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Abstract. Context. Large multi-site neuroimaging datasets have significantly

advanced our quest to understand brain-behaviour relationships and to develop

biomarkers of psychiatric and neurodegenerative disorders. Yet, such data collections

come at a cost, as the inevitable differences across samples may lead to biased or

erroneous conclusions. Objective. We aim to validate the estimation of individual

brain network dynamics fingerprints and appraise sources of variability in large resting-

state functional magnetic resonance imaging (rs-fMRI) datasets by providing a novel

point of view based on data-driven dynamical models. Approach. Previous work

has investigated this critical issue in terms of effects on static measures, such as

functional connectivity and brain parcellations. Here, we utilize dynamical models

(Hidden Markov models - HMM) to examine how diverse scanning factors in multi-

site fMRI recordings affect our ability to infer the brain’s spatiotemporal wandering

between large-scale networks of activity. Specifically, we leverage a stable HMM trained

on the Human Connectome Project (homogeneous) dataset, which we then apply to an

heterogeneous dataset of traveling subjects scanned under a multitude of conditions.

Main Results. Building upon this premise, we first replicate previous work on the

emergence of non-random sequences of brain states. We next highlight how these

time-varying brain activity patterns are robust subject-specific fingerprints. Finally,

we suggest these fingerprints may be used to assess which scanning factors induce

high variability in the data. Significance. These results demonstrate that i) we can

use large-scale datasets to train models that can be then used to interrogate subject-

specific data, ii) we able to recover the unique trajectories of brain activity changes in

each individual, but also iii) we urge caution as our ability to infer such patterns is

affected by how, where and when we do so.

Keywords : Multi-site studies, Reproducibility, Traveling subjects, Hidden Markov

model, Brain dynamics, fMRI, Neuroimaging
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 2

1. Introduction

Untangling the brain’s dynamics at rest is a central aspect in the quest to reveal

the mechanisms underlying the spontaneous wandering of the mind between well-

established, large-scale networks of neural activity [1–3]. The characterization of the

brain dynamics’ spatiotemporal organization into networks has greatly benefited from

the creation of very large neuroimaging datasets [4,5], such as the Human Connectome

Project (HCP) [6, 7], the UK Biobank [8], and, in the context of neurodegenerative

diseases, the Alzheimer’s Disease Neuroimaging Initiative [9]. Large neuroimaging

datasets have, furthermore, played a crucial role in the development of novel biomarkers

for psychiatric and neurodegenerative disorders [10–12]. Yet, appraising how differences

in physical parameters or scanning protocols affect the quality of these data – especially

fMRI recordings – remains an outstanding problem [13–16]. For instance, imaging

sequences are considerably affected by site-dependent differences such as scanner drift

over time, or maintenance routine [16]. Only few recent works have addressed the

problem of data variability in rs-fMRI data across sites [17–20], while some others have

proposed techniques to harmonize multi-site data [10,12,14–16,21,22]. Despite growing

interest in the intricacies inherent to multi-site data, this line of research is still in its

infancy (the first publication appeared in 2013 [23]). Furthermore, although the brain is

a complex dynamical system capable of exhibiting rich nonlinear dynamics [24,25], most

studies to date have relied on static measures (e.g., functional connectivity); and little

to no attempts exist at exploring such issues from the viewpoint of dynamical models.

Data-driven dynamical models are a promising and powerful tool for the analysis

and prediction of the spatiotemporal organization of brain activity [26–29]. These

models allow us to harness the vast amount of spurious information contained in

large datasets [30–32], capture the hierarchical organization of brain activity [33],

enhance brain-computer interfaces [34,35], and may even be employed in clinical settings

[10,36–38]. However, how the inference and identification of dynamical models is affected

by different factors in multi-site data acquisition has yet to be investigated. Additionally,

dynamical models could provide fine-grained insight into the extent of the effect of these

factors on the data.

One limitation of data-driven models is that, generally, large amounts of data are

needed to train the model in the first place. Here, we avoid this issue by employing

two datasets. We leverage the high number of subjects (nHCP > 1000) with rs-fMRI

data available in the HCP dataset [6], to train a stable and reliable Hidden Markov

Model (HMM). An HMM infers brain network dynamics from rs-fMRI time series,

where networks are probability distributions representing graphs. We then apply the

pretrained HMM to the smaller (nTS = 9) Traveling-subject dataset, which consists of a

novel, state-of-the-art collection of rs-fMRI measurements of nine healthy subjects who

traveled to twelve different sites and were scanned under various conditions (different

sites, days, phase encoding, number of channels/coils, manufacturer, scanner; see

Materials and Methods and Supplementary Table 1 for a full list of scanning factors
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 3

and attributes) [22]. This way, we were able to infer subject-specific brain states and

investigate how the retrieval of brain state time courses is affected by an array of scanning

factors. Training the model on the HCP data guarantees that (1) the model is inferred

on a large sample, made of carefully collected and homogeneous data and that (2) the

model is stable and does not over-fit on a dataset of limited size. We illustrate the

methodological approach in Fig. 1.

Thus, we first utilize the trained HMM to validate the findings on rs-fMRI

fingerprints – robust and reproducible quantitative signatures – reported in previous

work [28,33,39]. We then generalize these findings by applying the HCP-trained HMM

to the Traveling-subject dataset. This important step allows us to exploit the HMM to

assess if, and to what extent, mixed scanning factors affect subject-specific fingerprints

and, thus, rs-fMRI recordings. We depart from previous work, which has mostly relied on

static functional connectivity / correlation measures and smaller datasets, by exploiting

dynamical brain network collective states at a finer temporal resolution. Altogether,

this paper juxtapose complementary, yet contrasting, results with respect to rs-fMRI

data analysis: we confirm previous findings reporting subject-specific fingerprints, but

we also shed light on the presence of factors that induce variability in such fingerprints

and, thus, the homogeneity of multi-site fMRI data collections and subsequent inference

from the viewpoint of dynamical models.

2. Materials and Methods

2.1. Datasets

The two dataset used in this study are (1) the HCP 1200-subject distribution (data

available at https://db.humanconnectome.org) and (2) the Traveling-subject dataset

(data available at https://bicr-resource.atr.jp/srpbsts/ after free registration).

