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Abstract

In this work we propose a graph-based learning framework to train models with
provable robustness to adversarial perturbations. In contrast to regularization-
based approaches, we formulate the adversarially robust learning problem as
one of loss minimization with a Lipschitz constraint, and show that the saddle
point of the associated Lagrangian is characterized by a Poisson equation with
weighted Laplace operator. Further, the weighting for the Laplace operator is
given by the Lagrange multiplier for the Lipschitz constraint, which modulates
the sensitivity of the minimizer to perturbations. We then design a provably
robust training scheme using graph-based discretization of the input space and a
primal-dual algorithm to converge to the Lagrangian’s saddle point. Our analysis
establishes a novel connection between elliptic operators with constraint-enforced
weighting and adversarial learning. We also study the complementary problem of
improving the robustness of minimizers with a margin on their loss, formulated as
a loss-constrained minimization problem of the Lipschitz constant. We propose
a technique to obtain robustified minimizers, and evaluate fundamental Lipschitz
lower bounds by approaching Lipschitz constant minimization via a sequence of
gradient p-norm minimization problems. Ultimately, our results show that, for
a desired nominal performance, there exists a fundamental lower bound on the
sensitivity to adversarial perturbations that depends only on the loss function and the
data distribution, and that improvements in robustness beyond this bound can only
be made at the expense of nominal performance. Our training schemes provably
achieve these bounds both under constraints on performance and robustness.

1 Introduction

Sensitivity to adversarial perturbations is one of the main limitations of data-driven models, and a
hurdle to their deployment in safety-critical applications. Improving adversarial robustness requires
adjusting the worst-case sensitivity of the data-driven input-output map, which is characterized by
its Lipschitz constant. Training under a Lipschitz regularization or constraint is therefore a natural
way of improving adversarial robustness, which has led to many works on the subject [1, 2]. Yet, a
fundamental understanding of the limitations of this approach, as well as a general framework for
training models that are provably robust to adversarial perturbations, remain critically lacking.
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Motivated by this need, we consider the problem of adversarially robust learning, formulated as a
loss minimization problem with a Lipschitz constraint:

inf
f∈Lip(X;Y)

E(x,y)∼σ [` (f(x), y)]︸ ︷︷ ︸
,Lσ(f)

, s.t. lip(f) ≤ α, (1)

where X and Y are the input and output spaces equipped with distance functions, ` is the loss
function for the learning problem, σ the data-generating distribution and the search space is the
space Lip(X;Y) of Lipschitz-continuous maps from X to Y with an upper bound α on the Lipschitz
constant. This class of problems includes, for instance, the problem of image classification with a
constraint on the Lipschitz constant of the classifier. In this case, x denotes an image, y a probability
vector over the space of labels and σ captures the relation between images and labels. In (1), we do
not restrict our attention to any finite-dimensional subspace of Lip(X;Y), as done when a particular
machine learning model is chosen (for instance, neural network, where the dimension of the search
space is specified by the network structure). Instead, we focus on the infinite-dimensional learning
problem to derive insights and fundamental bounds for the underlying adversarial learning problem.
Finally, imposing a hard constraint on the Lipschitz constant (as opposed to a regularization term)
allows us to provide hard guarantees on the robustness of the minimizer to adversarial perturbations.

Contributions. In this paper we characterize fundamental robustness bounds for machine learning
algorithms, and design provably robust training schemes. Our approach creates, to the best of our
knowledge, a novel and useful bridge between the nascent theory of provably robust learning and
the classic theories of elliptic operators, partial differential equations, and numerical integration.
The technical contributions of this paper are twofold. First, in Section 2 we consider Problem (1)
of designing a data-driven map to minimize the loss function, with a desired bound on the map’s
Lipschitz constant. Under assumptions on strict convexity of the loss function and compactness of
the input and output spaces, we show that the problem has a unique minimizer and characterize the
saddle point of the corresponding Lagrangian for the problem as the (weak) solution to a Poisson
partial differential equation involving a weighted Laplace operator, with the weighting given by the
Lagrange multiplier for the constraint. This result provides key insights into the nature of the optimal
data-driven map satisfying robustness constraints. We then design a provably robust training scheme
based on a graph discretization of the domain to numerically solve for the minimizer of the problem.

Second, we consider the problem of minimizing the Lipschitz constant of a data-driven map with a
guaranteed bound (margin) on its loss. We show that the Lipschitz constant is tightly and inversely
related to the loss, thereby revealing a fundamental tradeoff between the robustness of a data-driven
map and its performance. This result implies that the Lipschitz contant of any data-driven algorithm
achieving a desired level of performance has a fundamental lower bound that depends only on the
loss function ` and the data-generating distribution σ, which constitutes a fundamental lower bound
to benchmark any training algorithm and learning problem. We also provide a training scheme for
further improving the robustness of a minimizer with a margin on the loss, by using a graph-based
iterative procedure that involves solving a series of p-Poisson equations, decsribed in Section 3.

Related work. Motivated by real-world incidents and empirical studies [3], the issue of robustness of
data-driven models to adversarial perturbations has received extensive attention in the last years [4–7].
When perturbations are chosen carefully, early studies [8] have shown that small input variations
can cause large prediction errors in otherwise highly accurate neural networks. Several frameworks
exist to design robust data-driven models, including regularization [1], adversarial training [9],
distributionally robust optimization [10] and training under Lipschitz constraints. Of the above, the
latter approach is particularly attractive, as it results in trained models with certified robustness.

The study of robustness of the class of neural network models has particularly drawn a lot of
attention [11–17]. Many works [18–21] explore, in particular, the problem of training networks with
Lipschitz constraints, and related issues. The complementary problem of estimating the Lipschitz
constant of a trained neural network is also a crucial part of providing robustness certificates for trained
models, and avoiding the danger of deploying unsafe models under a false sense of security. Recent
works [22–24] have focused on deriving upper bounds on the Lipschitz constant of neural networks.
While these certificates and training schemes provide a way of estimating and improving robustness
of a certain class of data-driven models, they fall short in providing insight into the fundamental
robustness bounds for the underlying learning problem and the means to exploit them in design.
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Furthermore, recent works also point towards fundamental tradeoffs between accuracy and robustness
of data-driven models [25–28] in various settings and training frameworks. The connection of
adversarial robustness to model complexity and generalization, and the existence (or non-existence) of
fundamental tradeoffs between them is another important problem that has received attention [29–34],
and is the subject of ongoing debate. This paper builds and extends upon these early studies.

Notation. We introduce here some useful notation. We use | · | to denote the Euclidean norm in Rd,
for any d ∈ N (when d = 1, this denotes the absolute value) and more generally the Hilbert-Schmidt
(H-S) norm in finite dimensions. We use ‖ · ‖ for function space norms. For maps f between
high-dimensional spaces, we often require the notation ‖ |f | ‖, which specifies the function space
norm of |f | (which is in turn the function that evaluates to the H-S norm of the map f at any point
in its domain). For X ⊂ Rdim(X), we denote by (X, µ) the set X with an underlying measure µ. We
denote by F(X;Y) a class F (placeholder for the particular spaces mentioned below) of maps from X
to Y. We denote by Lp(X, µ) the space of p-integrable (measurable) functions on X, where the
integration is carried out with the underlying measure µ (the Lebesgue measure is implied when µ is
not specified), and by W 1,p(X, µ) the space of p-integrable (measurable) functions with p-integrable
(measurable) derivatives. When generalized to the space of maps, as in f ∈ Lp((X, µ);Y), we
mean |f | ∈ Lp(X, µ). Also, for f ∈W p((X, µ);Y), we mean |f | ∈ Lp(X, µ) and |∇f | ∈ Lp(X, µ).

