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ABSTRACT

This paper considers distributed systems arising when multiple agents cooperatively solve a
quadratic optimisation problem. To maintain privacy of their states over time, agents implement a
noise-adding mechanism according to the classic differential privacy framework. We characterise
how the noise due to the privacy mechanism degrades the performance of the multi-agent system.
Interestingly, we show that depending on the desired level of privacy (and thus noise), the system per-
formance is optimised by reducing the level of cooperation among the agents. The notion of coop-
eration level, which is formally introduced and defined in the paper, models the trust of an agent
towards the information received from neighbouring agents. For the prototypical examples of con-
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sensus and centroidal Voronoi tessellations, we are able to characterise the optimum cooperation
level that maximises the system performance while ensuring a desired privacy level. Our results sug-
gest that for the class of problems we study, and in fact for a broad class of multi-agent systems, it is
always beneficial for the agents to reduce their cooperation level when the privacy level increases.

1. Introduction

Several problems in control theory, optimisation and
robotics require cooperation among multiple agents. Pro-
totypical examples include consensus (Du, Wen, Cheng,
He, & Jia, 2016; Olfati-Saber, Fax, & Murray, 2007),
flocking (Olfati-Saber, 2006), formation control (Raffard,
Tomlin, & Boyd, 2004), coverage control (Cortes, Mar-
tinez, Karatas, & Bullo, 2004) and distributed optimisa-
tion (Nedic & Ozdaglar, 2009; Terelius, Topcu, & Mur-
ray, 2011). Typically, cooperation requires information
exchange, which may lead to leakage of private infor-
mation with undesirable consequences. For example, in
smart metering systems where users send their energy
consumption data for power network optimisation, the
data can reveal information about their personal lives,
such as daily schedules, etc. (McDaniel & McLaughlin,
2009; United States, 2010). In autonomous vehicle sce-
narios where the vehicles communicate and share their
position/velocity data, it can reveal their past or future
travel plans. Even if the agents are trustworthy, a pos-
sibility exists for an intruder to eavesdrop on the mes-
sages exchanged among the agents and gather their pri-
vate information. Privacy concerns have recently been
addressed by introducing dedicated mechanisms as part
of the cooperation protocol (Hale & Egerstedt, 2015; Han,
Topcu, & Pappas, 2014, 2017; Hsu, Roth, Roughgarden, &
Ullman, 2014; Huang, Mitra, & Dullerud, 2012; Huang,

Mitra, & Vaidya, 2015; Le Ny & Pappas, 2014). In most of
these privacy mechanisms, each agent deliberately adds
noise to the data communicated to other agents, thereby
preventing them (or an eavesdropper) from recovering
the sensitive data of individual agents by accurately pro-
cessing the distorted messages.

Most of the recently proposed privacy mechanisms
are based on techniques originally developed to protect
static databases and usually degrade the performance
when applied to dynamical systems. For instance, in
applications involving wide area control of power grids,
adding noise to the data may result in loss of stability.
In distributed systems, if agents use noisy information
from other agents to update their own state, the result-
ing behaviour differs from the desired one. Furthermore,
both due to the dynamical nature of the system and the
fact that information originating from one agent may
traverse to another agent through multiple paths in dis-
tributed systems, the noise introduced by the agents at
one time step can adversely affect the state evolution of
a multi-agent system multiple times in the future. Note
that the second reason arises because of the coopera-
tive nature of the system where one agent uses informa-
tion from other agents. Thus, intuitively, there should be
a trade-off between the ‘cooperation level’ and perfor-
mance in a distributed system when the agents are try-
ing to keep their information private. If the noise level
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introduced to maintain privacy is too high, then coop-
eration might even impede the system functionality. On
the other hand, if the agents do not transmit any infor-
mation to each other, perfect privacy is achieved, at the
expense of the benefits of cooperation. In this paper, we
address an outstanding and important question whether
cooperation leads to improved performance in the pres-
ence of a privacy mechanism, and whether a fundamental
trade-oft exists between the two.

We consider a scenario where the objective of the
agents is to cooperatively minimise a common quadratic
cost function of their states by sharing their state infor-
mation among each other. Several problems such as con-
sensus and formation control fall into this class. In addi-
tion, the agents wish to keep their states private during
this process. We propose a noise-adding privacy mecha-
nism for the agents to keep their states private over time.
Note that we focus on privacy of the agents state tra-
jectory, rather than the state at any specific time (as in
Hale & Egerstedt, 2015). We adopt the differential privacy
(DP) framework originally proposed by Dwork (2006),
and later extended to dynamical systems in Le Ny and
Pappas (2014). We characterise the noise level ensuring
a desired level of privacy.

Next, we introduce a method for the agents to adapt
their cooperation level in response to the privacy noise.
In many scenarios, in addition to optimising a global
cost, the agents also have individual goals that do not
require cooperation. For example, in intelligent transport
systems, vehicles cooperate to reduce road congestion
while each of them also wants to reduce its own travel
time (congestion game in Rosenthal (1973)). Individual
objectives also exist in multi-objective optimisation prob-
lems, wherein multiple conflicting goals are considered
and in optimisation problems with separable cost func-
tions. When the agents wish to remain private (by sharing
noisy data), it is intuitive that they should cooperate less
and focus more on their individual goals. Thus, the coop-
eration level can be characterised based on whether the
agents are willing to cooperatively minimise the global
cost, or they want to selfishly minimise their individual
costs. We formalise this notion by defining a new cost
that is a convex combination of the global and individual
costs, wherein the weighing factor represents the coop-
eration level. We then characterise the combined effect
of cooperation level and privacy noise on the system
performance.

Related work: Several secure multi-party computation
schemes exist in the literature which compute a function
of agents’ variables while keeping them private (Lindell &
Pinkas, 2009; Orlandi, 2011). However, in these schemes,
there always exists a possibility that some agent(s) obtain
auxiliary information and use it to infer other agents

private variables. Moreover, majority of agents can col-
lude to infer the remaining agents’ sensitive information.
To address these issues, we use the DP framework in this
work. DP abstracts away from any auxiliary information
that the agents might have and it is also resilient to post
processing of data (Dwork, 2011; Le Ny & Pappas, 2014).