The former consists of rs-fMRI data from N = 1206 healthy subjects (age 22-35) that

were scanned twice (two 15-minute runs) on two different days, one week apart, on

a Siemens 3T Connectome-Skyra scanner. For each subject, in total four 15-minute

runs of rs-fMRI time series data with a temporal resolution of 0.72 s and a spatial

resolution of 2-mm isotropic were available. For our analysis, we used time series from

the 1003 subjects with 4 complete scanning sessions. The HCP dataset provides the

required ethics and consent needed for study and dissemination, such that no further

institutional review board (IRB) approval is required.

The Traveling-subject dataset consists of 9 healthy subjects (all men; age range

24–32; mean age 27 ± 2.6y), who were all scanned at each of the 12 sites, producing

a total of 411 10-minute scanning sessions [22]. Each participant underwent three rs-

fMRI sessions of 10 min each at nine sites, two sessions of 10 min each at two sites

(HKH and HUH), and five cycles (morning, afternoon, following day, following week,

and following month) consisting of three 10-min sessions each at a single site (ATT).

In the latter situation, one participant underwent four rather than five sessions at the
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 4
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Figure 1. Conceptual flow of the analysis and modeling approach. (a) rs-fMRI data

from the HCP dataset, collected at the Washington University in St. Louis (WUSTL)

Connectome-Skyra scanner, were used to infer a Hidden Markov Model (HMM). This

model is described by a transition probability matrix, which encodes the probabilities

of jumping from one state to another at each time step. Following [33], 12 states

were identified and the graph depicted in the figure illustrates the largest transition

probabilities (> 0.1) in our model (see also Supplementary Figure 1). The states are

color-coded in order to distinguish which set of strongly connected states (metastate)

they belong to. HMM decoding was then applied to the Traveling-subject dataset,

in which rs-fMRI data was collected from subjects travelling to different sites. The

state time courses from the Traveling-subject dataset were finally used to (1) validate

the subject-specific fingerprints associated with states’ dwelling probabilities and the

2-metastate structure put forth previously [33], and (2) analyze the impact of different

factors, e.g., site, or scanner model, on fMRI measurements. (b) To gauge how different

factors influenced fMRI data collection, the state time courses obtained from the HMM

decoding procedure were compared within and across three different groups: SS (Same

subject Same factor attribute), SD (Same subject Different factor attributes), and DS

(Different subjects Same factor attribute). In this panel, these three categories are

illustrated for the factor ”site”, whose attributes consist of the different geographical

locations.
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 5

ATT site because of a poor physical condition. Thus, a total of 411 sessions were

conducted [8 participants × (3 × 9 + 2 × 2 + 5 × 3 × 1) + 1 participant × (3 × 9

+ 2 × 2 + 4 × 3 × 1)] (see Supplementary Table 1 for all the details on the scanning

protocols). In total, there were two phase-encoding directions (posterior to anterior [P

→ A] and anterior to posterior [A → P]), three MRI manufacturers (Siemens, GE, and

Philips), four numbers of channels per coil (8, 12, 24, and 32), and seven scanner types

(TimTrio, Verio, Skyra, Spectra, MR750W, SignaHDxt, and Achieva). All participants

in all datasets provided written informed consent. All recruitment procedures and

experimental protocols were approved by the institutional review boards of the principal

investigators’ respective institutions (Advanced Telecommunications Research Institute

International [ATR] [approval numbers: 13–133, 14–133, 15–133, 16–133, 17–133, and

18–133], Hiroshima University [E-38], Kyoto Prefectural University of Medicine [KPM]

[RBMR-C- 1098], SWA [B-2014-019 and UMIN000016134], the University of Tokyo

[UTO] Faculty of Medicine [3150], Kyoto University [C809 and R0027], and Yamaguchi

University [H23-153 and H25-85]) and conducted in accordance with the Declaration of

Helsinki.

2.2. Hidden Markov Model

In this work, we utilized Hidden Markov model(s) to capture the dynamical evolution

of brain states in subjects scanned at rest. In neuroscience and neuroimaging, HMMs

are typically used to represent the stochastic relationship between a finite number of

hidden states that underlie the brain’s complex dynamics, whose evolution in time

is captured by the measured data. That is, Hidden Markov modeling is a powerful

technique that enables the description of time series extracted from a system of interest.

The underlying assumption of this class of models is that the observed time series of

data can be explained by a discrete sequence of hidden states, which must be finite

in number. Additionally, to describe a hidden Markov model, an observation model

needs to be chosen. We assume multivariate Gaussian observation model, so that, if xt

denotes the data at time step t, and st represents the state at time step t, we can write,

whenever state k is active,

xt|st ∼ multivariate Gaussian(µk,Σk)

where µk ∈ Rc is the vector of the mean blood oxygen level-dependent (BOLD)

activation for each channel, with c being the number of channels in the data, and

Σk ∈ Rc×c is the covariance matrix encoding the variances and covariances between

channels. The transitions between different brain states depend on which state is active

at the previous time step. Specifically, the probability of a state being active at time t

depends on which state is active at time step t − 1. This is encoded in the Transition

Probability Matrix Θ, in which the entry Θij – the transition probability – denotes the

probability of state i becoming active at the next time step if state j is currently active.
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 6

Formally, by denoting a probability with Pr, it holds that

Pr(st = i) =
∑

j

ΘijPr(st−1 = j)

For large datasets, it is possible to resort to stochastic Variational Bayes inference

to estimate the posterior distribution of each state (µk,Σk), the probability of each

state being active at each time step, and the transition probabilities between each pair

of states Θij [31]. Finally, notwithstanding the fact that in this study the model has

been inferred by concatenating all the subjects – thus implicitly defining the brain states

as the outcome of common brain dynamics – the state time courses are subject-specific.

That is, the states are inferred at the group level, but the time instants at which each

brain state becomes active is subjective and changes between and across subjects.

