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Abstract— Network controllability is a structural property,
that is, mild and well-understood conditions on the network
interconnection pattern ensure controllability from a given set
of control nodes for most choices of the edge weights. To ensure
network controllability for all choices of edge weights, namely
strong structural controllability, more stringent connectivity
conditions need to be satisfied. In this paper we derive an
alternative algebraic characterization of strong structural con-
trollability of networks with self-loops. This characterization
allows us to systematically enumerate all strongly structurally
controllable networks with given cardinality and number of
control nodes. Differently from the case of (weak) structural
controllability we show that, when the ratio of control nodes
to the total number of nodes converges to zero, then the
fraction of strongly structurally controllable networks decreases
to zero. Conversely, when the ratio of control nodes to the total
number of nodes converges to one, then the fraction of strongly
structurally controllable networks remains lower bounded.
Altogether, the results in this paper complement existing studies
on the asymptotic number of controllable graphs.

I. INTRODUCTION

Network systems are commonly used to model complex
natural and technological systems. Examples range from
biological networks [1], brain networks [2], the smart grid
[3], to social networks [4]. Due to dimensionality, unknown
dynamics, and uncertain parameters, control of complex net-
works is a challenging problem that is attracting considerable
attention from different research communities. Here control
refers to the possibility of injecting targeted control inputs
through few nodes, so as to manipulate the entire network
configuration and ensure reliability and performance.

Controllability of networks depends on the network struc-
ture as well as on the dynamics of the network nodes.
To highlight the fundamental role of the network structure,
in this paper we focus on networks where the dynamics
are linear and specified by a weighted adjacency matrix of
the underlying graph. In this setting, network controllability
becomes a structural property [5] that can be tested based
on the interconnection structure and independently of the
edge weights. In fact, from the well-established theory of
structural control [6], we know that mild connectivity condi-
tions on the interconnection pattern guarantee controllability
for almost all choices of the edge weights, provided that
the weights can be selected independently from each other.
When edge weights are mutually dependent or constrained,
the classic structural theory no longer applies, and a stronger
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notion of controllability, namely strong structural controlla-
bility, is needed to guarantee network controllability from
a set of control nodes and for all choices of the network
weights. In this paper, we focus on this stronger notion,
providing a systematic procedure to enumerate all strongly
structurally controllable networks with self-loops.

Related work The topic of network controllability has
sparked interest across different research communities. The
literature can be classified into qualitative and quantitative
studies. Qualitative approaches adopt the binary controlla-
bility notion, first introduced in [7], and employ graphical
and combinatorial techniques, e.g., see [8], [9], [10], [11].
On the other hand, quantitative studies use a graded metric
of controllability and typically leverage control-theoretic
methods, e.g., see [12], [13], [14], [15]. This work falls
within the first class, understanding algebraic and graph-
theoretic properties of strong structural controllability.

The notion of strong structural controllability is used to
ensure that all networks with given interconnections structure
are controllable from a set of control nodes, independently
of the edge weights [16]. Early results on strong structural
controllability are presented in [17], [18], where graphical
conditions to ensure such property are provided. In [19]
existing results on strong structural controllability are found
incorrect, and a different characterization using the notion of
cycle families is given. One practical extension of previous
work to the multi-input case is provided in [20], together with
algebraic conditions, also given in [21]. Furthermore, [22]
and [23] present conditions and algorithms with polinomial
complexity based on the notions of constrained matching and
zero-forcing set, respectively, and a further step is attained
in [24], where linear complexity is achieved. Finally, strong
structural controllability is presented for time-varying sys-
tems in [25]. With respect to the existing work, we provide
a refined condition for strong structural controllability of
networks with self loops. This characterization is later used
to characterize the asymptotic number of strongly structurally
controllable networks.

Another area of research related to this work consists of
the enumeration of graphs satisfying certain properties. For
instance, [26], [27] show that for the weaker controllability
notion the relative number of controllable graphs compared
to the total number of simple graphs on n nodes approaches
one, as n tends to infinity. We complement this line of
research by demonstrating that this is not the case for strong
structural controllability.