2 Lipschitz-constrained loss minimization and provably robust training

In this section we study and solve the Lipschitz constrained loss minimization problem (1). We start
by specifying the setting for Problem (1). Let X ⊂ Rdim(X) and Y ⊂ Rdim(Y) be convex and compact,
σ an absolutely continuous probability measure on X× Y with (absolutely continuous) marginal µ
supported on X and conditional π. Let the loss function ` : Y × Y → R≥0 be strictly convex and
Lipschitz continuous. The Lipschitz constraint on the maps in (1) is a global constraint involving every
pair of points in the domain X. To obtain a tractable formulation, we equivalently rewrite the Lipschitz
constraint as a bound on the norm of the gradient in the domain X. The space of Lipschitz continuous
maps Lip(X;Y) is also the Sobolev space W 1,∞((X, µ);Y) of essentially bounded (measurable)
maps with essentially bounded (measurable) gradients, that is, Lip(X;Y) = W 1,∞((X, µ);Y).1 The
Lipschitz constant of a map f ∈ Lip(X;Y) is lip(f) = ‖|∇f |‖L∞((X,µ);Y) (the W 1,∞-seminorm
of f ). We refer the reader to our supplementary material or [35] for a discussion of these notions.

Using the above definitions, the Lipschitz constrained loss minimization problem (1) becomes

inf
f∈W 1,∞((X,µ);Y)

{
Lσ(f), s.t. ‖|∇f |‖L∞(X,µ) ≤ α

}
. (2)

To see the role of the Lipschitz constant in the sensitivity of the loss to adversarial perturbations, first
notice that adversarial perturbations can be written as the perturbations on the joint distribution σ
generated by a map T that perturbs the inputs x ∈ X while preserving the outputs y ∈ Y [8]. In
compact form, the class of adversarial perturbations can be written as:

T = {T | T (x, y) = (T1(x, y) , y), s.t. T1(x, y) ∈ Bδ(x) ∩ X} ,

where Bδ(x) is the open ball in Rdim(X) of radius δ > 0 and centered at x. Defining the sensitivity as
the worst-case increase of the loss Lσ following an adversarial perturbation T ∈ T for any σ, we
get2 that it is modulated by L∞-norm of the gradient∇1` · ∇f (precisely, ‖|∇1` · ∇f |‖L∞(X×Y,σ))3

and whose upper bound is determined by the Lipschitz constant:

‖|∇1` · ∇f |‖L∞(X×Y,σ)︸ ︷︷ ︸
sensitivity of L to adv. perturbation

≤ ‖|∇1`|‖L∞(X×Y,σ)︸ ︷︷ ︸
Lipschitz constant of `

· ‖|∇f |‖L∞(X,µ)︸ ︷︷ ︸
Lipschitz constant of f

. (3)

Problem 2 is convex (owing to the strict convexity of the loss Lσ4 and the convexity of the constraint).
Thus, we can expect to obtain a (unique) minimizer from the saddle point of the corresponding
Lagrangian. With Gf (x) = 1

2

(
|∇f(x)|2 − α2

)
, we can reformulate the Lipschitz constraint as

1We let µ be the underlying measure on X, since the input data is generated from µ on the support X.
2See Supplementary Material for a proof.
3We use∇1` to denote the gradient of ` with respect to its first argument.
4See supplementary material for a proof.
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Gf ≤ 0 µ–a.e. in X5. Since f ∈ W 1,∞((X, µ);Y), the constraint function Gf belongs to the
space L∞(X, µ). Correspondingly, the Lagrange multiplier for the constraint Gf ≤ 0 (µ–a.e. in X)
is non-negative6 and belongs to the dual space of L∞(X, µ), which we denote as λ ∈ L∞(X, µ)∗≥0.
The Lagrangian Lσ : W 1,∞((X, µ);Y)× L∞(X, µ)∗≥0 for Problem (2) is then given by:

Lσ(f, λ) = Lσ(f) + λ (Gf ) . (4)

Theorem 2.1. (Lipschitz constrained loss minimization) Problem (2) has a unique global min-
imizer f∗ ∈ W 1,∞((X, µ);Y). The Lagrangian Lσ has a unique saddle point (f∗, λ∗) ∈
W 1,∞((X, µ);Y)× L1(X, µ)≥0. Moreover, (f∗, λ∗) satisfies the first-order optimality conditions:

1. Stationarity: The saddle point (f∗, λ∗) is a weak solution of the Poisson equation,

− 1

µ
∇ · (µλ∗∇f∗) + gf∗ = 0 in X, µλ∗∇f∗ · n = 0 on ∂X, (5)

where gf∗(x) = Ey∼π(y | x) [∇1`(f
∗(x), y)] and n is the outward normal to the bound-

ary ∂X.

2. Feasibility: |∇f∗| ≤ α and λ∗ ≥ 0, µ− a.e. in X.

3. Complementary slackness: λ∗ (|∇f∗| − α) = 0, µ− a.e. in X.

Some comments on Theorem 2.1 are in order. In the absence of the constraint in (2) (that is, α =∞),
the stationarity condition is characterized by Ey∼π(y | x) [∇1`(f

∗
unc(x), y)] = 0, where f∗unc(x), y) is

the unconstrained minimizer of the loss functional. The saddle point of Lσ is characterized by the
Poisson equation (5), which encodes the stationarity condition for the Lagrangian. The Neumann
boundary condition in (5) results from the fact that we do not enforce a boundary constraint on the
map in the loss minimization problem (2). The λ∗-weighted Laplace operator, 1

µ∇ · (µλ
∗∇), is

responsible for locally enforcing the Lipschitz constraint and regularizing (smoothing) the minimizer.
Moreover, the Lagrange multiplier satisfies λ∗ ∈ L1(X, µ)≥0, and is therefore integrable (this
is stronger regularity than in the definition λ ∈ L∞(X, µ)∗≥0). It follows from the feasibility
condition in Theorem 2.1 that the minimizer (provably) satisfies the Lipschitz bound (in contrast
to Lipschitz regularization-based approaches to adversarial learning). From the complementary
slackness condition in Theorem 2.1, smoothing is enforced only when the constraint is active: when
the constraint is inactive in a region D ⊂ X of non-zero measure (that is, |∇f∗(x)| < α for x ∈ D
and µ(D) > 0), the Lagrange multiplier satisfies λ∗ = 0 (µ-a.e. in D) and smoothing is not enforced.

The fact that the saddle point of the Lagrangian Lσ in (4) satisfies the Lipschitz bound forms the
basis for the design of a provably robust training scheme, which we obtain through a discretization of
Problem (2) over a graph. To this end, we select n points {Xi}ni=1, Xi ∈ X, via i.i.d. sampling of the
distribution µ (in practice, we sample uniformly i.i.d. from the input dataset, that defines the empirical
marginal measure µ̂). With the discretization points {Xi}ni=1 as the (embedding of) vertices, we
construct an undirected, weighted, connected graph G = (V, E ,W ), with vertex set V = {1, . . . , n},
edge set E = V × V , and weighted adjacency matrix W = [wij ]

n
i,j=1.

We assume the availability of a labeled dataset D = {(xi, yi)}Ni=1 consisting of N > n i.i.d. samples
of σ, and define a partitionW = {Wi}ni=1 of the dataset D as follows:

Wi = {(x, y) ∈ D | |x−Xi| ≤ |x−Xj | ∀ j ∈ V \ {i}} . (6)

We then assign weights θij = N−1 to the samples ξj = (xj , yj) ∈ Wi (a different weighing scheme
may affect generalization and performance of our model; we leave this for future research). Finally,
we write the discrete (empirical) Lipschitz constrained loss minimization problem over the graph G
as follows (this minimization problem can be viewed as the discretized version of (2) over G):

min
v=(v1,...,vn)

vi∈Rdim(Y)

∑
i∈V

∑
j∈Wi

θij`(vi, yj)

 , s.t. |vr − vs| ≤ α |Xr −Xs| , ∀ (r, s) ∈ E

 . (7)

5The constraint violation set is of zero measure, that is, µ ({x ∈ X | Gf (x) > 0}) = 0.
6Any λ ∈ L∞(X, µ)∗ is also a bounded, finitely additive (absolutely continuous) measure on X.