Many recent studies have proposed privacy mecha-
nisms for multi-agent systems. In Huang et al. (2012), the
authors present a differentially private consensus algo-
rithm that protects the initial state of the agents, and
illustrate privacy vs. accuracy trade-off. In Mo and Mur-
ray (2017), a private consensus algorithm is developed
using correlated noises, which achieves perfect accu-
racy. We also study the consensus algorithm as an exam-
ple and our DP mechanism is similar to Huang et al.
(2012). However, we have a different goal of analysing
the cooperation vs privacy trade-off. Some papers have
addressed privacy issues in optimisation problems. In
Huang et al. (2015) and Han et al. (2014), the authors
study distributed convex optimisation and optimisation
with piecewise affine objectives, respectively, and develop
DP mechanisms to keep the agents’ cost functions pri-
vate. In Han et al. (2017) and Hsu et al. (2014) , the
authors develop DP mechanisms to keep constraints of
the agents private in optimisation problems with convex
and linear objectives, respectively. In contrast, our goal is
to keep private the entire state trajectories of the agents in
a quadratic optimisation problem. In Hale and Egerstedt
(2015), the authors develop DP mechanisms to keep the
agents’ state trajectories private in a convex optimisation
problem with nonlinear constraints.

All of these works develop privacy mechanisms and
analyse their effect on the system performance in terms
of sub-optimality, accuracy, convergence, etc. Thus, they
are primarily concerned with the privacy vs. perfor-
mance trade-off. In contrast, we study a privacy vs.
cooperation trade-off by simultaneously characterising
the effect of cooperation and privacy noise on the sys-
tem performance. We develop a privacy mechanism
similar to these papers, but we address fundamen-
tally different questions such as: (1) How does the sys-
tem performance change if the agents vary the amount
of cooperation among each other? (2) For a higher
privacy level, is it beneficial for the agents to reduce
cooperation? We answer these questions by developing a
framework through which the agents can vary their coop-
eration level. To the best of our knowledge, our analy-
sis is novel, and it highlights an important but previously
unidentified trade-off in multi-agent systems.

The cooperation level in our framework can be
viewed as a weighting factor for the noisy state informa-
tion received from the neighbours and used to update
the agents’ states. Related works include Rajagopal and



Wainwright (2011), in which the authors analyse consen-
sus in the presence of noise, and show that almost sure
convergence can be guaranteed by using time decaying
weighing factor in the updates. In Xiao, Boyd, and Kim
(2007), the authors find the optimal edge weights for the
consensus problem that minimise the expected deviation
among the agents. These works are specifically developed
for the consensus algorithm, and may not work for other
problems. In contrast, to elucidate the relation between
the cooperation and privacy levels in multi-agent systems,
we develop techniques that are applicable to more general
quadratic optimisation problems and not only limited to
consensus.

Contributions: The contribution of this paper is three-
fold. First, we consider a general class of multi-agent sys-
tems arising from the solution of quadratic optimisa-
tion problems via distributed computation. We propose a
noise-adding privacy mechanism for the agents to solve
the optimisation problem while maintaining privacy of
their states over time. We analytically quantify the effect
of the privacy noise on the system performance. Second,
we present a novel method to introduce the notion of
‘cooperation level in cooperative multi-agent systems, as
a weighting factor by which the agents weigh the system
cost vs. their individual costs. We show that, due to the
privacy noise, the performance of the distributed system
may improve when reducing the cooperation level among
the agents. In fact, we simultaneously characterise the
effect of cooperation and privacy levels on the system per-
formance, and show that a fundamental trade-off exists
between the two in multi-agent systems. Third and finally,
we illustrate our results through the problems of consen-
sus and one-dimensional (1D) Voronoi tessellation. In
both cases, we analytically characterise the effect of pri-
vacy and cooperation levels on the system cost, and show
(by simulation) that an optimal cooperation level exists
to maximise the system performance for a desired pri-
vacy level. Our results mathematically support the intu-
ition that the optimal cooperation level should decrease
if the privacy level increases.

Paper organisation: The rest of the paper is organised
as follows. Section 2 presents the quadratic optimisation
set-up, the privacy mechanism and its effect on the system
performance. Section 3 presents a framework to include a
cooperation parameter in the problem and quantifies the
performance as a function of privacy noise and agents’
cooperation level. Section 4 illustrates our findings by
studying the consensus and centroidal Voronoi tessella-
tion (CVT) problems. Finally, Section 5 concludes the
paper.

Mathematical notation: The following notation will be
adopted throughout the paper. ||.| denotes the euclidean
norm of a vector, or the induced 2-norm of a matrix.
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»[0: 0o] denotes an infinite sequence/trajectory. The trun-
cated version of y up to time T € N is denoted by
¥[0: T]. Without loss of generality, we also treat a trun-
cated sequence as a vector of appropriate dimension.
For an N x N Hermitian matrix Q, the ordered real
eigenvalues are A;(Q) = 2,(Q) = --- = An(Q). Further,
Q = 0 (respectively, Q > 0) denotes that Q is positive
semi-definite (respectively, positive definite). For a square
matrix A, p(A) denotes the spectral radius of A and
diag(A) denotes the diagonal matrix containing the diag-
onal entries of A. tr(.) is the trace operator. Iy denotes the
N x N identity matrix, 1y = [1, 1,...,1]T € R¥ and,
Oy =[0,0,...,0]" € RN. The Q-function is Q(x) =
ﬁ fxm e’édu. Finally, N(0, ¥) denotes the standard
normal distribution with mean 0 and covariance matrix
.

2. Problem formulation

In this section, we present our multi-agent cooperative
optimisation problem and characterise its solution. Addi-
tionally, we describe a noise-adding mechanism that pre-
serves the privacy of the agents’ states over time.

2.1 Problem set-up

Consider a distributed system with a set of N > 2 agents
denoted by ' ={1,2, ..., N}. The agents collectively
aim to minimise a common objective that is given by

P: min J,(x) = %xTQx +rTx+s, (1)

where the vector x = [x1, x2, ..., xn]7 € RN denotes the
states of all agents. Further, Q is a non-zero N x N real
matrix, 7 € RN and s € R. Let gij and r; denote the entries
of Q and r, respectively. Note that the states of the agents
are coupled with each other via the quadratic term x” Qx
in the cost function. Specifically, we say that the agents i
and j are uncoupled if both g;; and gj; are zero, and that
they are coupled otherwise. Let \V; denote the neighbour
set or the set of agents whose states are coupled to the
state of agent 7, and let N; = |V;|. We place the following
assumptions on the cost function J,(x):

(A.1) Q is symmetric and positive semi-definite. Fur-
ther, if 0 is an eigenvalue of Q, then: (1) its algebraic mul-
tiplicity is 1, and (2) r = Oy in Equation (1).

(A.2) Each row(or column) of Q — diag(Q) has at least
one non-zero entry.