Contribution The contribution of this paper is twofold. First,
we provide an algebraic characterization of strong structural
controllability for networks with self-loops. This characteri-
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zation leads to an efficient algorithm to test for strong struc-
tural controllability of a given network. Second, we exploit
our result to enumerate all strongly structurally controllable
networks with given cardinality and number of control nodes.
We show that the ratio of strongly structurally controllable
networks to the total number of networks behaves as the
ratio of number of control nodes m to the total number of
nodes n. In particular, when m/n converges to zero, so does
the ratio of strongly structurally controllable networks to the
total number of networks. Conversely, when m/n converges
to one, the ratio of strongly structurally controllable networks
to the total number of networks remains bounded from below.
Paper organization The rest of the paper is organized as
follows. Section II describes our setup and introduces some
preliminary notions. Section III contains our algebraic char-
acterization of strong structural controllability. In Section IV
we enumerate all strongly structurally controllable networks
with given cardinality and number of control nodes. Finally,
Section V concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

We model a network with a directed graph G = (V, E),
where V = {1, . . . , n} and E ⊆ V × V are the vertices
and edges sets, respectively. Let A = [aij ] ∈ Rn×n be the
weighted adjacency matrix of G, with aij = 0 if (i, j) 6∈
E , and aij ∈ R otherwise. We let K = {k1, . . . , km} ⊆
{1, . . . , n} denote the set of control nodes, and let the system
dynamics evolve according to the linear model

x(t+ 1) = Ax(t) +Bu(t), (1)

where B ∈ Rn×m is the input matrix defined as
B =

[
ek1

. . . ekm

]
, and ei is the i-th canonical vector.

We define the n-steps controllability matrix

C(A,B) =
[
B AB · · · An−1B

]
, (2)

and we recall that the pair (A,B) is controllable if and only
if C(A,B) is full rank [28].

We will be making use of the theory of structure matrices
and their generic properties. We denote with bold symbols
M = [mij ] a structure matrix [6], [16]: its entries are either
zero or indeterminate (nonzero) values. The latter are here
denoted by the symbol ×. Finally, the real matrix M = [mij ]
is an admissible numerical realization of M, in other words
M ∈ M, if it can be obtained by assigning some nonzero
values to the indeterminate entries of M.

The following concepts will be used throughout the pa-
per. First, the structure pair (A,B) is strongly structurally
controllable (SSC) if all admissible numerical realizations
(A,B) ∈ (A,B) are controllable. Second, we will say that
the pair (A,B) is permutation-similar to (Ã, B̃) if there ex-
ists a permutation matrix P satisfying Ã = PAPT and B̃ =
PB. Also, with a slight abuse of notation, we will say that
the structure pair (A,B) is permutation-similar to (Ã, B̃) if
every admissible realization of (A,B) is permutation-similar
to some admissible realization of (Ã, B̃). Third, the structure
pair (A,B) uniquely identifies an unweighted labeled graph
with m control nodes. Finally, we will make use of the
following notation: A(i : end, j) ∈ Rn−i+1 denotes the
column vector with entries akj , where k = i, . . . , n.

III. ALGEBRAIC CHARACTERIZATION OF STRONG
STRUCTURAL CONTROLLABILITY

In this section, we provide an algebraic characterization of
strongly structurally controllable networks with self loops.
It should be observed that, although conditions for more
general networks exist, e.g., see [21], [23], [29], [30], our
characterization is in fact instrumental for the main results
in Section IV. We restrict our analysis to input-connectable
networks [6] with self-loops and independent control nodes.
Formally, we make the following assumptions:

(A1) the diagonal entries of A are nonzero;
(A2) the structure input matrix is B =

[
e1 . . . em

]
, where

ei is the structure vector associated with ei;
(A3) every admissible realization of (A,B) is input-

connectable, that is, there exists a path1 from a control
node i ∈ {1, . . . ,m} to every node j ∈ {1, . . . , n} in
the unweighted graph associated with such pair.