4



We note that the above constrained minimization problem (7) is convex (strictly convex objective
function with convex constraints) and the corresponding Lagrangian is given by:

LG(v,Λ) =
∑
i∈V

∑
s∈Wi

θis`(vi, ys) +
1

2

∑
j∈V

λijwij

(
|vi − vj |2 − α |Xi −Xj |2

) , (8)

where Λ = [λij ]
n
i,j=1 is the matrix of Lagrange multiplier for the pairwise Lipschitz constraints.

Define a primal-dual dynamics for the Lagrangian LG(v,Λ) with time-step sequence {h(k)}k∈N:

v(k + 1) = v(k)− h(k)∇vLG (v(k),Λ(k)) ,

Λ(k + 1) = max{0 , Λ(k) + h(k)∇ΛLG (v(k),Λ(k))}. (9)

The primal dynamics is a discretized heat flow over the graph G with a weighted Laplacian,
where ∇vLG (v(k),Λ(k)) =

(
∆(Λ,W )⊗ Idim(Y)

)
v + θ · ∇1`(v,y), and ∆(Λ,W ) is the Λ ◦W -

weighted Laplacian of the graph G (where ◦ denotes the Hadamard or entry-wise product of matrices).
The convergence of the solution {(v(k),Λ(k))}k∈N of the primal-dual dynamics (9) to the saddle
point of the Lagrangian LG follows [36] from the convexity of Problem (7).

As the size of the dataset N and the size of graph n increase, the solution to Problem (7) approaches
the solution to Problem (2), under certain mild conditions. In particular, by the Glivenko-Cantelli
Theorem [37], the empirical measure σ̂N = 1

N

∑N
i=1 δ(xi,yi) converges uniformly and almost surely

to the distribution σ in the limit forN →∞, and so does µ̂n = 1
n

∑n
i=1 δXi → µ as n→∞, where δ

here denotes the Dirac measure. Further, the convergence as n→∞ (higher model complexity) and
N →∞ (larger dataset) of the minimizer of the (empirical) discrete minimization problem (7) to the
infinite-dimensional problem (2) is modulated by the weights θ (which govern the convergence of the
empirical loss) and w (which governs the convergence of the graph Laplacian to the Laplace operator
on the domain [38]).

We conclude this section with an illustrative example. Consider a dataset of 10000 i.i.d. samples
(xi, yi), with xi ∈ [0, 1]2 and yi ∈ {[1 0]T, [0 1]T}, taken uniformly from the distribution σ in
Fig. 1(a), where yi = [1 0]T if xi belongs to a white cell and yi = [0 1]T if xi belongs to a black cell.
We randomly select n nodes in [0, 1]2, with n = {125, 200, 500}, construct a graph G = (V, E) by
connecting each node to its 10 nearest neighbors, and compute the solution v∗ to (9) for different
values of the Lipschitz constant α. Then, we generate a testing set of 2000 i.i.d. samples from σ,
associate them with the closest node, and evaluate the classification confidence of v∗. In particular, if
the testing sample x̄i is closest to the i-th node and v∗i = [p1 p2]T, then x̄i is classified as [1 0]T with
confidence p1 if p1 > p2, and as [0 1]T with confidence 1− p1 if p1 < p2. Fig. 1(b)-(h) shows the
Voronoi cells associated with the nodes V , where each cell is colored on a gray scale using the first
entries of v∗i (darker colors indicate higher confidence in classifying the samples in a cell as [0 1]T,
while lighter colors indicate higher confidence in classifying the samples in a cell as [1 0]T). It can be
seen that the classification confidence increases with the number of nodes and the Lipschitz bound, at
the expenses of a higher model complexity and sensitivity to adversarial perturbations. This trend is
also visible in Fig.1(i), where the classification confidence increases with the Lipschitz bound until it
saturates for the classifier with highest confidence given the training set and discretization points.

3 Robustification with loss margin and fundamental bound

In this section we study the problem of increasing the robustness of a minimizer with a margin on the
loss. Let f∗ be the minimizer of (1) with Lipschitz bound α, and let J∗σ(α) be the optimal loss. We
formulate and solve the following loss constrained Lipschitz constant minimization problem:

inf
f∈W 1,∞((X,µ);Y)

{
‖|∇f |‖L∞((X,µ);Y), s.t. Lσ(f) ≤ J∗σ(α) + ε

}
. (10)

Because the Lipschitz constant satisfies ‖|∇f |‖L∞((X,µ);Y) = ess sup |∇f |, Problem (10) has a
min−max (more precisely, an inf −ess sup) structure which is not amenable to tractable numerical
schemes. We circumvent this hurdle by approaching problem (10) via a sequence of loss-constrained
(convex) minimization problems involving the W 1,p-seminorm, for p ∈ N, p > 1, given by:

inf
f∈W 1,p((X,µ);Y)

{
‖|∇f |‖Lp(X,µ) , s.t. Lσ(f) ≤ J∗σ(α) + ε

}
. (11)
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Figure 1: For the classification problem discussed in Section 2, this figure shows a tradeoff between
the confidence of classification, the Lipschitz constant, and the complexity of the classifier designed
using our algorithm (9). Increasing the Lipschitz constant of the classifier and its complexity also
increases the confidence of classification, at the expenses of a higher sensitivity to perturbations.

W 1,p-seminorm minimization problems are typically formulated to obtain minimum Lipschitz
extensions in semi-supervised learning [39–42]. A related problem is the one of W 1,p-seminorm
regularized learning [43, 44]. Instead, we propose this approach, for the first time, to improve the
robustness of minimizers to adversarial perturbations with a guaranteed margin on the loss.

Convexity of Problem (11) follows from the convexity of the W 1,p-seminorm in W 1,p((X, µ);Y)
and the strict convexity of Lσ (which yields a convex constraint). The minimizers are obtained from
the saddle points of the LagrangianHpσ : W 1,p((X, µ);Y)× R≥0 → R for Problem (11), given by:

Hpσ(f, κ) =
1

p
‖|∇f |‖pLp(X,µ) + κ (Lσ(f)− (J∗σ(α) + ε)) , (12)

where we (equivalently) consider the p-th exponent ‖|∇f |‖pLp(X,µ) of the W 1,p-seminorm in defining
the Lagrangian. The saddle points of Hpσ are now specified by a Poisson equation involving the p-
Laplace operator,7 as established in the following theorem:
Theorem 3.1. (Loss constrained W 1,p-seminorm minimization) For every p ∈ N>1, there ex-
ists a global minimizer f ε,p ∈ W 1,p((X, µ);Y) for Problem (11). Also, there exists a sad-
dle point (f ε,p, κε,p) ∈ W 1,p((X, µ);Y) × R≥0 of the Lagrangian Hpσ. Moreover, (u, κ) ∈
W 1,p((X, µ);Y) × R≥0 is a saddle point of Hpσ if and only if it satisfies the following first-order
optimality conditions:

1. Stationarity: (u, κ) is a (weak) solution of the p-Poisson equation:

−∆µ
pu+ κgu = 0 in X, µ∇u · n = 0 on ∂X, (13)

where gu(x) = Ey∼π(y | x) [∇1`(u(x), y)] and ∆µ
p is the p-Laplace operator on (X, µ).

7The p-Laplace operator is defined as ∆µ
pu = 1

µ
∇ ·

(
µ|∇u|p−2∇u

)
.
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2. Feasibility: Lσ(u) ≤ J∗σ(α) + ε and κ ≥ 0.

3. Complementary slackness: κ (Lσ(f)− (J∗σ(α) + ε)) = 0.

With the characterization of the minimizers of (11) for every p ∈ N, p > 1 from Theorem 3.1, we
now investigate whether the minimum value of (11) and its minimizers converge (as p → ∞) to
those of (10). The following theorem establishes that this is indeed the case, and that the minimum
Lipschitz constant in (10) can be obtained as the limit of the sequence of minimum values of (11).

Theorem 3.2. (Limit as p→∞ and fundamental Lipschitz lower bound) For any ε > 0, it holds

lim
p→∞

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) = min
f∈W 1,∞((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖L∞((X,µ);Y).

Moreover, as p→∞, the sequence {f ε,p}p∈N>1
of minimizers of Problem (11) converges uniformly

to a (global) minimizer f ε,∞ of (10).

