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Abstract— In this paper, we propose a framework to control
brain-wide functional connectivity by selectively acting on
the brain’s structure and parameters. Functional connectivity,
which measures the degree of correlation between neural
activities in different brain regions, can be used to distinguish
between healthy and certain diseased brain dynamics and,
possibly, as a control parameter to restore healthy functions.
In this work, we use a collection of interconnected Kuramoto
oscillators to model oscillatory neural activity, and show that
functional connectivity is essentially regulated by the degree of
synchronization between different clusters of oscillators. Then,
we propose a minimally invasive method to correct the oscil-
lators’ interconnections and frequencies to enforce arbitrary
and stable synchronization patterns among the oscillators and,
consequently, a desired pattern of functional connectivity. Ad-
ditionally, we show that our synchronization-based framework
is robust to parameter mismatches and numerical inaccuracies,
and validate it using a realistic neurovascular model to simulate
neural activity and functional connectivity in the human brain.

I. INTRODUCTION

The structural (i.e., matrix of anatomical connections
between brain regions) and functional (i.e., matrix of cor-
relation coefficients between the activity of brain regions)
connectivity of the brain vary across healthy individuals and
those affected by neurological or psychiatric disorders, and
can be used as biomarkers to detect or predict pathologi-
cal conditions. While structural connectivity changes rather
slowly over time and can be measured accurately via diffu-
sion imaging techniques [1], functional connectivity depends
on the instantaneous neural activity and is affected, for
instance, by the tasks being performed and external stimuli
[2]. Today, common measures of functional connectivity rely
on resting-state functional magnetic resonance imaging (rs-
fMRI) timeseries to quantify the level of correlated activity
between brain regions. The relationships between structural
and functional connectivity have recently received consider-
able attention [3], [4], and the tantalizing idea of controlling
functional states by leveraging or modifying brain structure
has given birth to a new, thrilling, field of research [5]–[7].

In this paper, we leverage the connection between struc-
tural and functional connectivity, and propose a framework
to control functional connectivity by selectively modifying
structural connectivity and the regions’ intrinsic frequencies
(see Fig. 1). In particular, building on prior studies [8],
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Fig. 1. This paper proposes a framework to restore healthy patterns
of brain-wide functional connectivity by selectively acting on the brain’s
structure and parameters. Using a network of heterogeneous Kuramoto
oscillators to model the brain’s neural activity, we design and validate a
minimally invasive method to correct the oscillators’ interconnections and
frequencies to obtain a desired and stable pattern of functional connectivity.

[9], we model the brain’s neural activity as the phases
of a collection of interconnected Kuramoto oscillators, and
postulate that the level of functional connection between
two regions is proportional to the level of synchronization
between the phases of the oscillators associated with the
two regions. Then, we derive conditions and methods to
tune the oscillators’ interconnection weights and natural fre-
quencies so as to enforce arbitrary synchronization patterns
and, consequently, brain-wide functional connectivity. We
remark that the control mechanisms used in our frame-
work are biologically plausible. For instance, changes in the
spontaneous neural activity (i.e., oscillators’ frequencies) are
typical of the brain, involve natural modifications in regional
metabolism of the neurons, and can alternatively be induced
by a number of non-invasive stimulation techniques [10].
Changes to the structural interconnections (i.e., oscillators’
interconnections), instead, can arise from different chemical
or electrical mechanisms including, at the microscale, Heb-
bian plasticity [11] and short-term synaptic facilitation [12].
Related work. The discovery of oscillatory or rhythmic brain
activity dates back almost a century. Yet, control-theoretic
studies that exhaust the oscillatory nature of brain states
have been sparse and of relatively recent date. Some authors
focus on localized desynchronization of neural activity [13]–
[15], which is desirable in individuals affected by epilepsy
or Parkinson’s disease, and others use synchronization phe-
nomena to describe cognitive and functional brain states
[16]–[18]. To the best of our knowledge, a framework to
control the pattern of brain-wide functional connectivity is
still missing, and is proposed for the first time in this paper.

At the core of our framework to model and control func-
tional connectivity is the concept of cluster synchronization
in a network of oscillators, where groups of oscillators
behave cohesively but independently from other clusters. For
the case of oscillators with Kuramoto dynamics as used
in this work, [19], [20] explore approximate notions of
cluster synchronization in simplified configurations, while
[21] provides exact invariance conditions for arbitrary cluster
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synchronization manifolds. Our recent work introduces rigor-
ous [22] and approximate [23] stability conditions for cluster
synchronization, which are also used here. Compared to the
above references, this paper focuses on the control of cluster
synchronization, rather than on its enabling conditions.
Paper contribution. The contributions of this paper are
twofold. On the technical side, we formulate and solve
a network optimization problem to enforce stable cluster
synchronization among interconnected Kuramoto oscillators
(Section III). We provide a two-step procedure to compute
the smallest (as measured by the Frobenius norm) pertur-
bation of the network weights and the oscillators’ natural
frequencies so as to achieve a desired and arbitrary synchro-
nization pattern. Notably, the proposed algorithm allows for
the modification of only a selected subset of the network
parameters, as typically constrained in applications. We also
prove that cluster synchronization is robust to parameter
mismatches and numerical inaccuracies, which complements
the theoretical derivations in [22], [23], and strengthen the
applicability of our control methods to work in practice.