Assumption (A1) allows to address the problem from an
algebraic point of view, and yields conditions that are
equivalent to those pointed out in [18], [19], [21], [22].
Assumptions (A2) and (A3) are not restrictive in general,
in fact, a nodes relabeling suffices for (A2) to hold, while
Assumption (A3) is necessary for (structural) controllability
[6], thus for the stronger notion.

The following theorem provides an algebraic condition
equivalent to strong structural controllability of (A,B).

Theorem 3.1: (Strong structural controllability) Let the
structure pair (A,B) satisfy Assumptions (A1)-(A3). Then,
the following statements are equivalent:

(i) (A,B) is strongly structurally controllable;
(ii) (A,B) is permutation-similar to (Ã,B), and for all

i ∈ {m + 1, . . . , n} there exists j ∈ {1, . . . , i − 1}
such that2

supp(Ã(i : end, j)) = {1}.
The proof of Theorem 3.1 is postponed to Appendix.
It is worth noting that, when the network is controlled from

a single node, Theorem 3.1 implies that (A,B) is strongly
structurally controllable if and only if (A,B) is permutation-
similar to (Ã,B) where Ã is upper Hessenberg [17].

We now illustrate Theorem 3.1 through two examples.
Example 1: (SSC network) Consider the network shown

in Fig. 1(a) with control set K = {1, 2, 3} and structure
adjacency matrix

A =

a11 0 0 a14 0 0 0 0 0

0 a22 0 a24 a25 0 0 0 0

0 0 a33 0 a35 a36 0 0 0

a41 a42 0 a44 a45 0 a47 0 0

0 a52 a53 a54 a55 a56 a57 a58 0

0 0 a63 0 a65 a66 0 a68 a69

0 0 0 a74 a75 0 a77 0 0

0 0 0 0 a85 a86 0 a88 a89

0 0 0 0 0 a96 0 a98 a99




.

1A path is a sequence of vertices {v1, v2, . . . , vp} such that (vi, vi+1)
belongs to the edge set, for all i ∈ {1, . . . , p− 1}.

2The support of the vector x ∈ Rn, namely supp(x), is the set of indices
i ∈ {1, . . . , n} such that xi 6= 0.
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Fig. 1. Control nodes are in black. (a) The network is SSC. (b) The network
is not SSC because of the edge between nodes 3 and 8. See Example 1 and 2.

Condition (ii) in Theorem 3.1 concludes that the pair (A,B)
is strongly structurally controllable. Indeed, for all i ∈
{4, . . . , 9}, supp(A(i : end, i − 3)) = {1}, as highlighted
by grey columns. Moreover, the controllability matrix reads

C(A,B) =


× ⊗ ⊗ · · · ⊗
0 × ⊗ · · · ⊗
0 0 × · · · ⊗
...

...
...

. . .
0 0 0 · · · ×︸ ︷︷ ︸

C∗

⊗ · · · ⊗
⊗ · · · ⊗
⊗ · · · ⊗
... · · ·

...
⊗ · · · ⊗

 ,

where ⊗ denotes an entry that can be either zero or nonzero.
Notice that diagonal elements of C∗ =

[
B AB A2B

]
are nonzero for every admissible numerical realization
and equal to b1, b2, b3, b1a41, b2a52, b3a63, b1a41a74,
b2a52a85, b3a63a96, respectively.

Since C(A,B) is full rank for every admissible realization
(A,B) ∈ (A,B), the claimed statement follows. �

The following example illustrates the necessity of state-
ment (ii) to ensure controllability. Indeed, notice that if
there exists some index i ∈ {m + 1, . . . , n} such that
|supp(A(i : end, j))| 6= 1 holds for all j ∈ {1, . . . , i − 1},
then the pair (A,B) is not strongly structurally controllable.