Assumption A.2 implies that there is no uncoupled
agent in the system, that is, N; # 0 for each i € V. This
assumption is not restrictive because a system with n
uncoupled agents can be studied via a reduced system
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with N — n coupled agents. Assumption A.1 implies that
the minimisation problem P is convex and admits a finite
(but not necessarily unique) optimum. Let the set of all
the optimum solutions of P be denoted by A™*. An opti-
mum x* € X* can be achieved by the agents with a dis-
tributed, iterative gradient descent algorithm. In such an
algorithm, the update rule of agent i is

9
xi(k+1) = x;(k) — 1 a]w(x(k)) = xi(k)

=1 | gixi(k) + Z giixj(k) +ri |, (2)
JeN;

where y; > 0 is the step size and x;(0) is the initial state
of agent i. As evident from the above iteration, agent
i requires state information xy; from all its neighbours
for its own state update. We assume that the agents can
communicate their state information to each other with-
out any distortion. The gradient descent algorithm for all
agents can be collectively represented as

S1: x(k+1) =x(k) — 1 (Qx(k) + 1)
= (v — nQx(k) — yir = Aix(k) + by,
3)

where A; = Iy — y1Q, by = —yrand initial state x(0) =
[%1(0), x2(0), ..., xn(0)]7. Since the cost gradient is linear,
algorithm S; can be represented as a discrete-time invari-
ant linear system. Next, we derive the condition under
which the steady-state solution of S; exists and show that
the steady-state solution is the optimum of problem P.

Lemma 2.1 (Convergence of algorithm S,): Let y; <
20(Q)™L. Then, the algorithm S, in Equation (3) converges
asymptotically to the optimum of P, that is limy_, ,ox(k) =
x* for an x* € X*.

Proof: First,assume Q> 0.Fori=1,2, ..., Nwehave0 <
712i(Q) < ¥141(Q) < 2. Since 1;(A;) = 1 — y1A;(Q), the
above condition is equivalent to —1 < A;(A;) < 1. Thus,
all eigenvalues of A lie inside the unit circle and a steady-
state solution of Equation (3) is achieved. Assume now
that Q has a 0 eigenvalue. Then, by assumption A.1, b; =
0 and A; has a single eigenvalue at 1 and all other eigen-
values lie inside the unit circle. Thus, the linear system in
Equation (3) is marginally stable and a finite steady-state
solution is achieved. Further, it can be easily observed
that the steady-state solution of Equation (3) satisfies the
first-order optimality condition V], (x) = Qx+r =0y
of problem P. Thus, it minimises J.,(x) and is an optimum
of P. |

Let the steady-state of Equation (3) be denoted by m;.
Then,

my = Aymy + by, (4)

and the optimum cost achieved by the agents is given by

1
]:o £ Ueo(¥)]s, = EWI{le + rTml +, (5)

where the notation [.]s, denotes the cost achieved by the
steady-state of algorithm S;.

Remark 2.1 (Examples): A number of problems fit into
our quadratic cost framework, including consensus and
formation control. We will discuss the consensus example
in detail in Section 4. We also study the 1D CVT prob-
lem in which the agents implement a linear algorithm
to minimise a convex cubic cost. This shows that our
framework can be extended to problems involving con-
vex non-quadratic costs that can be optimised by a linear
algorithm.

2.2 Privacy mechanism

In the cooperative algorithm S;, the agents update their
state upon communicating the state information with
their neighbours. Thus, algorithm S; is not private and
in fact, an intruder may reconstruct the state trajectories
of the agents with access to only a few messages commu-
nicated by the agents. To ensure privacy, we consider the
DP mechanism that protects the state of the agents over
time, where each agent adds an artificial random noise
to its state before communicating it with other agents.
The noise ensures that ‘any two different instances’ of
the communicated state trajectories are ‘statistically not
very different, which prevents the intruder from accu-
rately obtaining the actual state information of the agents;
thus, maintaining their privacy. For the motivation and
more information on DP, interested readers are referred
to Dwork (2006) and Dwork (2011).

Remark 2.2 (Privacy of state trajectory): Note that dif-
ferent instances of the state trajectory arise from differ-
ent initial states x(0). However, in addition to the initial
state, agents wish to keep their positions/velocities private
at all times because accurate state information at any time
instant can potentially reveal the complete future state
trajectory.

The noisy DP mechanism can be written as
M: xi(k) = xi(k) + n;(k), (6)

where x; (k) denotes the state communicated to the neigh-
bours of agent i and n;(k) is the random privacy noise. Let



n(k) = [n1(k), ny(k), ..., nn(k)]T. We adopt the DP frame-
work developed in Le Ny and Pappas (2014) to design
the noise that ensures privacy of the state trajectories. We
begin with the definition of adjacency.

Definition 2.1 (Adjacency): Given a finite 8 = 0, two
state trajectories x[0: co] and x'[0: co] are S-adjacent

(denoted by adj(B)) if
[x[0: 00] — &[0 : o0]|| < B. (7)

It should be noted that in the classic definitions of DP
for static databases (Dwork, 2006) and for dynamical sys-
tems (Le Ny & Pappas, 2014), adjacency is defined with
respect to the change of trajectory of one agent only, while
keeping the trajectories of other agents unchanged. In
contrast, our definition of adjacency allows simultaneous
changes in the trajectories of one or more agents.

Remark 2.3 (Common steady-state value): The adja-
cency definition in Equation (7) implicitly requires that
the two instances of the state trajectories (resulting from
two different initial conditions) vary only for transient
periods and have a common steady-state value. This holds
true if Q > 0, since it is easy to observe (see (4)) that the
steady-state value does not depend on the initial condi-
tion x(0). However, when Q = 0 with a single eigenvalue
at 0 (see A.1), then the steady- state value might depend
on the initial condition. Let X" denote the set of all initial
conditions that result in a steady-state value of m. Then,
the privacy mechanism guarantees DP only among those
trajectories that result from initial conditions contained
in the set A}".

Let x[0: 0o] and x'[0: oo] denote the correspond-
ing noisy communicated state trajectories. Note that x[0 :
T] € RNT*D and let R¥NT+D denote the o — algebra
generated by it. Next, we provide the definition of DP.

Definition 2.2 (Differential privacy): The mechanism
M in Equation (6) is (€, §)-differentially private if for any
two B-adjacent trajectories x[0: oo] and x'[0: oo] and for
all S € RNT+D and for all T > 0 it holds

P[x[0: T] € S] < ¢P[X'[0: T] € S] + 6, (8)

where € > 0 and 0 < § < 0.5 are privacy parameters.

Definition 2.2 implies that for any two beta adjacent
trajectories, the statistics of the corresponding noisy com-
municated state trajectories differ only within a multi-
plicative factor of e and an additive factor of §. A standard
way to guarantee DP is to choose an i.i.d. Gaussian noise
and scale its variance according to the adjacency param-
eter B, as stated in the next lemma.