On the application side, this work contains the first math-
ematically rigorous and neurologically plausible framework
to control functional connectivity in the brain, and takes
a significant step to fill the gap between empirical studies
on oscillatory neural activity [8], [9], [24] and the recent
technical body of work inspired by neural synchronization
[19], [21]–[23]. In Section V, we apply our control technique
to an empirically-reconstructed structural brain network, and
validate our results by computing the correlation of resting-
state fMRI signals obtained through a realistic hemody-
namic model. As a minor contribution, our work extends
[9] by allowing heterogeneous Kuramoto dynamics.
Mathematical notation. The sets R>0, S1 and Tn denote the
positive real numbers, the unit circle, and the n-dimensional
torus, respectively. We represent the vector of all ones with 1.
The Frobenius and `2 norms are denoted as ‖ · ‖F and ‖ · ‖,
respectively, and A ◦ B is the Hadamard product between
matrices A and B. A (block-)diagonal matrix is denoted by
(blk)diag(·). We let i =

√
−1. Let A ≥ 0 represent an

element-wise inequality on the entries of A, A+ the element-
wise nonnegative part of A, and A � 0 a positive definite
matrix A. We let λi(A) and σi(A) denote the i-th eigenvalue
and the i-th singular value of A ∈ Rn×n, respectively, and
λmax(A) = maxi |λi(A)| and λmin(A) = mini |λi(A)|. Fi-
nally, we let λ(A) = 1

n

∑
i λi(A) and σ(A) = 1

n

∑
i σi(A).

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

The aim of this work is to control network parameters so
that groups of brain regions exhibit a high degree of func-
tional connectivity. In this context, functional interactions are
defined as the pairwise correlation between hemodynamic
signals recorded in two brain regions. One model used to
simulate such hemodynamic signals is described by a set
of nonlinear differential equations [25] that can be approx-
imated in the frequency domain as a linear low-pass filter
[9]. Because the only input to such hemodynamic model
is the oscillatory neural activity, the formation of strongly
(functionally) connected brain regions can be promoted by

controlling the synchronization level of their neural dynam-
ics. We follow [9] to model such neural dynamics with a
sparse network of heterogeneous Kuramoto oscillators that
are connected to each other according to the anatomical
architecture of the human brain, more specifically known as
white matter tracts.1 Ultimately, the problem of generating
desired patterns of functional connectivity reduces to the
one of controlling cluster synchronization in a network of
heterogeneous Kuramoto oscillators.

To be precise, let G = (V, E) be a weighted digraph, where
V = {1, . . . , n} and E ⊆ V × V represent the oscillators, or
nodes, and their interconnection edges, respectively. The i-th
oscillator’s dynamics reads as:

θ̇i = ωi +
∑
j 6=i

aij sin(θj − θi), (1)

where ωi ∈ R>0 denotes the natural frequency of the i-th
oscillator, θi ∈ S1 is its phase, aij ∈ R>0 is the weight of the
edge (j, i) ∈ E , with aij = 0 when (j, i) 6∈ E , and A = [aij ]
is the weighted adjacency matrix of G.

To characterize synchronized trajectories among subsets of
oscillators, let P = {P1, . . . ,Pm} be a nontrivial partition
of V , where each cluster contains at least two oscillators
and its graph is strongly connected.2 We say that a network
exhibits cluster synchronization when the oscillators can be
partitioned so that the phases of the oscillators in each
cluster evolve identically. Formally, we define the cluster
synchronization manifold associated with the partition P as

SP = {θ ∈ Tn : θi = θj for all i, j ∈ Pk, k = 1, . . . ,m}.
Then, the network is cluster-synchronized with partition P
when the phases of the oscillators belong to SP at all times.
Without loss of generality, the oscillators are labeled so that
Pk = {∑k−1

`=1 |P`|+ 1, . . . ,
∑k
`=1 |P`|}, where |P`| denotes

the cardinality of the set P`.
Because our control framework leverages conditions for

the invariance and stability of the cluster synchronization
manifold to modify the network weights and oscillators’ nat-
ural frequencies, we briefly recall useful preliminary results
that have recently been established in [21]–[23]. Specifically,
given a desired network partition P = {P1, . . . ,Pm},
invariance of SP is guaranteed by the following conditions:

(C1) The natural frequencies satisfy ωi = ωj for every i, j ∈
Pk and k ∈ {1, . . . ,m}. Equivalently, BT

spanω = 0,
where Bspan ∈ R|V|×|

⋃
k Espan,k| is the incidence matrix of⋃m

k=1 Tk, with Tk = (Pk, Espan,k) being a spanning tree of
the digraph Gk of the isolated cluster Pk;