Example 2: (Non-SSC network) Consider the network in
Fig. 1(b) with control nodes K = {1, 2, 3} and structure
adjacency matrix

A =

a11 0 0 a14 0 0 0 0 0

0 a22 0 a24 a25 0 0 0 0

0 0 a33 0 a35 0 a37 a38 0

a41 a42 0 a44 a45 a46 0 0 0

0 a52 a53 a54 a55 a56 a57 a58 0

0 0 0 a64 a65 a66 0 0 0

0 0 a73 0 a75 0 a77 a78 a79

0 0 a83 0 a85 0 a87 a88 a89

0 0 0 0 0 0 a97 a98 a99




.

Notice that supp(A(i : end, j)) 6= {1} for i = 7 and
j ∈ {1, . . . , 6}. It follows that the network is not strongly
structurally controllable, as highlighted by the grey columns.
For instance, it can be verified that every realization with
aij = 1 for all i, j ∈ {7, 8, 9}, a73 = a75 = 1, and
a83 = a85 = −1 is not controllable. �

The necessity of statement (ii) can be further employed to
design a procedure to test whether a pair (A,B) is strongly
structurally controllable, as we do in Algorithm 1.

Algorithm 1: Test for strong structural controllability
Input : Structure pair (A,B);
Require : The pair (A,B) satisfies Assumptions (A1)-(A3);
Output : Whether (A,B) is strongly structurally controllable;

for i = m+ 1 : n do
1 if |supp(A(i : end, j))| 6= 1 for all j ∈ {1, . . . , i− 1} then

return (A,B) is not strongly structurally controllable;

2 else
relabel the nodes such that supp(A(i : end, j)) = {1} for
some j ∈ {1, . . . , i− 1};

3 return (A,B) is strongly structurally controllable;

IV. ENUMERATING STRONGLY STRUCTURALLY
CONTROLLABLE NETWORKS

In this section, we provide lower and upper bounds on
the number of distinct networks that are strongly structurally
controllable with n nodes and m control nodes. Further, we
show that the fraction of strongly structurally controllable
networks converges to zero whenever limn→∞m/n < 1.

Theorem 3.1 implies that the adjacency matrix of a
strongly structurally controllable network has a very specific
structure. In fact, at least n −m columns of the adjacency
matrix have zero entries beyond a certain row index, and are
located within a certain range of columns locations.

Lemma 4.1: (Fixed structure columns) Let |K| = m.
Then, there exist at least mn−m strongly structurally con-
trollable pairs (A,B) that satisfy Assumptions (A1)-(A3).

Proof: As a consequence of Theorem 3.1, the lower
triangular part of the network adjacency matrix contains ex-
actly n−m fixed columns. These columns satisfy supp(A(i :
end, j)) = {1}, i = m + 1, . . . , n, j ∈ {1, . . . , n − 1}, and
have lengths {n−m, . . . , 1}. The remaining m−1 columns
are not constrained. Let pi be the position of the column
with fixed structure and length i. Then, pn−m ∈ {1, . . . ,m},
pn−m−1 ∈ {1, . . . ,m + 1} \ {pn−m}, and, recursively,
pn−m−j ∈ {1, . . . ,m + j} \ {pn−m, . . . , pn−m−j}. Thus,
each column with fixed structure can be independently
positioned in a set of m locations, and the statement follows.

Lemma 4.1 provides an intuitive, yet conservative, lower
bound on the number of strongly structurally controllable
networks. Indeed, the bound is obtained by counting the
number of networks with exactly n − m edges (excluding
self-loops) that are strongly structurally controllable. An
illustration of this procedure is in Fig. 2. Lemma 4.1 can
also be used to characterize the ratio of strongly structurally
controllable networks over the total number of networks. To
this aim, let N be the set of all networks with n nodes, and
let Ωm ⊆ N be the set of strongly structurally controllable
networks with m control nodes.

Notice that |N | = 2n(n−1) due to Assumption (A1). We
now present the main result of this paper.
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Fig. 2. The figure shows all possible SSC networks with 5 nodes and
2 control nodes. Red edges are used to depict networks with exactly
n − m edges, according to Lemma 4.1. Notice that there exist mn−m

different arrangements of these 3 edges. Dashed edges, as well as all edges
represented by upper triangular entries of the adjacency matrix (omitted
here for the sake of clarity), denote the existence of a set of SSC networks
for any combination of the fixed structure columns.