INTERNATIONAL JOURNAL OF CONTROL . 5

Lemma 2.2 (Ensuring differential privacy): The mech-
anism M in Equation (6) is (¢, 8)-differentially private
if n(k) is white Gaussian noise with distribution n(k) ~
N(0, o2Iy), where

. %me), and K = Q1(3).

Proof: See Theorem 3 in Le Ny and Pappas (2014).
Since the quantity that needs to be protected and that
is communicated is same (i.e. the state trajectory), the
sensitivity is trivially upper bounded by the adjacency
parameter S. |

In Lemma 2.2, the relation between ¢ and the pri-
vacy parameters (€, §) implies that the noise variance is a
monotonically decreasing function of € and . Also, note
from the definition of DP in Equation (8) that a smaller
value of € and 8§ implies larger privacy of the agents. Thus,
the noise variance o can be treated as synonymous to the
privacy level of the system, and for the ease of presenta-
tion, we present our results directly in terms of noise level
o (instead of the privacy parameters € and §).

In the presence of privacy noise, the evolution of the
algorithm S; in Equation (3) is modified as

Sllﬁfi" :x(k+ 1) = A1x(k) + by + Hin(k), )

where H;2A, — diag(A;) is obtained by replacing the
diagonal elements of A, with zero entries, since only non-
diagonal entries in A; represent coupling between the
agents. Note that H; = —ylé where é = Q — diag(Q).

2.3 Performance degradation due to the privacy
mechanism

The noise introduced by the privacy mechanism makes
the states of the agents private. However, it also adversely
affects the system performance. Due to the stochastic
nature of algorithm S}, we analyse the system perfor-
mance by calculating the expected cost achieved by the
agents in the presence of noise. The algorithm S&"" in
Equation (9) can be viewed as a linear system driven by a
constant input and Gaussian privacy noise. Thus, the state
of the agents at each time instant has a normal distribu-
tion, denoted by x(k) ~ N(m; (k), P (k)). The evolution
of the mean and the covariance of the states of the agents
is given by

ml(k—i— 1) =A1m1(k)+b1, and (10)
P(k+1) = AP (kAT + o*HH], (11)

with m;(0) = x(0) and P;(0) = 0. If A, is stable (i.e. Q >
0 in Equation (1)), then the mean and covariance reach
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a finite steady-state value, denoted by m; and Py, respec-
tively. Note that we have overloaded the notation of m;
with the noiseless case presented in Section 2.1 since the
steady-state solutions of Equations (3) and (10) are
the same. Thus, the mean m, satisfies Equation (4) and
the covariance P, satisfies the following Lyapunov equa-
tion:

P = A\ PAT + o*H HT. (12)

If A, is marginally stable (that is, Q in Equation (1) has
a single eigenvalue at 0, see assumption A.1), then m;
exists and is finite. However , the covariance P; may
become unbounded, and the system becomes unstable
in the stochastic sense. We now present the performance
result.

Theorem 2.1 (Performance in the presence of privacy
noise): Assume Q > 0. At steady- state, the expected cost
achieved by the agents implementing the algorithm Sll’riv in

Equation (9) is given by
* A 1 1 T T
(o) = E[Ico(x)]sll"iv = Etr(QPI) + Eml Qmy +r m; +s.
(13)

where the expectation E[.] is taken w.r.t the privacy noise
and Py depends on o.

Proof: Since Q > 0, its Cholesky decomposition exists,
denoted by Q = LTL. Further, let x denote the random
steady-state and let y = Lx. If x ~ N(my, P,), then y ~
N(Lmy, LPLT). We have

]E[]co(x)]sllnriv = E[%xTQx + TTX + S]

1
= 5I[C[yTy] +7rTm +s

1

SErEly )+ rim s

_1! T T T

= 2tr(LPlL 4+ Lmy(Lmy)" ) +r'm; +s

1
E(”(QPI) + mlTle) +rT'my + s,

where we have used the fact that tr(.) is a linear and invari-
ant under cyclic permutations. |

The performance degradation due to the privacy noise
is obtained by comparing Equations (5) and (13), and is
given by

% % 1
Joo(0) = Jop = 5tr(QPY),
which increases with the noise level 0. Because the agents

share noisy state information, full cooperation and use of
the distorted information for the algorithm updates affect

the agents’ performance. In the other extreme case, if the
agents forgo cooperation, then they will be completely
private, since no state information will be exchanged
among them, but will probably not achieve the optimum
of problem P. Thus, a mechanism is needed for the agents
to adapt their level of cooperation to maximise their per-
formance in the presence of privacy noise. In the next sec-
tion, we define a notion of cooperative level, and present
modified optimisation algorithms that incorporate the
cooperation level as a parameter.

3. Cooperation level in multi-agent systems

In this section, we introduce and motivate our notion of
cooperation level in private multi-agent systems. We cal-
culate the expected cost achieved by the agents for a par-
ticular level of cooperation and privacy noise and use it
to characterise the optimum cooperation level.

3.1 A notion of cooperation level

Agents cooperate to implement algorithm S;. However,
as discussed above, full cooperation may not be optimal if
agents also want to preserve privacy. To formalise this, we
introduce a cooperation parameter in the algorithm S;.
In many scenarios, in addition to minimising the system
cost ], the agents also have individual goals for which no
cooperation is required. As explained in the Introduction,
such conflicting goals are ubiquitous in optimisation and
game theory. We formalise the individual agent goals by
the following cost function:

1 — _ _
Jnco(x) = ExTQx +7Tx+5, (14)

and assume that

(A.3) Qis diagonal and positive definite.

Assumption A.3 implies that the states of all the agents
are decoupled in Jy.(x). As a result, no cooperation is
required to minimise the decoupled cost function J,,c,(x).

We utilise these individual agent goals to introduce
cooperation level in our framework. The costs J,(x) and
Jueo(X) represent two extremes on the cooperation scale.
To minimise the former, full cooperation is necessary
among the agents, while no cooperation is required for
the latter. When the agents wish to keep private, it is pru-
dent for them to give more weight to their individual goals
as compared to the system goal. Following this reasoning
and to capture the intermediate cooperation behaviour,
we consider a new cost function which is precisely the
convex combination of J,(x) and J,,c,(x):

Jo (X) = a]co(x) + (1 - a)]nco(x)v (15)



where the parameter o € [0, 1] is the agents’ cooper-
ation level. Note that the new cost J,(x) is convex due
to convexity of J,(x) and Ju,(x). The gradient descent
algorithm that minimises J, inherently introduces the
cooperation level in our framework and in the presence
of privacy noise can be written as

Sprv . x(k+1) = x(k) — y (@(Qx(k) + 1)
+ (1 — @) (Qx(k) + 7)) + Hyn(k)
2 Aux(k) + by + Hyn(k), (16)
where

Q=aQ+(1-)Q Ay=Iy—yQu,
by = —yry, ta=ar+ (1 —oa)r,
H, = A, — diag(Ay) = —ya(Q — diag(Q)),

>l

and y > 0 is the step size.