The facts that the saddle points ofHpσ in (12) satisfy the bound on the loss (for every p ∈ N>1) for a
given margin ε > 0, and that the minimum value and minimizers of (11) converge in the limit p→∞
to those of (10), form the basis for the design of a robustification scheme. With the same graph
structure and dataset partitioning as in Section 2, we write the discrete (empirical) loss-constrained
W 1,p-seminorm minimization problem over the graph G as follows (this minimization problem can
be viewed as the discretized version of (11) over the structure imposed by G):

min
v=(v1,...,vn)

vi∈Rdim(Y)

1

p

∑
i∈V

∑
j∈Ni

wij |vi − vj |p , s.t.
∑
i∈V

∑
s∈Wi

θis`(vi, ys) ≤ J∗σ(α) + ε

 . (14)

We note that the above constrained minimization problem (14) is convex (convex objective function
with convex constraints), and that the corresponding Lagrangian is given by:

HpG(v, κ) =
∑
i∈V

1

p

∑
j∈Ni

wij |vi − vj |p + κ
∑
s∈Wi

(
θis`(vi, ys)−

1

n
(J∗σ(α) + ε)

) , (15)

The saddle points of (15) can be obtained via a primal-dual algorithm similar to (9) in Section 2. We
solve the (discrete) loss-constrained Lipschitz minimization problem using an iterative procedure
that employs the primal-dual algorithm to converge to a saddle point ofHpG in (15) at every iteration
step p ∈ N>1. We then use the saddle point ofHpG as the initialization for the iteration step p+ 1.

Theorem 3.1 offers key insights on the fundamental tradeoff between robustness and nominal
performance. From complementary slackness in Theorem 3.1, it follows that, for the saddle
points (f ε,p, κε,p), either the Lagrange multiplier satisfies κε,p = 0 or the constraint is active
(f ε,p occurs at the boundary of the constraint and the loss is Lσ(f ε,p) = J∗(α) + ε). If the Lagrange
multiplier is zero, then the Poisson equation characterizing the Stationarity condition (13) reduces
to the p-Laplace equation with a Neumann boundary condition, whose solution is a constant map
(in the weak sense). However, in practically useful cases (for small values of α and ε) with a low
optimal loss J∗(α), there will typically not exist a constant map satisfying the loss margin ε (un-
less the unconstrained minimizer f∗unc is itself flat). This implies that the Lagrange multiplier κ is
typically nonzero, that the minimizer f ε,p occurs at the constraint boundary, and that the loss satis-
fiesLσ((f ε,p) = J∗(α)+ε. Therefore, for every p ∈ N>1, the minimization problem (11) is typically
dominated by the constraint, and the minimum value of the W 1,p-norm decreases monotonically with
the loss margin. Thus, a fundamental tradeoff exists between performance and robustness.

We conclude this section with an example. Consider the classification problem described in Section
2. Fig. 2 shows the properties of the minimizers to (14) for varying values of p and ε. It can be
seen that, (i) as p increases, the minimum value of (14) converges to its supremum value, which,
by Theorem 3.2, is smallest Lipschitz constant for a guaranteed loss margin ε (Fig. 2(a)), and (ii)
the minimum Lipschitz constant associated with the loss-constrained minimization problem is a
monotonically non-increasing function of the loss margin ε, and strictly decreasing for small values
of α and ε (Fig. 2(b)). This curve describes a fundamental tradeoff between adversarial robustness
and performance, and is entirely determined by the properties of the classification problem and not
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Figure 2: For the classification problem discussed in Section 2, (a) shows the convergence of the
minimum values of (14) as p increases to the supremum value, which is the minimum Lipschitz
constant. (b) shows the tradeoff between performance and robustness, seen by the monotonic
decrease of the minimum Lipschitz constant as a function of the loss margin. Panels (c)-(f) show the
relationships between Lipschitz constant, accuracy, and confidence for the standard MNIST dataset.

by the structure of the classifier. In Fig. 2(c)-(f) apply our algorithm to the standard MNIST dataset
of handwritten digits [45]. As predicted by our theory, and in accordance with the results obtained in
the other numerical example in Fig. 1(i), the classifier’s Lipschitz constant (Fig. 2(c)) and accuracy
(Fig. 2(d)) are decreasing functions of the classifier’s loss margin, while the classification accuracy
(Fig. 2(e)) and confidence (Fig. 2(f)) are directly proportional to the classifier’s Lipschitz constant.
This confirms the existence of a tradeoff between robustness and performance in general learning
problems, and provides a limiting benchmark to compare other models and learning schemes.

4 Conclusion

In this paper we propose a novel framework to train models with provable robustness guarantees.
At its core, our framework relies on formulating a provably robust learning problem as a (convex)
Lipschitz constrained loss minimization problem, for which we characterize and compute the solution
by graph-based discretization and discrete heat flows. Our analysis defines a link between the
properties of elliptic operators and adversarial learning, which provides us with a new perspective and
powerful tools to investigate robustness properties of the minimizers. Following a similar analysis,
we also study the complementary problem of improving the robustness of a model under a margin on
the loss. We show that the two notions are tightly related, and that improving robustness necessarily
leads to the deterioration of the performance of the model (in typical regimes). This robustification
problem, which can be solved using an iterative procedure based on discrete heat flows involving the
p-Laplacian, leads to the characterization of a fundamental tradeoff between the robustness of a model
and its loss, thereby extending and generalizing recent results relating robustness and performance in
adversarial machine learning. We illustrate our results via academic and a standard benchmark.

The ideas presented in this paper are of broad interest to the machine learning community and
potentially open up a number of research directions. For instance, quantifying the optimality gap of
minimizers of (7) evaluated on (2), for finite values of n and N , under different Lipschitz bounds,
interpolation, and graph structures, can be used as a formal framework to characterize the underlying
fundamental relationships between model complexity, generalization, accuracy, and robustness.
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A Mathematical preliminaries

We introduce some mathematical preliminaries related to function spaces useful in developing our
results. In what follows, we let X ⊂ Rdim(X) and Y ⊂ Rdim(Y) be compact and convex.

Lp and W 1,p spaces. The space Lp(X, µ) of p-integrable functions on X with respect to an underly-
ing (absolutely continuous) probability measure µ ∈ P(X), is defined as:

Lp(X, µ) =

{
f : X→ R

∣∣∣∣ f measurable ,
∫
X
|f |pdµ <∞

}
.

The Sobolev space W 1,p(X, µ) is defined as:

W 1,p(X, µ) =

{
f ∈ Lp(X, µ)

∣∣∣∣ ∫
X
|∇f |pdµ <∞

}
.

For p =∞ in the above definitions, we get the space L∞(X, µ) of essentially bounded measurable
functions on (X, µ) and the space W 1,∞(X, µ) of essentially bounded measurable functions with
essentially bounded measurable gradients on (X, µ).

Now, for 1 ≤ p ≤ ∞, Lp((X, µ);Y) is the space of measurable maps from X to Y such that |f | ∈
Lp(X, µ) for any f ∈ Lp((X, µ);Y), where | · | is the H-S norm in Y. Moreover, W 1,p((X, µ);Y)
is the space of measurable maps such that |f | ∈ Lp(X, µ) and |∇f | ∈ Lp(X, µ) for any f ∈
W 1,p((X, µ);Y).

Lipschitz-continuous maps. The space Lip(X;Y) of Lipschitz-continuous maps from X to Y is
such that for any f ∈ Lip(X;Y), we have |f(x1)− f(x2)| ≤ lip(f) |x1 − x2|, where lip(f) is the
Lipschitz constant of f . From Rademacher’s theorem [35], every f ∈ Lip(X;Y) is almost everywhere
differentiable in X (with (a.e.) gradient∇f , which is also its weak gradient). Further, ‖|∇f |‖L∞(X) =

lip(f) and we get Lip(X;Y) = W 1,∞(X;Y).