Theorem 4.2: (Bounds on the number of SSC networks)
For every n,m ∈ N,

α ≤ |Ωm|
|N |

≤ α,

where

α = 2
1
2 (−n2+n+m2−m)

m∑
j=1

2(n−m)(m−j)(2n−m − 1)j−1,

α = 2
1
2 (−n2−n−m2+m)+nmmm−n. (3)

Proof: Let A be partitioned as

A =

[
A11 A12

A21 A22

]
(4)

where A11 ∈ Rm×m, A12 ∈ Rm×n−m, A21 ∈ Rn−m×m,
and A22 ∈ Rn−m×n−m.

Suppose that supp(A(i : end, i − 1)) = {1}, i = m +
2, . . . , n, while the tallest column with a fixed structure is
on the left-most side of A21, namely A(m + 1 : n, 1).
We count the number of strongly structurally controllable
networks by enumerating all admissible networks obtained
by fixing the remaining (n−m)(m− 1) free entries left in
A21. Suppose now that the tallest fixed column is A(m+1 :
n, 2). Notice that the free entries on its right-hand side are
(n −m)(m − 2), whereas the free entries on the left-hand
side can be arranged in (2n−m−1) possible ways, i.e. we are
removing the realizatio with supp(A(m+ 1 : n, 1)) = {1}
that has been counted already. Suppose now that the tallest
fixed column is A(m+1 : n, 3). The free entries to its right-
hand side are exactly (n−m)(m− 3), to which we add the
entries on the left omitting realizations with unitary support.
This procedure is repeated until the tallest fixed column is
A(m+ 1 : n, m). According to this procedure, α is

2
1
2 (n(n−1)+m(m−1))

∑m
j=1 2(n−m)(m−j)(2n−m − 1)j−1

|N |
.

Yet, Ωm clearly comprises different positions of all the fixed
columns, hence the first inequality holds.

To prove the upper bound, we recall that, according to
Lemma 4.1 , there are mn−m possible arrangements for the

fixed structure columns. The remaining arbitrary entries in
the lower part of A22 and in A21 are (n − m)(m − 1),
independently of the arrangement of the fixed structure
columns. Therefore, α is obtained by simplifying

mn−m2
1
2 (n(n−1)+m(m−1))+(n−m)(m−1)

|N |
.

The second inequality holds because, by arranging all the
possible combinations of free entries left for each one of
the mn−m placements of fixed structure columns, we count
multiple times matrices (networks) that have already been
considered with different placements.

Theorem 4.2 implies that (i) if the number of control nodes
depends linearly (with rate smaller than 1) on the network
cardinality, then the fraction of strongly structurally control-
lable networks decreases to zero as the network cardinality
increases; also, (ii) if the number of control nodes grows
with the same rate as the network cardinality, then the frac-
tion of strongly structurally controllable networks remains
bounded as the network cardinality increases. These results
are formalized in the following corollary.

Corollary 4.3: (Limiting bounds with a fraction of con-
trol nodes) If m ≤ βn, with 0 < β < 1, then,

lim
n→∞

|Ωm|
|N |

= 0.

Moreover, if m = n − k, for some constant k ∈ N
(independent of n), then

lim
n→∞

|Ωm|
|N |

> 0.

Proof: Notice that, as n → ∞ asymptotically we
have |Ωm|

|N | ≤ α ≈ 2n2
nn

22n2 = nn

2n2 . To prove that this ratio
converges to 0 as the cardinality increases, we show that
log2( 2n2

nn )→∞. Indeed, log2( 2n2

nn ) = n2−n log2(n)→∞.
To prove the second statement and the convergence of the

limit when m = n− k, it follows from Theorem 4.2 that

|Ωm|
|N | ≥ α =

∑n−k
j=1 2k(n−k−j)(2k − 1)j−1

2(n−k)k2k(k−1)/2

=

1
2k

∑n−k
j=1

(
2k−1
2k

)j−1

2k(k−1)/2
.