Remark 3.1 (Auxiliary cost function): Note that the
decoupled cost function Jc, thg: new cost function J,
and its minimising algorithm S5 merely act as a means
to introduce the cooperation level in our problem. The
performance of the agents is measured in terms of the
expected value of global cost J.,(x) achieved when the
agents follow algorithm S§™".

By varying the cooperation level in S, the agents
can achieve a range of private solutions of P. In practice,
agents should select a cooperation level that maximises
the system performance, as we will show in the next sub-
section. Note that agents are still required to exchange
their state information for all values of the cooperation
level 0 < & < 1, and that the cooperation level determines
the weight given by an agent to the information coming
from its neighbours.

Remark 3.2 (Alternative approaches for variable coop-
eration level): Different methods exist to capture the
notion of cooperation level. For instance, agents may filter
the exchanged measurements to reduce the effect of pri-
vacy noise on the performance, and use the filter weights
to measure their cooperation level. However, our formu-
lation modulates cooperation in a natural and explicit
way by balancing the individual and global goals of the
agents, and it allows us to directly characterise critical
trade-offs between privacy and performance in multi-
agent systems.

Remark 3.3 (Selection of the decoupled cost): There
may be scenarios in which the agents do not have indi-
vidual goals. In such cases, we can construct an artifi-
cial decoupled cost Jy, to capture the non-cooperation
extreme. Several choices of the matrix Q are possible. For
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instance, Q can be chosen to consist of the diagonal ele-
ments of Q, or it can be an arbitrary matrix that satisfies
assumption A.3 (see examples in Section 4). Thus, our
framework is applicable for a wide variety of multi-agent
optimisation problems. The selection of a decoupled cost
that optimises the agents performance is left as the subject
of future research.

3.2 Performance analysis with privacy and
cooperation

We now analytically characterise the expected cost for
a given privacy and cooperation level. Note that due to
assumptions A.1 and A.3, both Q, and A, are symmet-
ric. Moreover, since the privacy noise has a normal dis-
tribution, the state x(k) in algorithm S§™" is also normal.
Let the steady- state mean and covariance of x(k) in algo-
rithm SE™ be denoted by m, and P,, respectively. Next,
we present conditions under which the steady-state mean
and covariance exist. Note that Lemma 2.1 presents such
condition for o = 1.

Lemma 3.1 (Convergence of sgr“ foroo + 1): Leta + 1.
Then, the steady-state mean and covariance of algorithm
S exist if

2

<— (17)
max{p(Q), p(Q)}

Proof: The proof is similar to that of Lemma 2.1
by using the following facts: (i) Qy > 0 for o # 1,
and (ii) from Weyl’s inequality (Tao, 2012), p(Q,) <
max{p(Q), p(Q)}. u

Analogous to Equations (4) and (12), the steady-state
mean and covariance of S§"" satisfy

my = Agmy + by
= 0= Qama + 1y and’ (18)
P, = A P AL + o?H,H'. (19)

A closed-form expression of P, can be written as

B, =o'y’ Yy AL(Q - diag(Q)*(A))F.  (20)

k=0

Next, we characterise the performance of the agents when
they follow the algorithm S5™". The performance is mea-
sured by the expected value of the global cost J,(x). Simi-
larly to Equation (13), the cost achieved by algorithm S§™
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is

J(a,0) £ E[]ca(x)]sg“v = ]priv(a» 0) + Jio(at)  where,

(21)
]priv(av J) £ %tr(QPa) and) (22)
Jico(t) £ %mnga +rTmy +s. (23)

Note that J;,, () represents the cost achieved by the agents
for any intermediate cooperation level « in the absence of
privacy noise. Further, the cost term Jy,(a, ) quanti-
fies the effect of the privacy noise at a given cooperation
level since the covariance P, depends on noise level o.
However, we omit that dependence in the notation for the
ease of presentation. Moreover, P, also depends on the
step size . We do not analyse this dependence because
y dictates the number of iterations for algorithm S§™" to
converge, which is not the primary issue addressed in this
paper. Note that the optimum for P is achieved only when
a =1 and o = 0 (that is, when the agents fully cooperate
and no privacy noise is present). To clarify the notation,
Jio =71(1,0), J5(0) = J(1, 0) and Jio (@) = J(, 0). Also
note that the functions J, /iy and Ji, are continuous func-
tions in their respective variables.

Intuitively, in the absence of privacy noise, the perfor-
mance should increase as the agents cooperate more and
should equal the best performance when they cooperate
fully (o« = 1). The following lemma proves this fact and
justifies our definition of cooperation level.

Lemma 3.2 (Performance without privacy): The cost
Jico(et) in Equation (23) is monotonically decreasing for o
e [0, 1].

Proof: By differentiating Ji;,(c) with respect to o, we
obtain

Jieo@) = (mg Q+ r"ym,. (24)
For @ = 1, from Equation (18) we have, Qm; + r = 0.
Thus, J;,,(1) = 0.

For ¢ € [0, 1), Q, > 0. Thus, Q, is invertible, and
Q,' > 0. Differentiating Equation (18), we get

(Q— Qmy + Qumly +r—7=0, (25)
(a) ; Q;‘(QmaJrr)
= ma - —T, (26)

where (a) follows from Equation (18). Thus, we have

1
Ji(a) = —E(Qma + T’)TQ;I(Qma + 7).

and the derivative is non-positive, which completes the
proof. |

Lemma 3.2 implies that, in the absence of privacy
noise, it is beneficial for the agents to cooperate fully.
Instead, in the presence of privacy noise, agents can
achieve a range of private solutions of P by varying the
cooperation level. In practice, agents should select a coop-
eration level that minimises the cost J(«, o). The opti-
mum cooperation level for the agents for a given level of
privacy noise o is characterised as

a* (o) = arg main](oc,a). (27)
Remark 3.4 (Finding the optimum cooperation level):
The optimum cooperation level o* (o) can be approxi-
mated numerically by discretising the interval [0, 1] for
a, and evaluating the cost J(«, o) at each point.