(C2) The network weights satisfy V̄ T
P ĀVP = 0,

where VP ∈ Rn×m is the characteristic matrix of the network
defined as VP = [v1/‖v1‖, . . . , vm/‖vm‖], with

vTi = [ 0, . . . , 0︸ ︷︷ ︸∑i−1
j=1 |Pj |

, 1, . . . , 1︸ ︷︷ ︸
|Pi|

, 0, . . . , 0︸ ︷︷ ︸∑n
j=1+1 |Pj |

],

1We assume that at each node of a structural brain network there exists
a community of excitatory and inhibitory neurons whose dynamical state is
in a regime of self-sustained oscillation. In other words, the neurons’ firing
rates delineate a limit cycle, and their dynamics can be approximated by a
single variable, which is the angle (or phase) on this cycle.

2As the brain is densely connected [26], this assumption is not restrictive.
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V̄P ∈ Rn×(n−m) is an orthonormal basis of the orthogonal
subspace to the image of VP , and Ā = A−A◦VPV T

P is the
matrix of inter-cluster connections only (see also [21]).

We assume that the isolated clusters are locally stable:
(A1) The dynamics (1), with aij = 0 when i, j belong to

different clusters, converges exponentially fast to SP .
Notice that Assumption (A1) is satisfied when Gk has sym-
metric weights and condition (C1) holds [22, Lemma 3.1]
[27, Theorem 5.1]. In our case, (A1) is not restrictive because
structural brain networks are typically symmetric [5].3

Let ω(k`) denote the natural frequency difference between
any two nodes in disjoint clusters Pk and P`. If (C1) and
(C2) hold, then a tight approximate condition for SP to be
locally exponentially stable is [23]:

(C3) The natural frequencies and the network weights are
such that λmax(Ξ(A,ω)) < 1, with Ξ = [ξk`] and

ξk`=

{
νk`σ(Gk(iω(k`))), if λ(Jk) ≤ λ(J`),

νk`
σ(Gk(0))
σ(G`(0))σ(G`(iω

(k`))), if λ(J`)< λ(Jk),
(2)

where Gk(s) = (sI − Jk)−1, Jk is the Hurwitz stable Ja-
cobian matrix of the intra-cluster phase difference dynamics
and νk` is a function of the inter-cluster weights. Due to
space constraints, we refer the interested reader to [21], [23]
for a detailed discussion on conditions (C1), (C2), and (C3).

III. CONTROL OF CLUSTER SYNCHRONIZATION

In this section, we propose a control mechanism to obtain
a prescribed and robust configuration of synchronized os-
cillatory patterns. Towards this aim, we consider a network
G = (V, E) and an arbitrary partition P = {P1, . . . ,Pm}
of V . The proposed control technique is minimally invasive
in the sense that it looks for the smallest correction (in
the Frobenius norm sense) of inter-cluster network weights
and oscillators’ natural frequencies that renders the cluster
synchronization manifold SP invariant and locally stable.
In practice, a modification of the network parameters will
require either the exploitation of neural plasticity or localized
surgical intervention for the modification of the network
weights and structure, and pharmacological or electromag-
netic influence for the refinement of the brain regions’ natural
frequencies. In mathematical terms, the approach is encoded
into solving the following constrained minimization problem:

min
∆,µ

‖[∆, µ]‖2F (3)

s.t. V̄ T
P (Ā+ ∆)VP = 0, (3a)

BT
span(ω + µ) = 0, (3b)

Hc ◦∆ = 0 (3c)

Ā+ ∆ ≥ 0, (3d)

ω + µ ≥ 0, (3e)

λmax(Ξ(A+ ∆, ω + µ)) < 1, (3f)

3In a general case, one can ensure that Assumption (A1) is satisfied
simply by pairing the control mechanism developed in the next session
with an independent one that makes intra-cluster connections symmetric.
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Fig. 2. The left depicts a network of oscillators. The coupling strength
between the oscillators depends on the network weights and the differences
of their natural frequencies [23]. The optimization problem (3) seeks for the
smallest modification of the network weights and the oscillators’ natural
frequencies to ensure a desired stable pattern of cluster synchronization
(right panel). We remark that the techniques used in this paper for cluster
synchronization in frequency-weighted networks of Kuramoto oscillators,
are applicable to a broad class of network optimization problems, e.g., [28].

where ∆ is the correction of the network matrix, µ is the
correction of the natural frequencies vector, and the (i, j)-
th entry of ∆ is zero if i, j belong to the same partition
Pk, k ∈ {1, . . . ,m}. Further, H is the 0-1 adjacency matrix
ofH = (V, EH), which is the graph encoding the set of edges
EH ⊆ E that is allowed to be modified, and Hc = 11T−H .
That is, the (i, j)-th entry of a solution ∆∗ to problem (3)
is zero when the corresponding (i, j)-th entry of H is zero.
The optimization problem (3) is illustrated in Fig. 2.