2.3. Data Preparation and HMM Training

HCP dataset. Following [33], extensively preprocessed HCP ICA time series were

used for the model training. The preprocessing followed the steps of [6, 40] and

is briefly described here. Spatial preprocessing used the procedure described by

[41]. Next, structured artifact removal using ICA was followed by FMRIB’s ICA-

based X-noisefier (FIX) from the FMRIB Software Library (FSL) [42], which removed

more than 99% of the artifactual ICA components in the dataset. Finally, the 50-

dimensional extensively preprocessed time series obtained after group spatial ICA

are freely available at https://www.humanconnectome.org/study/hcp-young-adult/

document/extensively-processed-fmri-data-documentation.

Traveling-subject dataset. The dataset was obtained from https://

bicr-resource.atr.jp/srpbsts/. Hereafter, we describe the preprocessing proce-

dure that was originally reported in [22]. Raw BOLD signals were preprocessed using

SPM8, implemented in MATLAB (R2016b; Mathworks, Natick, MA, USA), The first

10 s of each scan data were discarded to account for T1 calibration. Ensuing preprocess-

ing steps included: slice-timing correction, realignment, coregistration, segmentation of

T1-weighted structural images, normalization to Montreal Neurological Institute (MNI)

space, and spatial smoothing with an isotropic Gaussian kernel of 6 mm full-width at

half-maximum. Thirty-six noise parameters were included in a linear regression model

to remove multiple sources of spurious variance (e.g., six motion parameters, average

signals over the whole brain, white matter, and cerebrospinal fluid) [43]. Time-series

were band-pass filtered using a first-order Butterworth filter [0.01 - 0.08 Hz] to restrict

the analysis to low-frequency fluctuations, which are characteristic of rs-fMRI BOLD

activity [43]. Finally, to reduce the impact of head motion, scrubbing was performed:

framewise displacement (FD) was calculated and volumes with FD > 0.5 mm were re-

moved [44]. Thus, 5.4% ± 10.6% volumes (mean [approximately 13 volumes] ± 1 SD)

were removed per 10 min of rs-fMRI scanning (240 volumes). If the number of volumes

removed after scrubbing exceeded the average of –3 SD across participants, the sessions

were excluded from the analysis. As a result, 14 sessions were removed from the dataset.
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 7

Before combining the HCP time series and the Traveling-subject time series for the

model inference, we matched the temporal resolution of the two datasets. Specifically,

for all results reported in the main text, the Traveling-subject time series were up-

sampled in order to match the same repetition time as the HCP data (from TR = 2.5

s to TR = 0.72 s). We also down-sampled the HCP data from TR = 0.72 s to TR

= 2.5 s to match the Traveling-subject repetition time. However, the model inferred

on HCP down-sampled ICA time-series was not satisfactory (see below). Therefore, we

have chosen to re-sample the Traveling-subject data instead of down-sampling the HCP

data.

The HMM inference was performed on 50-dimensional standardized ICA time

series (0 mean and unitary standard deviation) concatenated along the time direction.

To concatenate HCP rs-fMRI data and the ones from the Traveling-subject dataset,

we proceeded as follows. First, we matched the voxel coordinates of the Traveling-

subject data with the group average spatial maps from the group-ICA decomposition

of the HCP time series. These spatial maps were extracted from the group

average analysis across all the subjects of the S1200 release and are available on

the HCP website: https://www.humanconnectome.org/study/hcp-young-adult/

document/extensively-processed-fmri-data-documentation. Because the spatial

maps are in a gray-ordinate CIFTI format [41], we extracted the xyz coordinates in a

standard stereotaxic space MNI152 by using a mid-thickness surface file for the surface

vertices and the coordinate transformation matrix included in the CIFTI file. Next,

we extracted the time series from the Traveling-subject data corresponding to the same

xyz coordinates of the aforementioned spatial map in Matlab by using the ROI Signal

Extractor provided by the toolbox DPABI [45]. Finally, the HCP group average spatial

map allowed us to obtain the estimated 50-dimensional ICs for the Traveling-subject

data from the extracted time series. To note, once the Traveling-subject rs-fMRI time

series were reduced to 50 ICs, they matched the spatial dimension of the HCP data used

to infer the HMM in [33]. Finally, to train our HMM, we used the publicly available

toolbox HMM-MAR (https://github.com/OHBA-analysis/HMM-MAR) [46]. We inferred

N = 50 models with 12 states (the number of states was chosen based on previous

work [33]) from random initializations, multiple priors, and different combinations of

the available datasets. Specifically, we inferred N1200 = 28 models inferred on time

series from the 1200-subject HCP release only with random priors, N820 = 14 models

inferred on the 820-subject HCP release (a subset of the 1200-subject release, which

was used in the original work on the HMM-derived hierarchical organization of brain

states [33]) with random priors, and NTS = 8 models inferred on the 9 subjects of the

Traveling-Subject dataset using the best model inferred from HCP data only one as a

prior, so that N1200+N820+NTS = 50). The selection of the best model (described below

in detail) took into account both classical model evaluation methods and the definition

of the metrics used in this study.
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 8

2.4. FO Correlation Matrix and Fingerprints Computation

By applying (i.e., decoding) an HMM to a dataset with multiple subjects, we obtained

the state time courses for each subject, from which it is possible to compute the vector

of the Fractional Occupancy (FO) of every state for each subject. Stacking such vectors

in a matrix yielded the FO Matrix R, which is a (no. of subjects) × (no. of states)

matrix that encodes state dynamics similarities across subjects. Each element Rij of

this matrix denotes the fraction of time spent by subject i in state j. Further, by taking

the pairwise correlation of the columns of the FO Matrix R, we obtained the (no. of

states) × (no. of states) FO Correlation Matrix

C = corr(R:,k,R:,`),

where R:,k denotes the column vector of the FO of all subjects for the k-th state. This

matrix captured the overall organization of brain dynamics across states, and its entries

quantified the affinity between the FOs of each pair of states across all subjects. In other

words, the FO Correlation Matrix highlighted the similarities and dissimilarities between

brain states, and encoded the temporal characteristics of brain network dynamics. The

organization of the FO Correlation matrix revealed (both by visual inspection and by

numerical investigation) the emergence of two groups of states, known as metastates.

Metastates are distinct sets of functional network states that the brain has a propensity

to cycle within, and have been shown to hierarchically group brain states into a 2-

metastate structure [33].