Next, we show that under some conditions on cost

functions Jyry and Jic,, we can characterise the behaviour
of (o).
Theorem 3.1 (Characterising the optimum coopera-
tion level): For all o > 0, let ],y (a, 0) be strictly increas-
ing for all « € (0, 1]. Further, let Jriy (o, 0) and Jico(cr) be
strictly convex for a € [0, 1). Then, a"(0) is a monotoni-
cally decreasing function of o.

Proof: Let denote the derivative or partial
derivative w.r.t. «. Using Equation (20), we have
Joiv(e, o) = o?fla), where  f(a)=
12?2 tr[Q Y0, AR (Q — diag(Q))*(AD)*]. Since

Joriv(at, ) is assumed to be strictly increasing in the
theorem statement, fla) is also strictly increasing for «
€ (0, 1]. Also, it can be readily observed that f'(0) = 0
and f’(0) > 0. From the proof of Lemma 3.2, we have
Ji,(0) <0andJ (1) = 0. Thus, J(0,0) < 0and J'(1,0)
> 0. Also, J(«, 0) is strictly convex for o € [0, 1). Thus,
a’(0) € [0, 1) is unique and J'(a"(0'), o) = 0.

We prove the theorem by contradiction. Suppose
a'(0) is not monotonically decreasing function. Then,
there exist 0 < 0, < 0, such that0 < o (0,) < a'(03) <
1. Further,

J'(@*(o1), 01) = o1 f'(@*(01)) + Ji,(@*(01)) = 0, and
J (@ (02), 02) = 03 f'(@*(02)) + Jjo (@ (02)) = 0.

Subtracting, we get
0 =o0lf (a*(01)) — o5 f'(a*(02)) + i, (a* (01))
—Jio (0¥ (02))
L 2@t () — [ ©0))] + (@ (o1))

(@ (0)) 2o,



where (a) follows since fis an increasing function and (b)
follows from the strict convexity of fand Ji,. Thus, there
is a contradiction and therefore, the theorem follows. W

Due to the convexity and increasing properties of the
functions involved in Theorem 3.1, we are able to obtain
anice characterisation of the optimum cooperation level.
This result implies that under the conditions given in
Theorem 3.1, it is always beneficial for the agents to
reduce their cooperation level if they want to increase
their privacy level. It characterises an important and pre-
viously unidentified trade-off between privacy and coop-
eration in multi-agent systems. Next, we show how to
design the artificial cost function J,,, (in cases where indi-
vidual costs are not present) which guarantees that the
conditions of Theorem 3.1 hold true.

Corollary 3.1 (Design of artificial cost function):
Assume that Q satisfies the following properties:

; M(Q)
(i) Q> 0and A;V(Q) < 1.5,

(i) diag(Q) = uly for some > 0.

Then, there exists a Q = 8Iy with (iii) A (Q) < § <
1.5An(Q) and (iv) y < 87! such that Joriv (e, @) is strictly
increasing for a € (0, 1], and Jio(t) and Jpry (o, 0°) are
strictly convex for a € [0, 1).

Proof: See Appendix. |

The above corollary guarantees that a”(c) is a mono-
tonically decreasing function. It should be noticed, how-
ever, that the conditions presented in Theorem 3.1 and
Corollary 3.1 are not necessary, and &' (o) may or may
not exhibit similar behaviour if these conditions are not
satisfied.

4. Consensus and Voronoi tessellation

In this section, we illustrate our results through two pro-
totypical problems, namely the consensus and the 1D
Voronoi tessellation problems.

4.1 Consensus with privacy and cooperation

Consensus algorithms are used by autonomous agents to
agree on a common value in a distributed fashion. The
algorithm involves sharing of state information among
the agents. The iterations of the consensus algorithm in a
discrete-time setting can be represented as (Olfati-Saber
et al., 2007)

x(k+1) = (Iy — yL)x(k), (28)
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where L = [l;] is the Laplacian matrix of the graph
representing the agents’ interaction. We consider an
undirected consensus graph for which the Laplacian is
symmetric, positive semi-definite with positive diagonal
entries and non-positive non-diagonal entries. For such
a graph, 1y is an eigenvector of L associated with the
eigenvalue 0, that is, L1y = 0 and An(L) = 0. Further,
we assume that the graph is connected, which is equiv-
alent to Ay_1(L) > 0. Then, the algorithm in Equation
(28) asymptotically achieves average consensus, that is,
limy_, oox(k) = uly, where pu = % Zil x;(0).

The consensus algorithm in Equation (28) can be
viewed as a gradient descent algorithm to minimise
the following disagreement function (Olfati-Saber et al.,
2007):

1 -
Jeo(x) = EXTLX =3 Z Z —li(i — x)% (29)

i=1 j.jeN;

Thus, the consensus problem fits into our framework
(Problem (1) and solution (3)) with Q = L, r = 0, and
s = 0. Further, it also satisfies assumptions A.1 and A.2.
To introduce the cooperation level, we select the follow-
ing decoupled cost function:

1 1 1
Juco(x) = ﬁxTx — ﬁaTx + ﬁaTa + 8, (30)

where a € RN and b € R. The optimum of J,,(x) is
achieved at x = a and the optimum cost is b%. The non-
cooperative cost J,, signifies the fact that each agent is
stubborn: i.e. it wants the opinions (states) of the other
agents to converge to its own, without changing its own
opinion. Consensus with stubborn (or persistent) agents
is well studied and J,, corresponds to the cost when all
agents are fully stubborn (see Ghaderi & Srikant, 2013,
Equation (1)). Since all agents are stubborn, they do not
cooperate and evolve independently without using each
other’s state information.

Comparing the above decoupled cost function with
Equation (14), we obtain Q= %IN, r= —%a, and s =
scala+ b*. Thus,

QO,:O{L +FTO(IN’ Aot:IN_yQaa bot = y(l]\;a) a.

Further, the step size can be chosen according to
Lemma 3.1 to guarantee convergence of the consensus
algorithm. The resulting cost with privacy mechanism
becomes

J(a,0) = %(tr(LPa) +mlLm,).
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3.5

2.5
System
Costs  “|

1.5

Figure 1. System costs as a function of cooperation level for privacy noise level o = 3.

Note that, for « = 1, A; becomes marginally stable
and thus, the covariance matrix P; becomes unbounded
resulting in instability (see discussion below (12)). Thus,
the agents have to choose a cooperation level 0 < o < 1
for the cost to remain finite.

We now consider a specific consensus example with
N = 4 agents and the following Laplacian matrix:

0.8 —0.14 —0.15 —0.51
—-0.14 14 -0.85 —.41
—-0.15-0.85 1.1 —0.1
—0.51 —0.41 —-0.1 1.02

Leta=[1.5,1,3,0]"and x(0) = [0.2, 0.6, 1.2, 2]". Figure
1 shows the system costs J, Joriv and Ji, in Equations (21)-
(23) as a function of « for o = 3. We can observe that J;.,,
which is the system cost in the absence of privacy noise,
is monotonically decreasing (cf. Lemma 3.2). This vali-
dates our understanding that it is always beneficial for the
agents to have full cooperation if they do not desire any
privacy.