Notice that 2k−1
2k < 1. Thus, for n→∞ we have

∞∑
j=1

(
2k − 1

2k

)j−1

=

∞∑
j=0

(
2k − 1

2k

)j

=
1

1− 2k−1
2k

,

and it follows

|Ωm|
|N | ≥ α =

1
2k

1

1− 2k−1

2k

2k(k−1)/2
=

1

2k(k−1)/2
.

Fig. 3 and 4(a) show the behavior of α and α and the
results in Corollary 4.3. The following Lemma improves the
bound in Theorem 4.2, and shows that the lower bound α is
guaranteed to converge to 1 for k = 2.
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Fig. 3. This figure shows in a semilogarithmic plot that, when m ≤ βn,
limn→∞ α = 0. Thus, because of Theorem 4.2, the ratio between the
number of SSC networks and the number of possible networks with the
same cardinality and number of control nodes tends to zero.

(a) (b)

Fig. 4. (a) The figure shows that if m = n − k, for some constant
k ∈ N, then limn→∞ α > 0. (b) The figure depicts the improvements in
the convergence value of α when γ is added, according to Corollary 4.4.

Lemma 4.4: (Improved lower bound) Let α be as in (3),
then

α+ γ ≤ |Ωm|
|N |

,

where

γ = 2
1
2 (n(n−1)+m(m−1))

m−1∑
j=2

[
j−1∑
i=1

(
j

i

)](
m

j

)
(2k − 2)m−j .

Proof: Let A be partitioned as in (4). Assume that all
the fixed structure columns are on the right-most side of the
lower triangular part of A. Now, suppose that the shortest
one (one entry) is moved from its position and the entry
A(n, n − 1) is fixed to zero. The term

∑m−1
j=2

(
n−2
j

)
(2k −

2)m−j represents all the possible arrangements of columns
[× . . . ×]T and [0 . . . 0]T among the arbitrary columns
of A21. This term must be multiplied by

∑j−1
i=1

(
j
i

)
, which

counts the positionings of columns [× 0 . . . 0]T and
[0 . . . 0 ×]T. Recall that they must appear at least once
for Theorem 3.1 to be respected.

Fig. 4(b) depicts the improved lower bound, showing
better convergence values with respect to the lower bound
α. Different column structures can be considered to improve
this bound further, but the downside is that complex combi-
natorial terms must be taken into account.

V. CONCLUSION

This paper presents an algebraic characterization of
strongly structurally controllable networks with self loops.
The presented condition relies on control and graph theoretic
notions, and leads to the design of an efficient algorithm
to test for strong structural controllability of a network.
This result is further exploited to enumerate the number
of strongly structurally controllably networks, and to show
that (i) if the number of control nodes depends linearly
(with rate smaller than 1) on the network cardinality, then
the fraction of strongly structurally controllable networks
decreases to zero as the network cardinality increases, and
(ii) if the number of control nodes grows with the same rate
as the network cardinality, then the aforementioned fraction
remains bounded as the network cardinality increases.

VI. APPENDIX

In order to prove Theorem 3.1, we will first present the
following result on partitioned systems controllability.

Lemma 6.1: (Controllability of partitioned systems) Let
the pair (A,B) be partitioned as

A =

[
A11 A12

A21 A22

]
and B =

[
B1

0

]
,

where A11 ∈ Rn1×n1 , A12 ∈ Rn1×(n−n1), A21 ∈
R(n−n1)×n1 , A22 ∈ R(n−n1)×(n−n1), and B1 ∈ Rn1×m. The
pair (A,B) is controllable only if (A22, A21) is controllable.