We made use of the information encoded in the FO Correlation Matrix to calculate

two different subject-specific metrics in the Traveling-subject data that were key in

this study: the Metastate Profile (MP) Differences and the Fractional Occupancy (FO)

Correlations. Loosely speaking, the former provided the difference between the time

spent in the two distinct metastates that emerged in our model, compatibly with

previous findings [33]. The latter provided the pairwise correlation between the FO

vectors of different scanning runs. To derive these metrics, we first construct the MP

matrix, whose entry (i, k) represents the FO of the second metastate (states 6 to 12)

minus the FO of the first metastate (states 1 to 4) for the subject i during the scanning

session k. We excluded state 5 from our analysis as it was uncorrelated from the other

states, had the highest variance, and was previously shown to be associated with head

motion in the scanner [33]. Formally, given the FO Matrix R for the run k, MPi,k is

computed as follows:

MPi,k =
12∑

j=6

Ri,j −
4∑

j=1

Ri,j.

Then, the MP Difference between run k1 for subject i1 and run k2 for subject i2 reads

as

MP Difference = |MPi1,k1 −MPi2,k2|.
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 9

Instead, the FO Correlation between run k1 for subject i1 and run k2 for subject i2 is

defined as

FO Correlation = corr(FOi1,k1 ,FOi2,k2),

where FOi,k denotes the 11-dimensional column vector of the FOs of all 12 states minus

state 5 for subject i and run k.

It is worth noting that exploiting and comparing the two metrics defined above gave

us a remarkable advantage with respect to utilizing only the model’s TPM. Namely,

because of the stochastic nature of the model inference, we were able to avoid the

non-uniqueness issue of the TPM and, at the same time, to reliably capture the

temporal characteristics of the state time courses. In fact, due to the availability

of numerous scanning sessions for each subject, both metrics could be computed not

only across different subjects, but also at the individual level. We capitalized on the

robustness of the HMM model inferred on HCP homogeneous data to reveal, through

MP Differences and FO Correlations, temporal information of brain state time series

in the heterogeneous Traveling-subject dataset. These metrics allowed us to perform a

richer analysis rather than simply limiting ourselves to the study of a model’s TPM –

in this context it was one single matrix valid for all subjects (Fig. 1(a)).

2.5. Model Selection

To select the model that best fit the data, we computed the free energy for each of

the fifty different models that were inferred. The free energy provides a bound on the

log-evidence for any model [47], and can be derived as the sum of the model average

log-likelihood, the negative entropy and the Kullback–Leibler divergence [48]. Because

the data sets have different sizes (HCP1200, HCP820, and Traveling-subject only), we

corrected the free energy according to the size of the dataset used for the model inference

in order to compare different models fairly. Next, we ranked the N = 50 models inferred

in this study based on their free energy, and chose the one minimizing this quantity.

Based on previous findings [33], and because the definition of MP Difference strongly

rely on the hierarchical structure of the inferred states, we also verified that the selected

model presented a sufficiently marked 2-metastate structure. To take this topological

notion into account, we computed for each model the Euclidean distance from the ideal

FO Correlation Matrix (Supplementary Figure 2), which gauged how well the metastates

emerged in the model’s FO Correlation Matrix. Mathematically, this distance is defined

as:

di =

∥∥∥∥∥∥∥
Ci −




14×4 04×1 −14×7

01×4 1 01×7

−17×4 07×1 17×7




∥∥∥∥∥∥∥
for i = 1, . . . , 50, where Ci is the FO Correlation Matrix of model i, 1 is a matrix of

all ones, 0 is a zero matrix, and ‖ · ‖ denotes the Euclidean norm. The model that we

have used in this study was not only the one with the lowest free energy, but also the
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 10

one with and the smallest di. Thus, our model fit the data the best and simultaneously

embodied a pronounced 2-metastate structure.

Finally, to verify the robustness of our model when applied to time series

other than the HCP data, we applied the HCP-trained HMM to autoregressive data

(Supplementary Text and Supplementary Figure 3). We found that this control analysis

yielded state time courses that spend most of the time on state 5. Moreover, state 5

was not only uncorrelated to all other states in our model, but had previously been

found to be associated to motion artifacts in HCP data [33]. This result substantiates

the robustness of our results in regards to application of our HCP-trained model to the

Traveling-subject time series.

2.6. Subject Classification Using Brain Dynamics Fingerprints

To support our findings, and the robustness of the subject-specific fingerprints to data

heterogeneity, we used machine learning on these fingerprints to perform subject-level

classification. Specifically, individual subjects from the Traveling-subject dataset were

classified based on their Metastate Profiles and Fractional Occupancies. We detail the

procedure hereafter.

For each scanning factor, we trained a logistic regression classifier – which minimizes

the cross-entropy loss – with the scikit-learn machine learning package [49] in Python

3 with the following parameters: default L2 penalty, default L-BFGS-B algorithm [50],

and ‘multi class’ option set to ‘multinomial’. The classification task was repeated

multiple times by splitting the data into different training and validation sets as follows.

We repeated the training and validation of the linear regression classifier for each factor

attribute (e.g., for the scanner parameter, we repeated the procedure for each scanner

model) by performing a leave-one-attribute-out cross-validation: we chose as validation

set all the samples (i.e. fingerprints) belonging to one factor attribute, and we used

as training set all the remaining samples. This analysis allowed us to (1) compare the

classification based on brain dynamics fingerprints in the presence of different scanning

protocols and heterogeneous data with baseline chance level, and (2) investigate which

scanning factors tend to affect data collections more than others.

3. Results

3.1. Test-retest reliability of brain dynamics estimation

We first inferred the HMM by leveraging the large amount of rs-fMRI data in the HCP

dataset. Due to the stochastic nature of the HMM inference – which is based on the

probabilistic process of Bayesian inference – the results might vary at each new model

training. Thus, we inferred multiple models and selected for further analyses the one

with the best fit. We show in Fig. 2 the HMM selected and employed in this work, which

is the model that ranked best with respect to free energy, displayed the smallest distance

from the ideal FO Correlation Matrix, and was trained solely on HCP time series (see
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Figure 2. HCP-trained Hidden Markov Model. (a) Transition Probability Matrix.