The effect of privacy noise is included in the cost Jpiy.
It is interesting to observe its behaviour at different coop-
eration levels. Note that the noise has only a marginal
effect on the cost at smaller cooperation levels. In fact,
when the agents do not cooperate (@ = 0), the noise
does not affect the performance at all - which is natu-
ral because the agents do not share any information. In
contrast, the effect of noise is significantly higher at larger
cooperation levels, because the agents use the noisy states
in their updates. Thus, the cost i, is a monotonically
increasing function of ar. The two cost curves Jic, and Jpriy
highlight the trade-off between having full cooperation
vs. no cooperation. As evident from the resulting overall

cost curve J, an intermediate optimum cooperation level
should be chosen to achieve best performance.

Figure 2 shows the overall cost ] achieved as a function
of the cooperation level for various levels of privacy noise.
Observe that for each cooperation level, the cost increases
with the noise level. These curves highlight that the opti-
mum cooperation level changes with the privacy noise
level which can be seen explicitly in Figure 3. Note that
along with the fact that J;, is an increasing function, both
Jpriv and Ji, are strictly convex. Thus, a’(o) is a mono-
tonically decreasing function (cf. Theorem 3.1), which
implies that it is always better for the agents to reduce
their cooperation level if they desire to have a higher level
of privacy. Finally, note that the consensus example does
not satisfy the conditions in Corollary 3.1 (see discussion
below Corollary 3.1).

4.2 Centroidal Voronoi tessellation

In this subsection, we show that our results and the intu-
ition gained from the consensus problem hold even when
some of our assumptions are not satisfied; thus suggesting
that a trade-off between privacy and cooperation exists in
a large class of distributed systems. We study a 1D CVT
problem over the interval & = [0, 1]. The goal of a CVT
problem is to divide €2 into N regions denoted by {€2;};c '
and find N points in €2, denoted by {x;};car such that (1)
Q; is the Voronoi region’ of x;, and (1) x; is the centroid of
2;. The CVT problem can be expressed as the following
optimisation problem:

1
min J,(x) = / min (x; —y)zdy. (31)
x 0 ieN
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Figure 2. Consensus cost as a function of cooperation and privacy.

The 1D-CVT problem can be viewed as an optimal
agent placement problem , and it has wide applications
including data compression and scalar quantisation (Du,
Faber, & Gunzburger, 1999).
Without loss of generality, we assume that x; < x; <
» < xy. Then, the cost in Equation(31) can be written
as

N

1
Joo(x) = 7 Z [ —xic1)’ + (i —x)°], (32)

i=1

where xg2 — x; and xy 4 1 £2 — xy are dummy variables
introduced for ease of analysis. It can be easily verified
that J,(x) is convex.? Further, the ith component of its
gradient can be written as

By examining Equation (33), it follows that the optimum
value x* that minimises J.,(x) also minimises a different
cost function, denoted by J.(x), whose ith component of
the gradient is

o) 1
—— = (2% — xim1 — xi1).

34

Since J.,(x) and J,,(x) have the same optimum, we can
use the gradient of either cost functions in the gradient
descent algorithm for solving the CVT problem. How-
ever, the gradient of J,(x) is nonlinear whereas the gra-
dient of the J,(x) is linear. We choose the linear gradient
since it results in a linear gradient descent algorithm and
fits into our framework (3). Using the individual compo-
nents in Equation (34), the gradient can be written as

0Jo(x 1 ~
8;» ) = Z(in = Xi—1 — Xip1) (Xip1 — xi-1). (33) Vieo(x) = Qx+, (35)
1
0.8r i
.08 -
o (o

©), .| |

0.2 — i

—
% > 4 6 8 10

Figure 3. Variation of the optimum cooperation level with noise.
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where r = [0, 0, ..., 0, —0.5]7, and Q is the following tri-
diagonal matrix:

F3 —-10 0 0 --- 0
-12 -10 0 ---0
1lo-12-10--0
Q_4 : : :
0 0 -0 -1 2 -1
00 00 —13 |

Lemma 4.1 (Properties of Q): Q is positive definite and
p(Q=1
Proof: From Yueh (2005), Theorem 5, we get

1 j— 1
lf(Q)=E(l+cos¥> for i=1,2,...,N.

Thus, A;(Q) = 1 and Ax(Q) > 0 and Lemma follows. W

The new cost function can then be written as J,,(x) =
1x"Qx 4 r"x and the gradient descent to solve the CVT
problem in Equation (31) becomes

Scvr: x(k+1) =x(k) — y1(Qx(k) + 1) £ Apx(k) + by.
(36)

The algorithm Scyr with y; = 1 is the well-known Lloyd’s
Algorithm (Du et al., 1999) for solving CVT problems in
1D.

Remark 4.1 (Generalisation for non-quadratic cost
functions): Although the CVT problem has a cubic
cost function, its optimum can be achieved via a lin-
ear algorithm so that our framework is still applicable.
This suggests that our framework may be applicable
to general non-quadratic convex cost functions, pro-
vided that the optimum can be achieved via a linear
algorithm.

To introduce the cooperation level, we consider the fol-
lowing quadratic cost:

]nco(x) = % Zi] ,/01 (xi - )’)zd)/ = %XTX . ﬁlﬁx + %
(37)

Recall that the optimisation with the coupled cost in
Equation (31) can be interpreted as an optimal coverage
problem (Du et al., 1999) wherein N agents want to cover
the interval [0, 1] in an optimal cooperative manner. On
the other hand, the decoupled cost in Equation (37) rep-
resents the case when each agent wants to cover the whole
interval by itself, without cooperating with other agents.
Thus, the decoupled cost in Equation (37) is the counter-
part of the coupled cost in Equation (31).

Note that J,,,(x) satisfies assumption A.3 and x = [0.5,

0.5, ..., 0.5]7 is the optimum of (). By comparing
the above cost function with Equation (14), we obtain
Q= %IN, r= —ﬁlN and s = %, and the corresponding

values of Qy, Ay, by and H,, can be calculated using Equa-
tion (16). Since Q, is positive definite, the stability condi-
tion (17) for the CVT problem reduces to y < 2. We next
analyse the system cost and performance.