B Robustness to adversarial perturbations and the Lipschitz constant

In this section, we establish the dependence of sensitivity to adversarial perturbations of the loss on
the Lipschitz constant of the input-output map. Recall from (1) that the loss Lσ is given by:

Lσ(f) = E(x,y)∼σ [`(f(x), y)] .

Adversarial perturbations [8] are a subset of perturbations on the data-generating distribution σ
generated by bounded maps T that perturb the inputs x ∈ X while preserving the outputs y ∈ Y.
We illustrate this for a classification problem: Let (x, y) be a true input-label pair in the (nominal)
dataset and f be a classifier that locally assigns to an input x ∈ X the label f(x) ∈ Y. Let r be a
minimal perturbation on the input x, given a target label y′ ∈ Y, such that f(x+ r) = y′ (where y′
is typically chosen to be an incorrect label for x, that is, y′ 6= y). Now, an adversarial perturbation for
the classifier f is generated by the replacement of (x, y) by (x+ r, y) in the dataset. To formalize
this, we define the class of maps:

T = {T | T (x, y) = (T1(x, y) , y), and T1(x, y) ∈ Bδ(x) ∩ X} ,

where Bδ(x) is the open ball in Rdim(X) of radius δ > 0 and centered at x. Now, adversarial
perturbations on the data-generating distribution σ are a subset of perturbations generated by the
class T .

We first characterize the bound on the perturbation of the loss due to perturbations on σ generated by
the class T . The perturbation by T ∈ T of the probability measure σ yields the perturbed probability
measure T#σ, where T#σ is the pushforward of σ by the map T 8. We note that the perturbation of

8Given a measurable map T : Z → Z′ and a probability measure σ ∈ P(Z), we let T#σ denote the
pushforward of σ by the map T , where for any Borel measurable set B ⊂ Z′ we have T#σ(B) = σ(T−1(B)).
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the loss
∣∣LT#σ(f)− Lσ(f)

∣∣ satisfies:∣∣LT#σ(f)− Lσ(f)
∣∣ =

∣∣E(x,y)∼T#σ [`(f(x), y)]− E(x,y)∼σ [`(f(x), y)]
∣∣

=

∣∣∣∣∫
X×Y

`(f(x), y)d (T#σ) (x, y)−
∫
X×Y

`(f(x), y)dσ(x, y)

∣∣∣∣
=

∣∣∣∣∫
X×Y

(`(f(T1(x, y)), y)− `(f(x), y)) dσ(x, y)

∣∣∣∣
≤ lip(`)lip(f)

∣∣∣∣∫
X

(T1(x, y)− x) dµ(x)

∣∣∣∣
≤ lip(`)lip(f)δ.

We next characterize the sensitivity of the loss for a given f to perturbations on the data-generating
distribution generated by the class T . Let a family of transport maps Th = (1 − h) Id +hT for
some T ∈ T and h ∈ [0, 1] (with Id being the identity map), perturb the data-generating distribution σ
as σh = Th#σ. The (Gateaux) derivative of the loss along the family of adversarial perturbations Th,
is now given by:

D(T )Lσ(f) =
d

dh
Lσh(f)

∣∣∣∣
h=0

= lim
h→0

Lσh(f)− Lσ(f)

h

= lim
h→0

1

h

∫
X×Y

[
`(f(Th(x, y)), y)− `(f(x), y)

]
dσ(x, y).

We note that
∣∣∣ `(f(Th(x,y)),y)−`(f(x),y)

h

∣∣∣ ≤ lip(`)
∣∣∣ f(Th(x,y))−f(x)

h

∣∣∣ ≤ lip(`)lip(f)
|Th(x,y)−x|

h =

lip(`)lip(f) |T1(x, y)− x|. It then follows from the Dominated Convergence Theorem [46] that:

D(T )Lσ(f) =

∫
X×Y
〈∇1`(f(x), y) · ∇f(x) , T1(x, y)− x〉 dσ(x, y)

= E(x,y)∼σ [〈∇1`(f(x), y) · ∇f(x) , T1(x, y)− x〉] .

We now define the sensitivity as the worst-case increase of the loss functional following an adversarial
perturbation. That is, the sensitivity of the loss is the L∞-norm (with respect to the measure σ) of the
gradient∇1` · ∇f (precisely, ‖|∇1` · ∇f |‖L∞(X×Y,σ)), which satisfies the bound:

‖|∇1` · ∇f |‖L∞(X×Y,σ)︸ ︷︷ ︸
sensitivity of L to adv. perturbation

≤ ‖|∇1`|‖L∞(X×Y,σ)︸ ︷︷ ︸
Lipschitz constant of `

· ‖|∇f |‖L∞(X,µ)︸ ︷︷ ︸
Lipschitz constant of f

where µ is the marginal of σ over X, and ‖|∇f |‖L∞(X,µ) is the Lipschitz constant of f over the
support of µ.

We therefore get that the sensitivity of the loss functional to adversarial perturbations is indeed
modulated by the Lipschitz constant of the input-output mapping. Thus, restricting the search space
to the class of Lipschitz maps with a bound α ≥ 0 on the Lipschitz constant, as in the minimization
problem (1), is convenient for analysis, and does not restrict the generality of the adversarially robust
learning problem, and it allows us to obtain adversarially robust minimizers of the loss Lσ .

C The Lipschitz-constrained loss minimization problem (1) is convex

We recall that Problem (1) is given by:

inf
f∈Lip(X,µ)

E(x,y)∼σ [` (f(x), y)]︸ ︷︷ ︸
,Lσ(f)

s.t. lip(f) ≤ α

 ,

where σ is an absolutely continuous probability measure on X×Y and the loss function ` : Y×Y→
R≥0 is strictly convex and Lipschitz continuous and α ≥ 0.
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Firstly, we get that the loss Lσ in (1) is strictly convex. To see this, let f1, f2 ∈ Lip(X, µ) be
such that Lσ(f1) < ∞ and Lσ(f2) < ∞. For t ∈ [0, 1], we get from the convexity of Lip(X, µ)
that tf1 + (1− t)f2 ∈ Lip(X, µ). Also, from the strict convexity of the loss function `, we get:

Lσ(tf1 + (1− t)f2) = E(x,y)∼σ [`((tf1 + (1− t)f2)(x), y)]

= E(x,y)∼σ [`(tf1(x) + (1− t)f2(x), y)]

≤ E(x,y)∼σ [t`(f1(x), y) + (1− t)`(f2(x), y)]

= tE(x,y)∼σ [`(f1(x), y)] + (1− t)E(x,y)∼σ [`(f2(x), y)]

= tLσ(f1) + (1− t)Lσ(f2).

Moreover, the inequality is strict for t ∈ (0, 1), from which it follows that the loss Lσ is strictly
convex.

Now, let f1, f2 ∈ Lip(X, µ) such that lip(f1) ≤ α and lip(f2) ≤ α. For the map λf1 + (1− λ)f2,
λ ∈ [0, 1], and x1, x2 ∈ X, it follows that:

|(λf1 + (1− λ)f2)(x1)− (λf1 + (1− λ)f2)(x2)|
= |λ (f1(x1)− f1(x2)) + (1− λ)(f2(x1)− f2(x2))|
≤ λ |f1(x1)− f1(x2)|+ (1− λ) |f2(x1)− f2(x2)|
≤ λlip(f1) |x1 − x2|+ (1− λ)lip(f2) |x1 − x2|
≤ α |x1 − x2| ,

and we get lip(λf1 +(1−λ)f2) ≤ α. Therefore, the constraint in (1) is convex. From strict convexity
of the loss Lσ and convexity of the constraint set {f ∈ Lip((X, µ),Y) | lip(f) ≤ α}, we get that
Problem (1) is convex.