The emergence of the two metastates can be recognized by simple visual inspection,

and was confirmed by a community-detection algorithm. (b) FO Correlation Matrix.

The two metastates are clearly delineated, with state 5 being mostly uncorrelated from

all other states [33]. The state FOs are highly correlated (Person correlation > 0.8)

within the two metastates across subjects.

also Supplementary Figure 4). Further details and matrices of notable models different

from the best one can be found in Supplementary Figure 5-6.

Given the stochastic nature of the Variational Bayes approach used to infer the

HMM [31], it was unlikely that one would obtain an exact replica of the model originally

reported in [33]. However, as displayed in Fig. 2(b) and Supplementary Figure 6,

all models showed a clear 2-metastate structure, validating the claims that resting-

state brain dynamics tend to be hierarchically organized in two larger sets of states

(one associated with higher-order cognition, and the other one with sensorimotor and

perceptual states, as originally reported in [33]). Moreover, a visual inspection of the

TPM matrix alone suggested the emergence of two groups of states that tended to

be more (statistically) connected. We confirmed this hypothesis by employing the

generalized Louvain algorithm [51] for the discovery of communities in networks.

To note, we also used the HCP-derived TPM as a prior to train an HMM on the

Traveling-subject dataset alone. This choice of prior ensured that the inference started

from established initial conditions before dealing with the small size of the Traveling-

subject dataset. Surprisingly, although the number of subjects in the Traveling-subject

dataset was much smaller than the number of subjects in the HCP dataset, the 2-

metastate structure still emerged in the model’s matrices (Supplementary Figure 6(d)),

as also confirmed by the generalized Louvain algorithm. This result highlighted that,

notwithstanding mixed scanning protocols and small sample, the metastates could be

retrieved and unfold as a robust feature of resting-state data.

3.2. Metastate Profiles and Fractional Occupancies Are Robust Subject-Specific

Fingerprints

Previous findings reported that brain dynamics is subject-specific and nonrandom. To

extend this notion, we applied the best-fitting, HCP-trained HMM, to the Traveling-
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Figure 3. Metastate Profile Differences and FO Correlations computation, and

within-subject comparison. (a) Schematic illustrating the computation of the MP

Differences and FO Correlations. To note, subject i1 and i2 can mean both the same

subject’s data but from different scans, or different subjects. (b) Within-subject MP

Differences and FO Correlations in the HCP (in red) and the Traveling-subject (TS,

in purple) datasets. We report hereafter the median and interquartile range. For MP

Differences (left panel) in the HCP data: median = 0.13 [0.06 0.22]; for MP Differences

in the TS data: median = 0.19 [0.09 0.35]. For the FO Correlations (right panel) in

the HCP data: median = 0.74 [0.22 0.89]; for FO Correlations in the TS data median

= 0.88 [0.78 0.94].

subject dataset, obtaining the state time courses for each 10-minute scanning session.

Next, from each individual’s state time courses, we calculated the MP Differences

and the FO Correlations. We summarize the derivation of these two measures in

Fig. 3(a). To note, here we use the notation subject i1 and i2 for a general case,

but this naturally applies to two different scans belonging to the same subject (i.e.,

within-subject comparison).

Before delving into the main analyses of the Traveling-subject dataset, we

considered the consistency of these two measures of brain activity dynamics both in

the HCP and the Traveling-subjects datasets. In both datasets, there were multiple

scans per subject (mHCP = 4 and mTS > 42, respectively), allowing us to compute MP

Differences and FO Correlations within subjects. Given the high homogeneity of the

HCP dataset, we expected this to provide a lower bound in terms of dissimilarity between

scans belonging to a given subject. Notwithstanding inherent differences (2-sample

Kolmogorov-Smirnov test, k = 0.19 and p < 10−3 for MP Differences, k = 0.329 and

p < 10−3 for FO Correlations), both MP Differences and FO Correlations distributions

displayed remarkable similarity in the distributions of MP Differences (peak = 0.06 for

HCP data and peak = 0.06 for TS data, Fig. 3(b) left plot) and FO correlations (peak

= 0.9 for HCP data and peak = 0.93 for TS data, Fig. 3(b) right plot). Moreover, the

interquartile range also had large overlap, particularly for MP Differences (Fig. 3(b)

legend). These results provided initial evidence for the presence of – and our ability to

infer – subject-specific brain dynamics patterns.

We next interrogated in detail the Traveling-subject dataset. Each scanning factor

considered in this study had multiple distinct attributes. For instance, for the factor
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 13

scanner manufacturer there were sessions recorded through scanners produced by three

different manufacturers (Siemens, Philips, and General Electric, see also Supplementary

Table 1). We computed the values of MP Differences and FO Correlations for all the

runs of the same subject and the same factor attribute (SS), the same subject and

different factor attributes (SD), and different subjects but the same factor attribute

(DS). A 1-way ANOVA on the median MP Differences (Fig. 4(a)), and on the median

FO Correlations (Fig. 4(b)), resulted in a highly significant main effect of comparison

group (SS, SD, DS), for both measures (MP differences: F2,15 = 7.64, p = 0.005; FO

correlations: F2,15 = 19.76, p < 10−3). Applying post-hoc comparisons, we found that,

on average, the median MP Differences for the same subject within the same factor (SS)

were significantly lower than the median MP Differences for different subjects within

the same factor (DS), (∼ 38% lower, 2-sided t-test, t10 = −3.59, p = 0.005, Fig. 4(a)).

Analogously, on average, the median FO Correlations within the same factor for the

same subject were higher than across different subjects (∼ 10% higher, 2-sided t-test,

t10 = 8.15, p < 10−3, Fig. 4(b)). Additional evidence for how the state time courses of a

given subject (within the same factor attributes) tended to be particularly similar was

also evident in the FO Correlations median values of the group SS being significantly

higher than the median FO Correlations in the groups SD and DS (Fig. 4(b)). These

findings support the hypothesis that MP Differences and FO Correlations are robust

subject-specific measures, as they were resilient to the single effect of all the factors

considered in this study.

To further substantiate these results, we used a simple machine learning approach

to predict individuals based on their brain dynamics fingerprints. We applied logistic

regression to classify the individuals in the Traveling-subject dataset by a leave-one-

attribute-out cross-validation procedure (Materials and Methods). In brief, for each

factor, we repeated the training and validation of the classifier as many times as the

number of factor attributes, using each time the samples of one left-out factor attribute

as validation set and the remaining samples from all other attributes as training set.