Proof: Notice that the partitioned dynamics read as[
x1(t+ 1)
x2(t+ 1)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

0

]
u(t). (5)

System (5) is controllable only if the following auxiliary
system is controllable:[

x1(t+ 1)
x2(t+ 1)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
I
0

]
ū(t). (6)

Let ū(t) = v(t) − A11x1(t) − A12x2(t), and notice that
(6) is controllable if and only if the following system is
controllable:[

x1(t+ 1)
x2(t+ 1)

]
=

[
0 0
A21 A22

]
︸ ︷︷ ︸

Ā

[
x1(t)
x2(t)

]
+

[
I
0

]
︸︷︷︸
B̄

v(t).

The controllability matrix of the pair (Ā, B̄) is

C(Ā, B̄) =

[
I 0 0 · · · 0
0 A21 A22A21 · · · An−1

22 A21

]
=

[
I 0
0 C(A22, A21)

]
,

from which we conclude that (6) is controllable only if the
controllability matrix C(A22, A21) of the pair (A22, A21) is
full rank, which concludes the proof.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: (i)⇒ (ii). Given i ∈ {m+1, . . . , n},
let A and B be partitioned as

A =

[
A11 A12

A21 A22

]
and B =

[
B1

0

]
,
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where A11 ∈ Ri−1×i−1, A12 ∈ Ri−1×n−i+1, A21 ∈
Rn−i+1×i−1, and A22 ∈ Rn−i+1×n−i+1. We proceed by
contradiction.

Assume that, for some i ∈ {m + 1, . . . , n}, |supp{A(i :
end, j)}| 6= 1 for all j ∈ {1, . . . , i− 1}. Let 1 be the vector
of all ones, and consider a realization (A,B) where 1 is
an eigenvector of A22, and AT

211 = 0. Notice that such a
realization exists because of Assumption (A1), that is, each
row of A22 contains at least one nonzero entry, and because
|supp{A(i : end, j)}| > 1. For instance, select A22 so that all
its rows sum up to 1, and A21 so that all its columns sum up
to zero. From the eigenvector test [28], the pair (A22, A21)
is not controllable. Finally, from Lemma 6.1 (A,B) is also
not controllable, which contradicts our initial assumption.

From the above reasoning we conclude that, if (A,B)
is strongly structurally controllable, then for every i ∈
{m + 1, . . . , n} there exists j ∈ {1, . . . , i − 1} such that
|supp{A(i : end, j)}| = 1. Assume now that supp{A(i :
end, j)} 6= {1} for some i ∈ {m + 1, . . . , n} and for
all j ∈ {1, . . . , i − 1}. Let h be the first index such that
supp{A(h : end, j)} = {k}, with k > 1, and let Ã be the
matrix obtained from A by switching the h-th and k-th rows
and columns. Notice that supp{Ã(i : end, j)} = {1} for all
i ∈ {m + 1, . . . , h} and for some j ∈ {1, . . . , i − 1}. Fur-
ther, (A,B) is permutation-similar to (Ã,B). By iterating
this procedure two cases are possible: (1) condition (ii) in
Theorem 3.1 is satisfied, that is, supp{A(i : end, j)} = {1}
for all i ∈ {m+1, . . . , n} and for some j ∈ {1, . . . , i−1}, or
(2) |supp{Ã(i : end, j)}| 6= 1 for some i ∈ {h + 1, . . . , n}
and for all j ∈ {1, . . . , i − 1}, which violates our initial
assumption. We conclude that statement (i) implies (ii).

(ii) ⇒ (i). To prove the necessity of condition (ii) we
employ the notions of zero forcing set and coloring rule.
Namely, we show that we can generate a chronological
list of forces that satisfies [23, Theorem 5.5]. According
to statement (ii), for any i ∈ {m + 1, . . . , n} there exists
j ∈ {1, . . . , i− 1} such that i is the only white out-neighbor
of j; thus j forces i. Also, since i > j, the list does not
contain any force of the form i → i. Thus, {1, . . . ,m}
is a zero forcing set of GÃ. We conclude that (Ã,B) is
strongly structurally controllable, and so is (A,B) because
permutation-similar to (Ã,B).
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