D Proof of Theorem 2.1 (Saddle point of Lagrangian L)

(i) Derivative of loss function L w.r.t f . We have:

Lσ(f) = Ex∼µ
[
Ey∼π(y | x) [`(f(x), y)]

]
,

where µ is the marginal over X and π the conditional of the joint distribution σ ∈ P(X × Y).
Let {f ε}ε∈[0,1] be a family of maps from X to Y that is pointwise smooth (i.e., for any x ∈ X,
F (ε, x) = f ε(x) is smooth in ε). We now evaluate the derivative of the loss function Lσ w.r.t. the
family {f ε}ε∈[0,1], at ε = 0, as follows:

dLσ
dε

(f0) = lim
ε→0

Lσ(f ε)− Lσ(f0)

ε

= lim
ε→0

1

ε

∫
X

[∫
Y

(
`(f ε(x), y)− `(f0(x), y)

)
dπ(y | x)

]
dµ(x).

We note that
∣∣∣ `(fε(x),y)−`(f0(x),y)

ε

∣∣∣ ≤ lip(`)
∣∣∣ fε(x)−f0(x)

ε

∣∣∣ ≤ lip(`)lip(F (·, x)), where lip(F (·, x))

is the Lipschitz constant of F as a function of ε at every x ∈ X (since F (·, x) is smooth in [0, 1]
for every x ∈ X, it is also Lipschitz continuous). It then follows from the Dominated Convergence
Theorem [46] that:

dLσ
dε

(f0) = lim
ε→0

1

ε

∫
X

[∫
Y

(
`(f ε(x), y)− `(f0(x), y)

)
dπ(y | x)

]
dµ(x)

=

∫
X

[∫
Y

lim
ε→0

1

ε

(
`(f ε(x), y)− `(f0(x), y)

)
dπ(y | x)

]
dµ(x)

=

∫
X

[∫
Y
∇1`(f

0(x), y) · ∂f
ε

∂ε
(x)

∣∣∣∣
ε=0

dπ(y | x)

]
dµ(x)

=

∫
X

[∫
Y
∇1`(f

0(x), y) dπ(y | x)

]
· ∂f

ε

∂ε
(x)

∣∣∣∣
ε=0

dµ(x)

=

∫
X

∂L̄

∂f
· ∂f

ε

∂ε

∣∣∣∣
ε=0

dµ(x),
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where we denote by ∂f L̄σ = ∂L̄σ
∂f =

∫
Y∇1`(f

0(x), y) dπ(y | x) the functional derivative of L̄σ
w.r.t. f .

(ii) Minimizer of (2). The search space for Problem (2) is given by,

F =
{
f ∈W 1,∞((X, µ),Y) | ‖|∇f |‖L∞(X,µ) ≤ α

}
.

We see that F is closed, convex and bounded. Boundedness of F follows from compactness
of Y which implies that there exists an M ∈ R≥0 such that Y ⊂ BM (0Y). It follows that for
any f ∈ F , we have ‖|f |‖L∞(X,µ) ≤ M . Moreover, we have ‖|∇f |‖L∞(X,µ) ≤ α. Therefore,
‖f‖W 1,∞((X,µ),Y) = ‖|f |‖L∞(X,µ) + ‖|∇f |‖L∞(X,µ) ≤M + α <∞ for any f ∈ F .

The loss Lσ is strictly convex and lower semicontinuous (in fact, it is (Gateaux) differentiable as seen
earlier for absolutely continuous σ, since ` is strictly convex and Lipschitz-continuous).

Let {fn}n∈N be a minimizing sequence in F for the loss Lσ, such that fn ∈ F
and limn→∞ Lσ(fn) = inff∈F Lσ(f). Clearly, the sequence {fn}n∈N is uniformly bounded
since ‖fn‖W 1,∞((X,µ),Y) ≤M + α. It is also uniformly equicontinuous, since |fn(x1)− fn(x2)| ≤
α|x1 − x2| for all n ∈ N. Therefore, by the Arzelà-Ascoli Theorem [46], there exists a uniformly
converging subsequence {fnj}j∈N, with the limit f∗ ∈ F . Furthermore, by the continuity of Lσ , we
get limj→∞ Lσ(fnj ) = Lσ(f∗) = minf∈F Lσ(f). By the strict convexity of the loss Lσ, we get
that f∗ is the unique global minimizer of Lσ .

Thus, Problem (2) has a unique global minimizer f∗ ∈
{
f ∈W 1,∞((X, µ),Y) | lip(f) ≤ α

}
.

(iii) Saddle points of Lagrangian functional Lσ. The constraint set is given by {f ∈
W 1,∞((X, µ),Y) | G(f) ∈ (−∞, 0]}, where G(f) = ‖Gf‖L∞(X,µ), and we have the constraint
qualification:

0 ∈ int
{
G
(
W 1,∞((X, µ),Y)

)
+ [0,∞)

}
,

where the operation + denotes the Minkowski sum. This allows us to apply Theorem 3.6 in [47] to
infer that the set of Lagrange multipliers corresponding to the (unique) minimizer f∗ is a non-empty,
convex, bounded and weakly−∗ compact subset of L∞(X, µ)∗≥0. Moreover, we note that (−∞, 0] is a
closed convex cone, and it follows from Theorem 3.4-(iii) in [47] that for any Lagrange multiplier λ∗,
the pair (f∗, λ∗) is a saddle point of the Lagrangian functional Lσ. Uniqueness of λ∗ again follows
from the strict convexity of Lσ . We also have the feasibility condition Gf∗ ≤ 0 (that is, |∇f∗| ≤ α)
and λ∗ ≥ 0 µ-a.e. in X.

Now, the (Gateaux) derivative of the Lagrangian Lσ(f, λ) = Lσ(f) + λ(Gf ) in W 1,∞((X, µ),Y)
along V ∈W 1,∞((X, µ),Y) is given by:

D
(V )
1 Lσ(f, λ) =

∫
X
∂f L̄σ · V dµ+

∫
X
∇f · ∇V d(λµ),

where D(V )
1 denotes the directional derivative of the first argument along V and λµ is an absolutely

continuous measure (λ-weighting on the underlying measure µ. Recall that λ ∈ L∞(X, µ)∗≥0 is itself
a bounded, finitely additive absolutely continuous measure). The above expression can be derived
using a similar construction of a limit and the application of the Dominated Convergence Theorem as
earlier in this section.

By the Minimax Theorem, we have Lσ(f∗, λ∗) = inff supλ Lσ(f, λ) = supλ inff Lσ(f, λ), where
the infimum is taken over W 1,∞((X, µ),Y) and the supremum over λ ∈ L∞(X, µ)∗≥0. We therefore
have Lσ(f∗, λ∗) ≥ Lσ(f∗, 0), which yields the condition λ∗(Gf∗) ≥ 0. Moreover, from feasibility,
we have Gf∗ ≤ 0 and λ∗ ≥ 0, which implies that λ∗(Gf∗) ≤ 0. This results in the complementary
slackness condition λ∗(Gf∗) = 0. From the Minimax equality, we get that (f∗, λ∗) is also a critical
point of Lσ, that is, D(V )

1 Lσ(f∗, λ∗) = 0, which implies that
∫
X ∂f L̄σ(f∗) · V dµ +

∫
X∇f

∗ ·
∇V d(λ∗µ) = 0, which is the stationarity condition.