Constraints (3a) and (3b) are equivalent to conditions (C2)
and (C1), respectively, for the invariance of SP . Constraint
(3c) restricts the corrective action to a subset of all the
possible interconnections, in affinity with the practical lim-
itations of localized interventions. Constraints (3d) and (3e)
are due to biological compatibility and require the inter-
cluster weights of the perturbed network and oscillators’
natural frequencies to be nonnegative. Finally, Constraint
(3f) corresponds to (C3) and guarantees the (local) stability
of SP . In particular, the latter constraint makes the above
problem non-convex and, therefore, potentially intractable
from a numerical viewpoint. To overcome this issue, we next
propose a suboptimal, yet numerically more tractable, control
strategy. Specifically, we decouple (3) into two simpler sub-
problems. The first one solves for the smallest correction of
inter-cluster weights satisfying (3a), (3c), and (3d), whereas
the second one solves for the smallest correction of the
oscillators’ natural frequencies satisfying (3b), (3e) and (3f).

A. Inter-cluster structural control for invariance of SP
We first address the problem of computing the smallest

correction of inter-cluster weights such that constraints (3a),
(3c), and (3d) are satisfied. Specifically, we focus on the
following minimization problem:

min
∆
‖∆‖2F (4)

s.t. V̄ T
P (Ā+ ∆)VP = 0, (4a)

Hc ◦∆ = 0, (4b)

Ā+ ∆ ≥ 0. (4c)

The optimization problem (4) is convex and, when feasible,
it can be efficiently solved by means of standard optimization
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techniques. Feasibility of (4) depends on the constraint graph
H (see Remark 1). In what follows, we present a simple and
efficient projection-based algorithm to solve this problem.

Theorem 3.1: (Smallest sparse inter-cluster correction)
Assume that the problem (4) is feasible, and consider

the matrix sequence {Zk}k≥0 generated via the following
iterative procedure:

Yk = H ◦ (Zk + Tk)+ +Hc ◦ Ā,
Tk+1 = Zk + Tk − Yk,
Zk+1 = Yk +Qk − V̄P V̄ T

P (Yk +Qk)VPV
T
P ,

Qk+1 = Yk +Qk − Zk+1,

(5)

where Z0 = Ā, and T0 = Q0 = 0. Then, the sequence
{Zk}k≥0 converges to a matrix Z∗, and a minimizer of (4)
subject to (4a), (4b), and (4c), has the form ∆∗ = Z∗ − Ā.

Proof: Let ΠZ(W ) = arg minZ∈Z ‖Z −W‖2F denote
the projection (in the Frobenius norm sense) of W onto a
convex set Z , and define the closed convex sets Z1 = {Z ∈
Rn×n : Z ≥ 0 and Hc ◦ Z = Ā} and Z2 = {Z ∈ Rn×n :
V̄ T
P ZVP = 0}. Note that ΠZ1(W ) = H ◦W+ +Hc ◦ Ā and,

by Lemma A.1 in the Appendix,

ΠZ2(W ) = arg min
Z∈Z2

‖Z −W‖2F
= W − V̄P V̄ T

PWVPV
T
P ,

for any W . Hence, the sequence {Zk}k≥0 generated by (5)
coincides with the sequence generated by Dykstra’s projec-
tion algorithm [29] applied to the projections onto Z1 and
Z2. Since the problem (4) is feasible, Z1 ∩Z2 6= ∅, and the
latter sequence converges to a matrix Z∗ = ΠZ1∩Z2

(Ā) =
arg minZ∈Z1∩Z2 ‖Z − Ā‖2F [29]. Finally,

Z∗ = arg min
Z∈Z1∩Z2

‖Z − Ā‖2F
= Ā+ arg min

∆ s.t. (4a), (4b), (4c)
‖∆‖2F,

and the statement follows.
Remark 1: (Sufficient condition for the feasibility of (4))

Recall from [21] that condition (C2) is equivalent to:∑
k∈P`

aik − ajk = 0 (6)

for every i, j ∈ Pz and for all z, ` ∈ {1, . . . ,m}, with z 6= `.
Notice that, if for every i ∈ Pz there exists at least one
(k, i) ∈ EH, k ∈ P`, a solution to (6) can always be found
and problem (4) is feasible. �

B. Frequency tuning for local stability of SP
We now turn to the problem of computing the smallest

correction of natural frequencies such that constraints (3b),
(3e), and (3f) are satisfied. That is,

min
µ
‖µ‖2F (7)

s.t. BT
span(ω + µ) = 0, (7a)

ω + µ ≥ 0, (7b)

λmax(Ξ(A,ω + µ)) < 1. (7c)

Theorem 3.2: (Feasibility of problem (7)) There always
exists a correction µ satisfying (7a), (7b), and (7c).