We found the accuracy of the classification to be consistently well above the theoretical

chance level (9 subjects: 1/9 ≈ 0.11), scoring on average 0.22±0.02 for the classification

based on MPs (a single value for each factor attribute) (t-test against chance level,

t5 = 16.4, p < 10−4), 0.30 ± 0.03 for the classification based on FOs (a length-11

vector for each factor attribute) (t-test against chance level, t5 = 17.62, p < 10−3), and

0.28± 0.02 when using the combined measures (t-test against chance level, t5 = 21.56,

p < 10−3). We report the classification results for each factor in see Supplementary

Table 3 (see also Supplementary Figure 7).

3.3. In rs-fMRI Data, Not All Factors are Equal

Given that the Traveling-subject dataset contained a considerable number of factors,

we inquired which of these factors, and to what extent, influenced the subject-specific

fingerprints defined on the HMM state time courses. Specifically, we asked which factors
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Figure 4. Metastate Profile Differences and FO Correlations within vs between

subjects, across scanning factors. (a)-(b) The average median of the MP Differences

and FO Correlations for the three sets SS (Same subject Same factor attribute), SD

(Same subject Different factor attributes), and DS (Different subjects Same factor

attribute). MP Differences are the absolute difference between the Metastate Profiles

of different runs, while FO Correlations are the pairwise correlation between the

Fractional Occupancy vectors of different runs. The set SS consistently displays

lower MP Differences and higher FO Correlations than the set DS, confirming the

fact that such metrics are subject-specific. The fact that the set SD lies between

SS and DS suggests that some scanning parameters influence the aforementioned

metrics for resting-state scans of the same subject, but not as much as inter-individual

differences. Bars represent the median, error bars the SEM. Statistical comparisons

were performed with 2-sided t-tests. (c)-(h) Distributions of values for both metrics and

all subjects pooled. The set SS comprises the MP Differences (resp., FO Correlations)

computed for each subject within the same factor attribute (e.g., for ‘Days’, day 1),

and the SS distribution displays these values for all subjects; the set SD consists of

the MP Differences (resp., FO Correlations) computed for each subject across different

attributes of the same factor (e.g., all possible combinations within ‘Days’), and the

SD distribution displays these values for all subjects; finally, the set DS consists of the

MP Differences (resp., FO Correlations) computed across all subjects within the same

factor attribute, and the DS distribution displays these values for all attributes of the

same factor. For all the distributions, the black dashed lines illustrate the mean. In

panels (g) and (h) the difference between SS and SD distributions was not significant

(Table 1).

affected the MP Differences and the FO Correlations most, both within and across

subjects. Thus, we compared three different groups (SS, SD, and DS, as illustrated

in Fig. 1(b)) of MP Differences and FO Correlations, for six different factors, each

containing at least two attributes (see Supplementary Table 1 for the full list of factors

and associated attributes).
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Table 1. 2-Sample Kolmogorov-Smirnov test results for MP Differences and FO

Correlations. The check-mark indicates that the difference is significant (i.e., the null

hypothesis that the samples are drawn from the same underlying continuous population

can be rejected at the 5% significance level), and the cross otherwise. All p-values

have been FDR-adjusted [52] and they all satisfy p < 10−3 when the null hypothesis

is rejected. Test statistics are reported in Supplementary Table 2. SS: Same subject

Same factor attribute. SD: Same subject Different factor attributes. DS: Different

subjects Same factor attribute.

MP Diff. FO Corr.

Factor

SS

vs

SD

SD

vs

DS

SS

vs

SD

SD

vs

DS

1. Site 3 3 3 3

2. Day 3 3 3 3

3. Phase 7 3 7 3

4. Channels/Coil 3 3 3 3

5. Manufacturer 3 3 3 3

6. Scanner 3 3 3 7

Although different runs always carried some variability, some factors seemed to

influence the MP Differences and the FO Correlations more than inherent inter-subject

differences. We summarize the main results of this comparison in Fig. 4 and report

the additional ones in Supplementary Figure 8. We also report in Table 1 the results

of Kolmogorov-Smirnov nonparametric tests between all the distributions of values for

the groups of MP Differences and FO Correlations. More in detail, by comparing the

distributions of values for both metrics between the sets SS (Same subject and Same

factor attribute) and SD (Same subject and Different factor attributes), we found them

to be statistically different (p < 10−3, see Table 1) for all factors except for the phase

encoding direction, as also noticeable in Fig. 4(g)-(h). It is worth noting that the median

MP Difference of any given subject displayed only small changes in the comparison

within attribute vs. between attributes for all factors (2-sided t-test, t10 = −1.55,

p = 0.15); compatibly, the median FO Correlations were, on average, ∼ 6.5% higher in

the group SS than in the group SD (2-sided t-test, t10 = 3.43, p = 0.007).

Additionally, the machine learning classifications of brain dynamics fingerprints

described earlier were qualitatively generally in agreement with these findings. Leave-

one-attribute-out classification revealed that, for both fingerprints, the accuracy in

predicting individual subjects was the lowest when the training and validation sets

were based on different days (see Supplementary Table 3).

