be an eigenvalue of both A22

and A33. Therefore, by choosing the weights in A33 such that
spec(A33)∩spec(A22) = ∅, we obtain a controllable (Ak, b

1).
Notice that such a choice of weights always exists because
A33 has generically full rank.7 For instance, given a full rank
realization of A33, we can multiply A33 by a suitable constant
c ∈ R to guarantee that spec(cA33) ∩ spec(A22) = ∅.

Case (2) Define the matrix P (λ) as

P (λ) =

 A12 0
A22 − λI A23

A32 A33 − λI

 .
Due to (13), the eigenproblem Akv = λv reduces to

P (λ)

[
v1

v2

]
= 0. (14)

We will show that P (λ) is full rank for all λ, thus ensuring
that an eigenvector as (13) cannot exist. As in Case (1), we
choose weights in A33 such that spec(A33)∩ spec(A22) = ∅.
Thus, we consider 3 cases:
(2.a) λ 6∈ spec(A22) ∪ spec(A33),
(2.b) λ ∈ spec(A22), and
(2.c) λ ∈ spec(A33).

Case (2.a) Because A22 − λI and A33 − λI are invertible,

Rank (P (λ))

= Rank

(
P (λ)

[
(A22 − λI)−1 0

0 (A33 − λI)−1

])

= Rank

A12(A22 − λI)−1 0
I ckT3

ckT2 I


where T2 = e1e

T
qk

(A22−λI)−1, and T3 = eqke
T
1 (A33−λI)−1.

Notice that, for any vector v3 of appropriate dimension we
have T3v3 = αeqk , for some value α dependent on λ and A33.
Similarly, T2v2 = βe1, for some value β dependent on λ and
A22. Further, for any fixed λ, there exists a value ck such that[

I ckT3

ckT2 I

]
(15)

7The graph with adjacency matrix A33 contains a set of n2 edges, for
instance M = {(1, 2), (2, 3), . . . , (n2 − 1, n2), (n2, 1)}), where no two
edges point to the same node. Such set of edges is called a matching of size
n2, and its existence guarantees that A33 is generically full rank [43, §1.1.2].

is invertible. In fact, elementary column operations reveal that

Rank

([
I ckT3

ckT2 I

])
= Rank

([
I − c2kT3T2 ckT3

0 I

])
.

Notice that T3T2 is a rank-1 matrix and that spec(I−T3T2) =
{1, . . . , 1, 1 − c2kλ̃}, where λ̃ is the only nonzero eigenvalue
of T3T2. Thus, (15) is invertible whenever c2k 6= λ̃−1.

Let Z = {λ : A12(A22 − λI)−1eqk = 0}, and let ck
be such that (15) is invertible for all λ ∈ Z . Then, P (λ) is
also full rank for all λ ∈ Z . Next, assume by contradiction
that P (λ) loses rank for some value λ̄ 6∈ Z . Then, there exist
nonzero w2 and w3 such thatA12(A22 − λ̄I)−1 0

I ckT3

ckT2 I

[w2

w3

]
= 0.

We have w2 = −ckT3w3 = −ckαeqk , and ckαA12(A22 −
λ̄I)−1eqk = 0. Notice that α 6= 0. Otherwise, T3w3 = 0
and, consequently, w2 = 0 and w3 = 0. Further, A12(A22 −
λ̄I)−1eqk 6= 0 because λ̄ 6∈ Z . We conclude that, when ck is
such that (15) is invertible for all λ ∈ Z , P (λ) is full rank.

Case (2.b) Because A33 − λI is invertible,

Rank (P (λ)) = Rank

(
P (λ)

[
I 0
0 (A33 − λI)−1

])

= Rank

 A12 0
A22 − λI ckT3

A32 I

 ,

where T3 = eqke
T
1 (A33 − λI)−1. By means of elementary

column operations we obtain

Rank (P (λ)) = Rank

 A12 0
A22 − λI − ckT3A32 ckT3

0 I

 .

Notice that, if λ 6∈ spec(A22 − ckT3A32) for some ck, then
P (λ) can be made full rank by a selection of ck. Instead,
if λ ∈ spec(A22 − λI − ckT3A32) for all values of ck,
then, due to Lemma A.2, (A22 − λI − ckT3A32)v = 0, for
some fixed eigenvector v and for all ck. Because (Ak, b

1)
is controllable by the induction hypothesis, so is the pair
(A22, A21) = (A22, A

T
12) by Lemma A.1. We conclude that

A12v 6= 0. This implies that, for all values of ck, the submatrix[
A12

A22 − λI − ckT3A32

]
is full rank and, consequently, so is P (λ).

Case (2.c) Because A22 − λI is invertible,
Rank (P (λ))

= Rank

(
P (λ)

[
(A22 − λI)−1 0

0 I

])

= Rank

A12(A22 − λI)−1 0
I A23

ckT2 A33 − λI

 ,

where T2 = e1e
T
qk

(A22−λI)−1. By means of elementary row
operations we obtain that Rank (P (λ)) equals

Rank

A12(A22 − λI)−1 0
I A23

0 A33 − λI − ckA23T2

 .
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Notice that, if λ 6∈ spec(A33 − ckA23T2) for some ck, then
P (λ) can be made full rank by a selection of ck. Instead, if
λ ∈ spec(A33−λI − ckA23T2) for all values of ck, then, due
to Lemma A.2, (A33 − λI − ckA23T2)v = 0, for some fixed
eigenvector v and for all ck. Because (A33, b

i) can be made
controllable for all indices i due to Lemma 3.2, the submatrix[

A23

A33 − λI − ckA23T2

]
(16)

is full rank. To make P (λ) full rank, we proceed by contra-
diction. Suppose there exist nonzero v1 and v2 such thatA12(A22 − λI)−1 0

I A23

0 A33 − λI − ckA23T2

[v1

v2

]
= 0.

Notice that v1 = −A23v2 = −ckeqkeT1 v2 and that v1 has
exactly one nonzero entry (qk) due to (16) being full rank.
Finally, A12(A22 − λI)−1v1 = 0 implies that λ must be
a transmission zero of the single-input single-output system
(A22, eqk , A12) [22]. Thus, P (λ) can be made full rank by
selecting A33 such that its eigenvalues are different from the
transmission zeros of the system (A22, eqk , A12).

In conclusion, by choosing A33 and the interconnec-
tion weight ck as discussed in Cases (1), (2.a), (2.b), and
(2.c), we obtain a controllable realization of the sym-cactus
G =

⋃m

i=1Gi, thus concluding the inductive procedure. �
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