Proof: Consider the vector µ = [µ1, . . . , µn]T. Note
that we can find some µi such that (i) ωi+µi = ωj+µj > 0
for all i, j ∈ Pk, k ∈ {1, . . . ,m}, and (ii) |ωi + µi − (ωj +
µj)| > η, for all i ∈ Pk, j ∈ P`, k, ` ∈ {1, . . . ,m}, k 6= `,
and η > 0 arbitrarily large. From (i), µ satisfies (7a) and
(7b). Further, since each nonzero entry of Ξ(A,ω+µ) in (2)
behaves as a low-pass filter, by fact (ii) λmax(Ξ(A,ω + µ))
can be made arbitrarily small. This implies that there always
exists a vector µ satisfying (7c) and concludes the proof.

An optimal solution to (7) is typically difficult to compute,
because of the eigenvalue constraint (7c). However, several
heuristics can be used to compute a suboptimal correction in
(7). For instance, we next outline an effective procedure to
find a suboptimal solution to (7). Let ω(k)

av = 1
|Pk|

∑
i∈Pk

ωi
denote the average frequency within each cluster, and let

ωav = [ωav,1, . . . , ωav,n]T

= [ω(1)
av , . . . , ω

(1)
av︸ ︷︷ ︸

|P1|

, . . . , ω(m)
av , . . . , ω(m)

av︸ ︷︷ ︸
|Pm|

]T.

Further, define the quotient graph Q = (V ′, E ′) where each
node in V ′ represents a cluster and each edge in E ′ an in-
terconnection between two clusters. Our procedure leverages
Theorem 3.2 and increases the frequency differences between
pairs of connected clusters until constraint (7c) is satisfied.
The procedure consists of four steps:

(i) If λmax(Ξ(A,ωav)) < 1, then µ∗ = [µ∗1, . . . , µ
∗
n],

with µ∗i = ωav,i − ωi is an optimal correction to (7).
Otherwise, proceed to the next step.

(ii) Construct a depth-first spanning tree TQ of Q rooted
at r = arg mink ω

(k)
av .4

(iii) Assign the frequency ω(k, α) = ω(r) + kα, α > 0,
to each node of each cluster in TQ of depth k, k =
1, 2, . . . , kmax, where kmax denotes the height of TQ.5

Let ω(α) = [ω1(α), . . . , ωn(α)]T denote the resulting
vector of modified frequencies.

(iv) Find the smallest α∗ satisfying λmax(A,ω(α∗)) < 1.
Then, µ∗ = [µ∗1, . . . , µ

∗
n], with µ∗i = ωi(α

∗)− ωi, is a
(suboptimal) solution to (7).

IV. ROBUSTNESS OF THE CONTROL FRAMEWORK

In this section, we show that the control framework
described in Section III, and in fact the stability property of
the cluster synchronization manifold SP , is robust to pertur-
bations of the network parameters. That is, small changes in
the oscillators’ natural frequencies and network weights yield
a small deviation from cluster-synchronized trajectories. In
light of this, the proposed control mechanism lends itself to
practical applications, where the network parameters are not
known exactly and the neural dynamics is subject to noise.

4Notice that such a spanning tree always exists, since Q is connected.
5Given a connected graph G = (V, E) and a spanning tree T of G rooted

at r ∈ V , the depth of a node v ∈ V is the length of the path in T from r
to v, and the height of T is the maximum depth among the nodes in V .
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Consider the dynamics (1) with perturbed parameters:

θ̇i = ω̃i +
∑
j 6=i

ãij sin(θj − θi), (8)

where ω̃i = ωi + δωi and ãij = aij + δaij . Notice that, if
δωi = 0 and δaij = 0, the dynamics (8) is equivalent to (1).
From (8), the perturbed intra-cluster difference dynamics of
nodes i, j ∈ Pk, with k ∈ {1, . . . ,m}, reads as:

θ̇j − θ̇i = ωj + δωi − ωi − δωj

+

n∑
z=1

[(ajz + δajz) sin(θz − θj)−(aiz + δaiz) sin(θz − θi)]

= ωj − ωi +

n∑
z=1

[ajz sin(θz − θj)− aiz sin(θz − θi)] + δij ,

(9)

where δij = δωj − δωi +
∑n
z=1[δajz sin(θz − θj)

−δaiz sin(θz − θi)]. Finally, let δ be the vector of all δij
that affect the nominal intra-cluster dynamics as in (9).

We are now ready to present the main result of this section,
which resorts to the prescriptive stability condition derived
in [22] that we recall in the Appendix B for completeness.

Theorem 4.1: (Robustness of cluster synchronization)
Assume that the network weights satisfy Theorem A.1, and
consider any pair of nodes i, j ∈ Pk, k ∈ {1, . . . ,m}. Then,
for some finite T > 0 and for all initial conditions such
that |θj(0) − θi(0)| < ε, with ε > 0 sufficiently small, the
solution to the perturbed dynamics (8) satisfies

|θj(t)− θi(t)| ≤ c γ ∀t ≥ T, (10)

where γ = maxθ∈[0,2π) ‖δ‖, and c is a constant that depends
only on the network weights.