(iv) Improved regularity of Lagrange multiplier λ∗. We can indeed establish stronger regularity
for the Lagrange multiplier λ∗. We have that the Lagrange multipliers λ∗ ∈ L∞(X, µ)∗≥0, which
is a bounded, finitely additive measure absolutely continuous measure, is also a linear continuous
functional on L∞(X, µ) and must therefore vanish on sets of µ-measure zero (i.e., λ∗(A) = 0 for
A ⊂ X with µ(A) = 0). Moreover, from Theorem 1.24 in [48], we can decompose λ∗ = λ∗c + λ∗p,
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where λ∗c is a non-negative countably additive measure and λ∗p is non-negative and purely finitely
additive. By the Radon-Nikodym theorem, we get that there exists a function hc ∈ L1(X, µ) such that
the countably additive and absolutely continuous measure λ∗c satisfies dλ∗c = hc dµ. By substitution
in the stationarity condition, we get

∫
X ∂f L̄σ ·V dµ = −

∫
X∇f

∗ ·∇V d(λ∗cµ)−
∫
X∇f

∗ ·∇V d(λ∗pµ).
We now consider a set Dδ = {x ∈ X | − δ ≤ Gf∗(x) ≤ 0}, with 0 < δ < α2. By complementary
slackness, we note that λ∗(X \Dδ) = 0. Since λ∗p is purely finitely additive, it implies that there
must exist a collection of nonempty sets {En}n∈N with En+1 ⊂ En and limn→∞En = ∅, such
that limn→∞ λ∗p(En) > 09. Since λ∗(X \Dδ) = 0, we can suppose without loss of generality that
E0 ⊂ Dδ . We also consider another collection of nonempty sets {E′n}n∈N, with the same properties
(with E′0 ⊂ Dδ , E′n+1 ⊂ E′n and limn→∞E′n = ∅), such that En ⊂ E′n for all n ∈ N. We note that
for x ∈ Dδ , we have 0 < α2− δ ≤ |∇f∗(x)|2 ≤ α2, which implies that∇f∗ does not vanish on E′n
for any n ∈ N. We now consider a family of variations Vn ∈ W 1,∞(X, µ) for n ∈ N such that Vn
and ∇Vn are supported in E′n, ∇f∗ · ∇Vn ≥ 0 in E′n and ∇f∗ · ∇Vn ≥ ε in En (uniformly). The
stationarity condition now yields, for n ∈ N:

−
∫
E′n

∂f L̄σ(f∗) · Vndµ =

∫
E′n

(∇f∗ · ∇Vn) hcdµ+

∫
E′n

∇f∗ · ∇Vn d(λ∗pµ)

≥
∫
E′n

(∇f∗ · ∇Vn) hcdµ+ ε

∫
En

d(λ∗pµ).

In the limit n → 0, we have limn→∞
∫
E′n
∂f L̄σ(f∗) · Vndµ = 0 and limn→∞

∫
E′n

(∇f∗ ·
∇Vn) hcdµ = 0, which implies that 0 ≤ limn→∞ ε

∫
En
d(λ∗pµ) ≤ 0, and we get limn→∞ λ∗p(En) =

0, i.e., the measure λ∗ does not have a purely finitely additive component. Therefore, the measure λ∗
is countably additive (and absolutely continuous) and possesses a Radon-Nikodym derivative w.r.t. µ,
in L1(X, µ). For ease of notation, we henceforth let λ∗ ∈ L1(X, µ) also denote its density function.

Since λ∗ ∈ L1(X, µ)≥0 and Gf∗ ≤ 0 µ-a.e. in X, we can now indeed state the complementary
slackness condition as λ∗ (|∇f∗| − α) = 0 µ-a.e. in X.

Moreover, the stationarity condition, under λ∗ ∈ L1(X, µ)≥0 can now be expressed as:

0 =

∫
X
∂f L̄σ(f∗) · V dµ+

∫
X
∇f∗ · ∇V λ∗ dµ

=

∫
X
∂f L̄σ(f∗) · V dµ−

∫
X

1

µ
∇ · (λ∗µ∇f∗) · V dµ+

∫
∂X
λ∗∇f∗ · nV µ dS,

where we have used the Divergence Theorem to obtain the final equality, with S as the surface
measure on ∂X. As the above holds for any variation V ∈ W 1,∞((X, µ),Y), it must follow
that − 1

µ∇ · (µλ
∗∇f∗) + ∂f L̄σ(f∗) = 0 µ-a.e. in X and λ∗µ∇f∗ · n = 0 on ∂X, and if we do not

suppose stronger regularity of the saddle point (f∗, λ∗), the equations must be hold weakly.

The above correspond to the necessary KKT conditions. Conversely, any solution pair (f∗, λ∗) which
satisfies the above KKT conditions is a saddle point for the Lagrangian Lσ and is a solution to the
original optimization problem.

E Proof of Theorem 3.1 (Saddle points of LagrangianH)

(i) Minimizers of (11). The search space for Problem (11) is given by:

Fp =
{
f ∈W 1,p((X, µ),Y) | Lσ(f) ≤ J∗σ(α) + ε

}
.

Let {un}n∈N be a minimizing sequence in Fp for the W 1,p-seminorm, such that un ∈ Fp for
all n ∈ N and limn→∞ ‖|∇un|‖Lp(X,µ) = infu∈Fp ‖|∇u|‖Lp(X,µ). Since f∗ ∈ W 1,∞((X, µ),Y),
the minimizer of Problem (2) also belongs to Fp, that is, f∗ ∈ Fp and infu∈Fp‖|∇u|‖Lp(X,µ) ≤
‖|∇f∗|‖Lp(X,µ) ≤ α, we can choose the minimizing sequence to satisfy the bound ‖|∇un|‖Lp(X,µ) ≤

9 For a countably additive measure ν that is absolutely continuous w.r.t. the Lebesgue measure, and any
collection of nonempty sets {En}N∈N with En+1 ⊂ En and limn→∞En = ∅, we have limn→∞ ν(En) =
0 [48].
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α. Similar to Section D, we now have the uniform bound ‖un‖W 1,p((X,µ),Y) ≤M + α for all n ∈ N.
For p > dim(X), we have from Morrey’s Inequality [35], for every n ∈ N, that:

|un(x1)− un(x2)| ≤ 2p dim(X)

p− dim(X)
|x1 − x2|1−

dim(X)
p ‖|∇un|‖Lp(X,µ)

≤ 2C dim(X)(1 + dim(X))|x1 − x2|
1

1+dim(X)α,

where C = max
{

1,diam(X)
dim(X)

1+dim(X)

}
. Thus, the sequence {un}n∈N is also uniformly equicon-

tinuous. Therefore, by the Arzelà-Ascoli Theorem, there exists a uniformly converging subse-
quence {unj}j∈N with limit f ε,p ∈ Fp. Furthermore, by the continuity of the W 1,p-seminorm, we
get that limj→∞ ‖|∇unj |‖Lp(X,µ) = ‖|∇f ε,p|‖Lp(X,µ) = minf∈Fp ‖|∇f |‖Lp(X,µ). By convexity of
the W 1,p-seminorm, we get that f ε,p is a global minimizer for Problem (11).

We therefore conclude that Problem (11) is guaranteed to have (atleast one) global minimizer f ε,p ∈{
f ∈W 1,p((X, µ),Y) | Lσ(f) ≤ J∗σ(α) + ε

}
.

(ii) Saddle points of Lagrangian functional Hσ. The constraint set is given by {f ∈
W 1,p((X, µ),Y) | G(f) ≤ 0}, where G(f) = Lσ(f) − (J∗σ(α) + ε), and we have the constraint
qualification:

0 ∈ int
{
G
(
W 1,p((X, µ),Y)

)
+ [0,∞)

}
,

where the operation + denotes the Minkowski sum. This allows us to apply Theorem 3.6 in [47]
to infer that the set of Lagrange multipliers corresponding to the minimizer f ε,p is a non-empty,
convex, bounded and weakly−∗ compact subset of R≥0. Moreover, we note that (−∞, 0] is a closed
convex cone, and it follows from Theorem 3.4-(iii) in [47] that for any Lagrange multiplier κε,p,
the pair (f ε,p, κε,p) is a saddle point of the Lagrangian functionalHσ. We also have the feasibility
condition Lσ(f) ≤ J∗σ(α) + ε.

Following a similar procedure as in Section D, we obtain the (Gateaux) derivative of the La-
grangian Hσ(f, κ) = 1

p ‖|∇f |‖
p
Lp(X,µ) + κ (Lσ(f)− (J∗σ(α) + ε)) in W 1,p((X, µ),Y) along

V ∈W 1,p((X, µ),Y) as:

D
(V )
1 Hσ(f, κ) =

∫
X
|∇f |p−2∇f · ∇V dµ+ κ

∫
X
∂f L̄σ(f) · V dµ.