To further evaluate the influence that different scanning variables have on MP

Differences and FO Correlations, we directly compared their effects across these

fingerprints. We first analyzed the raw medians of the distributions of MP Differences
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Figure 5. Effect of scanning factors within and across MP Differences and FO

Correlations distributions. The dashed line represents the diagonal y=x. (a) The x

and y axes represent the median of MP Differences and 1 - median of FO Correlations,

respectively, for different scanning factors in different groups SS, SD, and DS, along

with the standard error of mean. The median of MP Differences is more affected by

all of the scanning factors (Wilcoxon signed-rank test, z = 3.68, p < 10−3). (b) The

effect size (Cohen’s d) values obtained by comparing the log-transformed distributions

of the MP Differences and FO Correlations across different scanning session factors

and attributes. The ellipses represent the least squares minimization of the distance

from the cloud of points for each of the three sets [53]. The largest effect sizes were

consistently caused by the factors site and day, for all the comparisons between groups

of distributions. (c) Median differences between the sets SD and DS. Positive values

suggest that the noise induced in our metrics by different scanning factors is larger

than the inherent inter-subject differences. The factor scanner is depicted differently

as it was not statistically significant for the FO Correlations (see Table 1).

and FO Correlations for each scanning factor in the groups SS (Same subject Same

factor attribute), SD (Same subject Different factor attributes), and DS (Different

subjects Same factor attribute). We found that, while both fingerprints possessed a

shared variance (Fig. 5(a), Coefficient of determination R2 = 0.375), they also provided

independent information. In fact, as evident not only by their distributions of values in
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 17

Fig. 4, MP Differences displayed consistently larger median differences within the three

groups of values (SS, SD, DS) than FO Correlations (Fig. 5(a), 2-sided Wilcoxon signed

rank test, z = 3.68, p < 10−3).

Next, to achieve an unbiased estimate of the effect size of each factor on the

distributions of MP Differences and FO Correlations, we computed the Cohen’s d from

the log-transformed distributions of the MP Differences and FO Correlations across

all scanning factors, between groups SS-SD, and SD-DS. Fig. 5(b) highlights how the

dissimilarity between brain dynamics fingerprints was the greatest when comparing, for

the same scanning factor, measures from the same subject and measures from different

subjects. Based on this observation, we assessed which scanning factors influenced the

median values of the groups SD and DS the most by computing mSD −mDS, where m

denoted the median, for the MP Differences, and (1 − mSD) − (1 − mDS) for the FO

Correlations. Notice that a positive value indicates that the noise induced by different

factors (group SD) has a larger effect than than inter-subject differences (group DS). In

accordance with the analysis above, we found that most of the scanning factors seemed

to induce less noise on our metrics than the inter-subject differences. Therefore, while

site and day were the co-variate associated with the largest effect in the two groups SS

vs SD and SD vs DS (Fig. 5(b)), the results in Fig. 5(c) suggest that the number of

coils and the manufacturer are the only factors for which we can robustly estimate the

effect on the data, beyond inter-subject differences.

4. Discussion

In this work, we addressed the issues of reproducibility and variability of fMRI data from

the angle of brain dynamics. We leveraged the large HCP collection of rs-fMRI data

to infer a hidden Markov model capable of describing brain state time courses at the

subject level. By applying such a model to a dataset of traveling subjects, we found that

brain network dynamics displayed signature fingerprints that were robust to different

physical and temporal factors affecting the data that populates multi-site collections of

neuroimaging data. Precisely, we found that MP Differences and FO Correlations are

reliable, stable individual traits, as shown by the SS/DS differences, when taken across

all factors (Fig. 4(a)-(b)). This study corroborates and complements previous work that

found that the emergence of temporal patterns of brain activity tend to repeat more

similarly within the same subject and over time [28,33,54]. This result promotes further

investigations on the dynamical characteristics of brain states.

Recent years have witnessed a growing interest in the identification and

characterization of the factors that tend to introduce spurious effects in multi-site fMRI

recordings, endangering the reproducibility and the overall quality of the results that

may be inferred from these data. The first warnings came from a study that investigated

sources of nuisance variation across multiple sites and their impact on rs-fMRI data [23],

followed by a number of studies that reported mostly consistent results [14–16, 19, 20].

Although we used different methods, our finding that different scanning factors introduce
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 18

noise into brain dynamics fingerprints (as can be seen by the SS/SD comparisons in

Fig. 5(b)) is in line with prior reports [16, 19]. Furthermore, the present study made

use of larger datasets. The Traveling-subject dataset contains the largest number of

subjects out of all the aforementioned studies. To date, only [16] has more sites than

the Traveling-subject dataset used in this study, but it has the drawback of scanning

only a single subject. The Traveling-subject dataset also allowed for the analysis of

some scanning factors – such as the numbers of channels per coil or different scanner

models within the same vendor – that have not been taken into consideration in previous

work, giving more breadth and depth to our findings. Nevertheless, it is important to

stress out that the potential variability brought in by scanning factors may not always

be a necessarily negative feature. In fact, such variability may even be a powerful test

for reproducibility of some findings. For instance, although different scanning factors

may be confounds for certain analyses (e.g., comparing participant populations from

different sites), they can also be used to test the robustness of a model when generalizing

analyses across sites with different scanning parameters. Our results complement, from

a dynamical point of view, both seminal and more recent work reporting more dissimilar

resting-state networks inter-subject than intra-subject [16,23,39,55].

Functional connectivity – typically computed as the correlation between time

series representing the average activity in a brain region – has been the mainstay

in the analysis of variability in fMRI data. Previous work has demonstrated that

a sizable amount of recordings from the same site enables precise measurements of

individual variations in functional connectivity [39], and that individual differences

in functional networks are not affected by anatomical misalignment [55]. Here, we

complement such studies by showing that individual signatures can still be (easily)

recovered within limited recordings from multiple sites (i.e., in the Traveling-subject

dataset). To note, the comparison of functional connectivity between scanning sessions

is inherently different from the comparison of state time courses. Differently from

functional connectivity computed over a whole scanning session, the HMM captures the

local temporal wandering of brain activity across states (networks). Therefore, while

comparing functional connectivity between different subjects may be akin to comparing

longer-term traits, comparing state time courses between subjects may be more closely

aligned to comparing a repetition of sequences of brain states at rest.

While the aforementioned studies on functional connectivity have significantly

increased our understanding of the brain as a system that obeys network-wide principles,

they are mainly agnostic to temporal dynamics within the scanning sessions. This may

prevent the level of precision that could at times be the most clinically relevant [56].

Differently from [16, 20], where time seemed to play a negligible effect, we found that

different scanning days greatly affected our estimation of brain network dynamics.