Proof: In the first part of the proof, we combine
the Lyapunov functions for the isolated clusters Pk, k =
1, . . . ,m, into a Lyapunov function for the intra-cluster dif-
ferences dynamics of the whole network. In the second part
of the proof, we show that such Lyapunov function satisfies
certain bounds, so that the application of [30, Lemma 9.2]
suffices to prove the claimed statement.

We let xij = θj − θi, and S, xintra and Jk be as in the
Appendix B. To combine the Lyapunov functions of the
isolated clusters, we note that if S is an M -matrix, then,
along the lines of [22, Proof of Theorem 3.2], the origin
of the nominal intra-cluster dynamics of xintra is locally
exponentially stable with Lyapunov function

V (xintra) =

m∑
k=1

dkx
(k)T
intra Pkx

(k)
intra, (11)

where Pk � 0 satisfies JT
k Pk +PkJk = −I , and dk > 0 are

such that DS + STD � 0, with D = diag(d1 . . . , dm) [30].
Consider now the Lyapunov function (11), and notice

that: c1‖xintra‖2 ≤
∑m
k=1 dkx

(k)T
intra Pkx

(k)
intra ≤ c2‖xintra‖2, with

c1 = mdmin mink λmin(Pk) and c2 = mdmax maxk λmax(Pk).
Further, in the ball of radius r of the origin Br = {xintra :
‖xintra‖ < r, V̇ (xintra) < 0}, it holds that V̇ (xintra) ≤
−c3‖xintra‖2, with c3 = λmin(DS + STD)/2. To see this,

consider the derivative of the Lyapunov function V (xintra)
along the trajectories of the nominal system. Then, from
[30, §9.5] and [22, proof of Theorem 3.2], the following
inequality holds in Br:

V̇ ≤ −1

2

[
‖x(1)

intra‖ . . . ‖x(m)
intra‖

]
(DS + STD)

‖x
(1)
intra‖
...

‖x(m)
intra‖


≤ −1

2
λmin(DS + STD) ‖xintra‖2 ,

and c3 follows. Further, since ‖∂V/∂xintra‖ = ‖2xTintraPk‖ <
2λmax(Pk)‖xintra‖, we have ‖∂V/∂xintra‖ ≤ c4‖xintra‖, with
c4 = 2c2. Finally, once the constants c1, c2, c3, and c4
are computed, the definition of xintra and [30, Lemma 9.2]
conclude the proof.

Importantly, Theorem 4.1 can be used to provide a quan-
titative bound on the asymptotic value of |θj − θi|. In fact,
we can compute the constant c in (10) by exploiting [30,
Lemma 9.2] and c1, c2, c3, c4 derived in the above proof.

V. CONTROL OF FUNCTIONAL CONNECTIVITY IN AN
EMPIRICALLY-RECONSTRUCTED BRAIN NETWORK

We conclude this paper with the application of the control
mechanism presented in Section III to the brain network
estimated in [1], which is publicly available at http:
//umcd.humanconnectomeproject.org/umcd. In
these data, structural connectivity is proportional to large-
scale connection pathways between cortical regions, and the
gray matter is subdivided into n = 66 cortical regions
(33 per hemisphere). To show the effectiveness of our pro-
posed method in enforcing desired functional connectivity by
means of arbitrary synchronization patterns, we partition the
structural brain network in 3 clusters, i.e. P = {P1,P2,P3},
each one comprising 22 regions that do not belong to any
known functionally connected resting-state network. The
three clusters are highlighted with different colors in Fig. 3(a)
and Fig. 3(b). Furthermore, following our goal of providing
a method to enhance the synchronization properties of a
diseased or damaged brain, we simulate the effects of brain
damage, e.g., a stroke, by damping the connectivity of one
cluster [31]. That is, we weaken the intra-cluster connections
of the first cluster by a scaling factor 10−2 to echo reduced
structural connectivity, and we show that our technique can in
fact recover stability of the cluster synchronization manifold
associated with the desired network partition.6

Before presenting our results, we describe the methodol-
ogy used to simulate human rs-fMRI functional connectivity.

A. Simulation of functional connectivity
The brain’s neural activity is simulated through a network

of coupled Kuramoto oscillators, where we randomly draw
the natural frequencies of each oscillator from a uniform
distribution in the range [0, 60] [Hz] so as to include all
meaningful neural frequency bands [25]. We set the initial
phases in the interval [0, 0.5] [rad]. The Kuramoto phases act

6Specifically, weakening the intra-cluster connections of one cluster is
likely to make SP unstable [23].
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Fig. 3. Fig. 3(a) depicts an axial view of the structural connectivity
estimated in [1], and was obtained with BrainNet Viewer [32]. The edge
thickness is proportional to the number of white matter streamlines con-
necting different regions. Fig. 3(b) represents the adjacency matrix of the
structural brain network in Fig. 3(a), where the white entries correspond
to zero, and the intra-cluster connections in the first cluster (red nodes in
Fig. 3(a)) have been weakened to simulate the effect of brain damage.
Fig. 3(c) represents the network matrix correction ∆∗ solution to the
iterative procedure (5) in Theorem 3.1. Finally, Fig. 3(d) represents the
matrix Acorrected,SC = Aoriginal,SC + ∆∗, where the total change of the edge
weights amounts to 17% (in the Frobenius norm) of the original ones.

as an input to the neurovascular coupling, which is modeled
by the Balloon-Windkessel hemodynamic process [33], and
whose output is the blood-oxygen-level dependent (BOLD)
signal that is measured by rs-fMRI.