By the Minimax Theorem, we have Hσ(f ε,p, κε,p) = inff supκHσ(f, κ) = supκ inff Hσ(f, κ),
where the infimum is taken over W 1,p((X, µ),Y) and the supremum over R≥0. We therefore
haveHσ(f ε,p, κε,p) ≥ Hσ(f ε,p, 0), which yields the condition κε,p (Lσ(f ε,p)− (J∗σ(α) + ε)) ≥ 0.
Moreover, from feasibility, we have Lσ(f ε,p) ≤ J∗σ(α) + ε and κε,p ≥ 0, which implies
that κε,p (Lσ(f ε,p)− (J∗σ(α) + ε)) ≤ 0. This results in the complementary slackness condi-
tion κε,p (Lσ(f ε,p)− (J∗σ(α) + ε)) = 0. From the Minimax equality, we get that (f ε,p, κε,p) is
also a critical point ofHσ , that is D(V )

1 Hσ(f ε,p, κε,p) = 0 for any V ∈W 1,p((X, µ),Y):

0 =

∫
X
|∇f ε,p|p−2∇f ε,p · ∇V dµ+ κε,p

∫
X
∂f L̄σ(f ε,p) · V dµ

= −
∫
X

1

µ
∇ ·
(
µ|∇f ε,p|p−2∇f ε,p

)
· V dµ+

∫
∂X
|∇f ε,p|p−2∇f ε,p · nV µ dS

+ κε,p
∫
X
∂f L̄σ(f ε,p) · V dµ,

where we have used the Divergence Theorem to obtain the final equality, with S as the surface measure
on ∂X. This is the stationarity condition. As the above holds for any variation V ∈W 1,p((X, µ);Y),
it must follow that− 1

µ∇·
(
µ|∇f ε,p|p−2∇f ε,p

)
+κε,p∂f L̄σ(f ε,p) = 0 µ-a.e. in X and µ∇f ε,p ·n = 0

on ∂X, and if we do not suppose stronger regularity of f ε,p, the equations must be hold weakly.

The above correspond to the necessary KKT conditions. Conversely, any solution pair (f ε,p, κε,p)
which satisfies the above KKT conditions is a saddle point for the LagrangianHσ and is a solution to
the original optimization problem.
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F Proof of Theorem 3.2 (Convergence as p→∞)

(i) Monotonicity properties of W 1,p((X, µ);Y). We first note that for p, q ∈ N,
1 < p < q and an f ∈ W 1,p((X, µ);Y), ‖|f |‖Lp(X,µ) ≤ ‖|f |‖Lq(X,µ) and
‖|∇f |‖Lp(X,µ) ≤ ‖|∇f |‖Lq(X,µ). It follows that W 1,q((X, µ);Y) ⊆ W 1,p((X, µ);Y).
In particular, for any p ∈ N, p > 1, we have ‖|f |‖Lp(X,µ) ≤ ‖|f |‖L∞(X,µ),
‖|∇f |‖Lp(X,µ) ≤ ‖|∇f |‖L∞(X,µ) and W 1,∞((X, µ);Y) ⊆ W 1,p((X, µ);Y). It then follows that{
f ∈W 1,q((X, µ);Y) | Lσ(f) ≤ ε

}
⊆
{
f ∈W 1,p((X, µ);Y) | Lσ(f) ≤ ε

}
for 1 < p < q ≤ ∞.

(ii) Minimizers. From the strict convexity of Lσ , it follows that
{
f ∈W 1,p((X, µ);Y) | Lσ(f) ≤ ε

}
is closed and convex for any 1 < p ≤ ∞. Moreover, the semi-norm of f ∈ W 1,p((X, µ);Y), i.e.,
‖|∇f |‖Lp(X,µ), is convex. The existence of global minimizers for the problem:

inf
f∈W 1,p((X,µ);Y)

{
‖|∇f |‖Lp(X,µ) , s.t. Lσ(f) ≤ J∗σ(α) + ε

}
was established in Section E for every dim(X) < p ≤ ∞ and ε > 0.

(iii) Monotonicity of minimum value. From the existence of a global minimum value for any dim(X) <
p <∞, and the monotonicity properties of W 1,p(X, µ), we get for dim(X) < p ≤ q:

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) ≤ min
f∈W 1,q((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lq(X,µ) .

In particular, we get for any p > dim(X):

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) ≤ min
f∈Lip((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

lip (f) .

Therefore, by the convergence of bounded monotone sequences, we get:

lim
p→∞

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) ≤ min
f∈Lip((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

lip (f) = ᾱ(ε).

(iv) Upper bound is indeed the supremum. We now consider the sequence of minimizers {f ε,pσ }p∈N:

f ε,pσ ∈ arg min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) .

Fixing a p > dim(X), from the monotonicity of minimum values and the compactness of Y, we
get that the sequence {f ε,qσ }q≥p is uniformly bounded in W 1,p((X, µ),Y) as ‖f ε,qσ ‖W 1,p((X,µ),Y) ≤
M + ᾱ(ε). Moreover, for dim(X) < p ≤ ∞, we have from Morrey’s inequality that:

|f ε,pσ (x1)− f ε,pσ (x2)| ≤ 2pdim(X)

p− dim(X)
|x1 − x2|1−

dim(X)
p ‖|∇f ε,pσ |‖Lp(X,µ)

≤ 2C dim(X) (1 + dim(X)) |x1 − x2|
1

1+dim(X) ᾱ(ε),

where C = max
{

1,diam(X)
dim(X)

1+dim(X)

}
. It follows from the above that the se-

quence {f ε,pσ }p∈N,p>dim(X) is also uniformly equicontinuous. Therefore, by the Arzelà-Ascoli
Theorem [46], there exists a subsequence

{
f
ε,pj
σ

}
j∈N that converges uniformly to a Lipschitz

continuous f ε,∞σ . Moreover, from the monotonicity of minimum values, it follows that the
Lipschitz constant lip(f ε,∞σ ) = ‖|∇f ε,∞σ |‖L∞(X,µ) ≤ ᾱ(ε). We also have lip(f ε,∞σ ) ≥
min f∈Lip((X,µ);Y)

Lσ(f)≤J∗σ(α)+ε

lip (f) = ᾱ(ε). Therefore, we have lip(f ε,∞σ ) = ᾱ(ε), and {f ε,pσ }p∈N converges

uniformly (upto a subsequence) to a (global) minimizer f ε,∞ of (10).
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G Numerical Analysis of Classifier Robustness

In this section, we provide numerical analysis to quantify a classifier’s robustness against data
perturbation for the classification problem discussed in Section 2 and Fig. 1 of the manuscript. Using
the same setup explained in Section 2, we design our classifiers by constructing a graph G = (V, E)
with n = 500 randomly selected nodes by connecting each node to its 10 nearest neighbors. We
compute the solution v∗ to (9) for different values of the Lipschitz constant α ∈ (0, 100]. We generate
a nominal testing set of 1000 i.i.d. samples from σ, associate them with the closest node, and evaluate
the nominal classification confidence of v∗. Then, we perturb each testing data sample with δ ∈ R2

with ‖δ‖2 = 0.05 in the direction perpendicular to the closest edge, associate each perturbed data
point with the closest node and evaluate the perturbed classification confidence. To measure the
sensitivity of the designed classifier, we compute the norm of the difference between the nominal
and the perturbed confidence, then appoint the sensitivity measure to the maximum value across
all the testing data points. Fig. G.3(a) shows the plot of the sensitivity for each classifier designed
using different Lipschitz bound α, it can be seen that the sensitivity increases as we increase the
Lipschitz bound up to α = 18. Fig. G.3(b) shows the plot of the sensitivity for each classifier as a
function of the classification confidence, we observe a tradeoff between classification performance
and robustness to data perturbation seen by the monotonic increase of the sensitivity as a function
of classification confidence, where improving classification performance comes at the expenses of
robustness to data perturbation.
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Figure G.3: For the classification problem discussed in Section 2 and Fig. 1 in the main manuscript,
(a) shows the classifier’s sensitivity to data perturbation as a function of the Lipschitz bound, the plot
shows that sensitivity increases with the Lipschitz bound up to a certain value (α = 18). (b) shows
the tradeoff between performance and robustness, seen by the monotonic increase of the sensitivity
as a function of classification confidence.
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