As mentioned earlier, an intuitive explanation for this apparent discrepancy is that

functional connectivity tends to be associated to more coarsely defined subjective traits,

whereas an HMM, being inherently more sensitive to temporal differences, is apt to

capture more instantaneous cognitive processes. It is worth noting that our findings
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Brain network dynamics fingerpr̊aints are resilient to data heterogeneity 19

do not go against the claim that functional connectivity networks remain a reliable

subject-specific fingerprint over long period of times, but rather we suggest that brain

state trajectories can differ extensively between days, probably due to different cognitive

or mental processes. As such, we suggest that dynamic and static measures in fact

carry complementary information, which may provide additional insight when used in

combination. However, due the limited number of scanning sessions taken on different

days in the Traveling-subject dataset (see Supplementary Table 1), and to the inter-

subject variability being larger than the variability across different factors (see Fig. 5(c)),

future studies will need to further validate this fact.

How do HMMs compare with the sliding window approach? The sliding window

analysis is typically used to improve the temporal definition of functional connectivity

studies [57]. Albeit being intrinsically easier to set up, it has crucial limitations. Namely,

the sliding window size is constrained by a trade-off between time resolution and quality

of the results, and the conclusions from sliding window studies tend to be affected by

sampling variability [58]. Conversely, HMM is as fast as the data modality allows, since

it provides instantaneous likelihood of high correlation between brain signals [33].

If the goal of a study is a robust and detailed description of a system’s dynamics,

the HMM approach requires large amounts of data for training purposes, thus appearing

not suitable to analyze small cohorts of subjects. However, in this study we give proof-

of-concept that one can use a very large dataset (i.e. HCP) to infer an HMM, which can

then be applied to a smaller dataset. Our results indicate that this procedure is robust.

Interestingly, if only a relatively small number of subjects is available for the inference

process, it is still possible to recover a coarser – and nonrandom – representation of

the brain dynamics by using the TPM inferred from a large dataset as a prior (see

Supplementary Figure 6(d)). Thus, detailed analyses and claims based on hidden

Markov modeling should be gauged on the size of the available data. This is a common

requirement in neuroimaging studies, as functional connectivity studies also require large

amount of data to enable precise measurements [39].

Despite its capabilities, hidden Markov modeling is based on some premises (see

also [31, 33] for thorough discussions). It is worth noting that the HMM builds on the

Markovian assumption, theorizing that we can predict, based on the state we are at time

t, which state is more likely to follow at time t+1. Yet, while the brain may violate this

assumption due to established long-range temporal dependencies [4], FO Correlations

and MP Differences inherently display information that appears at longer time scales.

There are some limitations to this work. For example, while the decoding approach

utilized here - training the HMM on the HCP data, and infer brain states trajectories

in the Traveling-subject dataset, is a strength of this study, it is also one of its

limitations. The HCP and Traveling-subject datasets harbor some differences relating

to the scanning protocols or even the countries in which the data were collected (US

and Japan). For instance, the sampling rate of the two datasets were originally different

(TRHCP = 0.72 s and TRTS = 2.5 s). As such, the up-sampling of the Traveling-subject

dataset may have been sub-optimal and thus bias the overall HMM-based brain state
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dynamics estimation. Yet, the presence of these very differences appear to corroborate

the finding that brain dynamics fingerprints are subject-specific. Specifically, we still

find that, on average, the MP Differences (resp., FO Correlations) are lower (resp.,

higher) within subjects than across subjects, even when comparing runs with different

scanning parameters. The fact that, at the within-subject level, these two measures

had very similar values to those obtained from the HCP dataset (where both model

and fingerprints were derived from the same data) provides strong support for this

interpretation (i.e., brain dynamics fingerprints are subject-specific), such that it is

unlikely that these results are due to inherent bias or noise. A second limitation may

arise from the factors that were considered in the Traveling-subject dataset. Although

there are several factors, some with many attributes (e.g., there are 12 sites), these

factors are sometimes nested within each other. For instance, within the same phase

encoding attribute there are scans belonging to different sites. This aspect may have

partly influenced (reduced) the effect size of such factors which are heterogeneous with

respect to other factors, while factors such as day or site would remain unaffected, since

these scans were recorded at the same site, with the same protocol. Above all, while

the Traveling-subject dataset allowed us to investigate the nuisance effect of multiple

variables, it did not offer any insight into other relevant scanning factors such as TR

length, the duration of the scanning session, and voxel sizes. To enhance our collective

appraisal of the sources of variability in heterogeneous collections of rs-fMRI data, it

will be important to generate datasets that include variations along these additional

dimensions.

Given the considerable recent advances in inference techniques [31,59,60], and the

ever-increasing availability of computational power, our work further suggests that the

HMM is, and, most importantly, will be, a powerful technique to explain and interpret

the dynamic aspects of the brain. Furthermore, the possibility of inferring an HMM on

a very large dataset to apply it to a much smaller one has important implications for

clinical applications. In the future, perhaps with even more data, these general models

could be built and then utilized to infer subject-specific fingerprints in other smaller

cohorts and be used for a more personalized approach to treatments. In other words,

a one-size-fits-all approach could be employed to build the model in its general terms,

consequently allowing us to move to a personalized course of action by evaluating the

model at the individual level. For instance, closed-loop fMRI neurofeedback [61,62] could

significantly benefit from these models, which will allow for a more holistic approach to

the dynamical properties of mental and cognitive processes, particularly from a clinical

perspective [37, 56,63,64].

5. Conclusion

In this work, we address the important issues of reproducibility and variability of fMRI

data. We leveraged the large, homogeneous HCP collection of resting-state data to

reliably infer a hidden Markov model capable of describing the brain state time courses
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at the subject level. By applying such a model to a dataset of traveling subjects, we

show that dynamical states can be estimated reliably. Specifically, we find that brain

network dynamics displays fingerprints that are robust to different scanning factors and

distinctive for each subject. Further, we explore which scanning factors impact measures

of brain dynamics the most, and what is the magnitude of their effect. We find that,

amongst the scanning factors available in our dataset, sites and days tend to induce

higher variability in the estimation of individual brain state time courses. However, due

to the large noise induced by inter-subject variability and the limited sample size, this

claim will need further validation by future studies.

These results enable and promote further investigations on the dynamical

characteristics of brain states. Once a good model is inferred, it can be applied to

a battery of different goals, such as the analysis of task-based datasets, the examination

of data collections from subjects with neurological disorders, and the promising use in

clinical or rehabilitation settings, for instance by using brain state inference in clinical

populations to estimate the best time for providing a given treatment.
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