The neuronal activity zi of the i-th brain region produces
an increase in a vasodilatory signal si, which is subject to
auto-regulatory feedback. The inflow fi responds in pro-
portion to this signal with concomitant changes in blood
volume µi and deoxyhemoglobin content qi. Mathematically,
the dynamics of these quantities reads as:

ṡi = zi − κisi − γi(fi − 1), ḟi = si,

τ µ̇i = fi − µ1/α
i , τiq̇i = fiE(fi, ρi)/ρi − µ1/α

i qi/µi.

The oxygen extraction is a function of the flow E(f, ρ) =
1− (1− ρf ) where ρ denotes the resting oxygen extraction
fraction. The biophysical parameters κ, γ, τ, α, and ρ are
exhaustively treated in [33]. Finally, the BOLD signal is
described as a static nonlinear function:

yi = V0(k1(1− qi) + k2(1− qi/vi) + k3(1− µi)),
where V0 = 0.02 denotes the resting blood volume fraction,
and k1 = 7ρi, k2 = 2, k3 = 2ρi − 0.2. Following [9], we
choose zi = sin(θi). Further, to account for the presence
of background noise in the brain, we add white noise to the
neural activity zi with variance 10−2. We simulate 2 minutes
of BOLD signals and process the timeseries as explained

below in order to compute functional connectivity estimates
that closely resemble that of human rs-fMRI recordings.

To reduce the effect of spurious correlations from small
and non-physiological high-frequency components, we filter
the synthetic BOLD signals through a low-pass filter. Con-
sequently, to improve the correspondence between resting-
state correlations and anatomical connectivity, we process all
of the simulated regional BOLD signals by a global signal
regression [34] that averages the timeseries of all regions
by removing spontaneous oscillations common to the whole
brain. Next, we discard the first 40 seconds of all timeseries
to eliminate the effect of initial transients. Finally, we com-
pute the Pearson correlation of the filtered and regressed
signals to obtain the synthetic functional connectivity. A
pipeline describing the above process is illustrated in Fig. 4.

B. Application of the clustering control mechanism

In the remainder of this section, we apply the control
method proposed in Section III. We first solve the mini-
mization problem (4) to find the optimal correction matrix
∆∗ to be applied to Aoriginal,SC such that condition (C2) for
the invariance of SP is satisfied. We choose to constrain the
corrective action on a set of edges EH = E ∪ Ẽ that includes
the original set E and a minimal set Ẽ of randomly selected
edges such that problem (4) is feasible (see Remark 1).
Fig. 3(c) and 3(d) illustrate the corrective action ∆∗ and the
network matrix Acorrected,SC = Aoriginal,SC + ∆∗, respectively.

We proceed with the frequency tuning technique for invari-
ance and stability of SP to Acorrected,SC so that conditions (C1)
and (C3) are satisfied. The first step involves computing the
mean natural frequency ω(k)

av among all oscillators belonging
to the same cluster Pk: ω(1)

av = 199.2, ω(2)
av = 182.9 and

ω
(3)
av = 115.4 [rad/s]. Next, we apply the procedure proposed

in Section III-B. We plot in Fig. 5(a) the spanning tree of the
quotient graph TQ, and in Fig. 5(b) the optimal α∗ computed
in step (iv) of our procedure. The final natural frequencies are
ω(1) = 131.8, ω(2) = 126.4 and ω(3) = 115.4 [rad/s]. Notice
that, although our frequency tuning procedure is sub-optimal,
the outcome values remain well within the range of brain
activity frequency bands and, based on numerical results,
outperform the results of Matlab’s fmincon function.

Finally, by following the pipeline described in the previous
subsection, we compute the desired functional connectivity
pattern, which we show in Fig. 6. Notably, the functional
connectivity of the desired clusters is strong and the cor-
relations between different clusters are negligible. Thus,
the proposed method to control synchronization patterns of
oscillatory neural activity lends itself to a physiologically
plausible framework and shows rather promising results.

VI. CONCLUSION

In this work, we propose a minimally invasive technique
to obtain robust synchronization patterns in sparse networks
of heterogeneous Kuramoto oscillators. To the best of our
knowledge, this is the first attempt at blending mathemati-
cally rigorous methods with physiological models of brain
activity with the goal of steering whole-brain synchronization
dynamics. Specifically, we cast a constrained optimization
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Fig. 5. Fig. 5(a) depicts the quotient graph associated with the three clusters
in partition P and the natural frequencies that follow from the procedure in
Section III-B. Fig. 5(b) shows the profile of λmax(Ξ) as a function of the
tuning parameter α on a logarithmic scale. The thick red line highlights the
smallest value α∗ for which the local stability of the cluster synchronization
manifold SP is guaranteed according to condition (C3).

problem whose solution not only satisfies mathematical
conditions for invariance and stability of an arbitrary cluster
synchronization manifold, but also meets biological con-
straints. We decompose the complete optimization problem
into two simpler subproblems, and provide efficient methods
to solve them. When applying our technique to correct the
network parameters of empirically-reconstructed anatomical
brain data, we find that our solution, although suboptimal,
provides a result that is well within the range of physiologi-
cally plausible parameters. Additionally, we show that cluster
synchronization is robust to small parameter mismatches and
numerical inaccuracies. This result complements previous
prescriptive studies on cluster synchronization and enables
the use of our framework in practical situations.

APPENDIX

A. Instrumental result for the proof of Theorem 3.1

Lemma A.1: Consider a network G = (V, E), and an
arbitrary (nontrivial) partition P = {P1, . . . ,Pm} of V . Let
W ∈ Rn×n and consider the minimization problem

min
Z
‖Z −W‖2F (12)

s.t. V̄ T
P ZVP = 0, (12a)

The minimizer of the problem (12) subject to (12a) is

Z∗ = W − V̄P V̄ T
PWVPV

T
P . (13)

Proof: We prove the result via the method of Lagrange
multipliers. The Lagrangian of (12) subject to (12a) is
L(Z,Λ) = ‖Z − W‖2F + 1T(Λ ◦ V̄ T

P ZVP)1 = tr((Z −
W )T(Z −W )) + tr(ΛTV̄ T

P ZVP), where Λ ∈ R(n−m)×m is
a matrix of Lagrange multipliers associated with Constraint

(12a), and in the last equation we used that 1T(A ◦ B)1 =
tr(ATB). Equating the partial derivatives of L to zero yelds:

∂L
∂Z

= 2(Z −W ) + V̄PΛV T
P = 0, (14)

∂L
∂Λ

= V̄ T
P ZVP = 0, (15)

We next pre- and post-multiply both sides of (14) by V̄ T
P and

VP , respectively, and obtain

2V̄ T
P ZVP = 2V̄ T

PWVP − V̄ T
P V̄PΛV T

P VP

⇒ 2V̄ T
P ZVP = 2V̄ T

PWVP − Λ ⇒ Λ = 2V̄ T
PWVP , (16)

where in the second implication we used V T
P VP = In,

V̄ T
P V̄P = In−m, and V̄ T

P VP = 0, and in the last one we used
(15). Finally, (13) follows by substituting (16) into (14).

B. M -matrix condition for local stability of SP
We now recall a stability condition established in [22].

We let xij = θj − θi denote the phase difference between
oscillators i and j, and xintra = [x

(1)
intra, . . . , x

(m)
intra ]T denote a

smallest set of intra-cluster differences akin to (see [22]),
where x(k)

intra contains only phase differences of oscillators in
Pk.7 Further, let Jk be the Hurwitz stable Jacobian matrix
of the intra-cluster phase difference dynamics of x(k)

intra.
Theorem A.1: (Sufficient condition on network weights

for the stability of SP [22]) Let κ = 2 maxr |Pr| − 2, and

γ(k`) =


κ
∑
j∈P`

aij , if ` 6= k,

κ
∑
` 6=k

∑
j∈P`

aij , otherwise,

with k, ` ∈ {1, . . . ,m}, i ∈ Pk. Define the m×m matrix S:

S = [sk`] =

{
λ−1

max(Xk)− γ(kk) if k = `,

−γ(k`) if k 6= `,

where Xk � 0 satisfies JT
kXk +XkJk = −I . If S is an M -

matrix, then the cluster synchronization manifold is locally
exponentially stable.

Theorem A.1 shows that the cluster synchronization mani-
fold is stable when the intra-cluster dynamics are sufficiently
more attractive than the inter-cluster couplings.

7The definition in [22] is given for undirected graphs. However, it is
straightforward to extend all definitions to digraphs, provided that the
quotient graph Q defined in Section III-B is strongly connected. This is
not a restrictive assumption in the context of structural brain networks.
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Fig. 6. Fig. 6(a) represents the correlation matrix that encodes the output functional connectivity (FC) obtained with our control mechanism. Notably, the
three clusters are mostly functionally disconnected. That is, there are very few functional connections between nodes belonging to different clusters. This
implies that the outcome of our procedure is robust to noisy neural activity and faithfully reproduces synchronized BOLD signals. Fig. 6(b),6(c) and 6(d)
illustrate the isolated functional connectivity of the desired clusters P1, P2 and P3, respectively, after the correlation matrix has been thresholded to 0.5
to show only the meaningful functional interactions. The functional edges are color-coded according to the colorbar of Fig. 6(a).
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