The cost in Equation (32) can be simplified as

1 1 " 1
o) = 231 + 5 D (e = x)” + S (1 —x0)”

i=1

We make the linear transformation z = Gx + g to obtain

x 1 00 ---0 0

Xy — X1 -11 0 ---0 0

X3 — X3 0O-11 0 --- 0

= x+
XN — XN-1 0 ---0-11

1-xy | L0 0--0—-1] [1]
——’

z G g

Let m, and P, denote the steady-state mean and covari-
ance achieved by algorithm S§™" in Equation (16) for the
CVT problem. Further, let n, and V,, denote the steady-
state mean and covariance of z, and let ; and v;; denote
the elements of 17, and V,, respectively. Due to the linear
transformation, we have n, = Gm, + gand V,, = GP, GT.
Recall that, for a scalar random variable with distribu-
tion y ~ N(v, 6%), it holds E[y*] = v® + 3v02. Thus, the
expected cost for the CVT problem becomes

J(a,0) = %(77? + 3mon) + 712 Ziz['i? + 3n04]
+1 41 + 30N410N4IN+) - (38)

Consider now an example with N = 4 agents and y =
1. Figure 4 shows how the steady-state values achieved
by the agents vary with the cooperation level, when they
use algorithm SE™ in Equation (16) in the absence of
noise. Observe that, when o = 0, the optimum of J,,;,(x)
in Equation (37) is x = [0.5, 0.5, 0.5, 0.5], so that the
agents occupy the same location due to the lack of coop-
eration. When « = 1, the agents cooperate completely and
achieve the solution x = [é, %, g, % T which is the opti-
mum of ],(x) in Equation (31). Figure 4 shows the solu-
tion achieved by algorithm S§™ for the intermediate val-
ues of .

Figure 5 shows the system cost as a function of the
cooperation level for various values of o. Similar to the
consensus example, we observe that the cost is a convex
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Figure 4. Steady-states achieved by S,, for the CVT problem in the absence of noise.

function of « and the optimum « is less than 1. Moreover,
the cost increases when the noise level increases.
Analysis with two agents: The analysis of the cost func-
tion simplifies if we consider the simple, albeit useful, case
of N =2 agents. In this case, we can algebraically solve the
steady-state Equations (18) and (19) to obtain

_T1 a 1 o _ PIPZ
me=[3-%3+%] andPa—[pzpl]’
whereplz%andm:%.Thus,
1 1—a)? c*(4+«o
](a,a)=—+( ) ( ). (39)
48 16 22 +a)

It can be easily verified that this cost is monotonically
increasing w.r.t. o and is convex with respect to «.
Consequently, an optimum « exists for each value of o,

and it is given by

V(A +202)2 48— (1+207%)

2

a*(o) (40)

As shown in Figure 6, the function o (o) is monotonically
decreasing. This indicates that it is best for the agents to
cooperate fully when no noise is present, and to reduce
their cooperation level when the privacy noise increases.

Remark 4.2 (Similarity between consensus and CVT
results): By comparing Figures 5 and 6 in the CVT
example (with cubic cost) with Figures 2 and 3 in the
consensus example (with quadratic cost), we observe a
similar pattern in the variation of the cost and the opti-
mum cooperation level. This observation strengthens our
belief that a similar trade-off should appear in problems
with general non-quadratic convex cost function that can

0.12
—0=0
~0=07
o <0 =1
008%, |ec=12

J(0,0)
0.04f
—
O | | | |
0 0.2 0.4 0.6 0.8 1

Figure 5. CVT cost as a function of cooperation level and noise level.
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Figure 6. Variation of the optimum cooperation level with noise for CVT problem.

be minimised via linear iterations. This generalisation is
left as a subject of future research.

5. Conclusion

This paper considers a multi-agent system where the
agents cooperatively optimise a quadratic cost function
while ensuring privacy of their states over time. First,
we developed a noise-adding DP mechanism to protect
the privacy of agents’ states over time. Next, we charac-
terised the system performance degradation due to the
privacy noise and argued that the degradation occurs due
to cooperation between the agents. Further, we developed
a framework in which the agents can respond to the pri-
vacy noise present in the system by varying their coop-
eration level and studied the combined effect of privacy
noise and cooperation level on the system performance.
Using the performance characterisation, we next showed
that there exists an optimum cooperation level that min-
imises the system cost and obtained conditions under
which the optimum cooperation level is a decreasing
function of privacy noise level. Finally, we studied two
examples of consensus and Voronoi tessellations, and
showed that they fit into our framework. The results
obtained in the paper illustrate a trade-off between per-
formance, privacy and cooperation, and suggest that,
to optimise performance, agents should decrease their
cooperation level if they want to increase the privacy level.
Among directions of future research, it would be of inter-
est to extend this work to arbitrary convex cost functions.

Notes

1. The Voronoi region for x; is defined by V,, ={y: [y —
x| <ly—xl Vj#il

2. Foranyx € QN,y eQ¥and0 <A <1,J,(lx+ (1 — A)y)
= )"]co(x) + (1 - )")Ico(y)
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Appendix. Proof of Corollary 3.1

Proof: Let ' denote the derivative or partial derivative
w.r.t. . First, we derive conditions under which the
cost term Ji,(or) is convex w.rt. «. By differentiating
Equation (24) with respect to o we obtain

Ji(@) = () Qi + (Qmg + 1),

From the proof of Lemma 3.2, for « = 1, we have Qm; +
r=0and m} = 0. Thus, J//,(1) = 0. Now let « € [0, 1).

By differentiating Equation (25), we get

2(Q — Qml, + Quml, =0,
Y om! = 2 Q:HQ— QQ; Qg + 1),

where (a) follows from Equation (26). Substituting the
derivatives m/, and m;, we get

1" 1 TH—1
Jio@) = T (@Qmy +1)'Q;
— o
x <3Q —20+— faQ) Q! (Qrme + 7).

Condition (iii) in the corollary guarantees that 3Q —
2Q > 0O and thus J/ () > 0 for € (0, 1].

Next, we derive conditions under which the cost term
Joriv(at, o) is convex w.r.t. . Recalling Equation (16), let
Ay =aA+B,whereA 2 y(Q—Q)andB2 Iy — yQ =
(1 — y8)Iy. Further, let H, = —yaQ where Q £ Q —
diag(Q). Differentiating Equation (19) and substituting
the above expressions, we get

P, = A P.A, + AP,B" + BR,AT 4+ 20AP,AT + 202y @ .

w

(A1)

Note that due to (iii) and (iv), A > 0 and B > 0. Fur-
ther, we have the following facts (a) QA, = A,Q and (b)
QQ = QQ (by (ii)). Using (a), (b) and Equation (20), it
can be easily observed that AP,BT = BP,AT > 0. Thus,
W > 0 and (A1) resembles a Lyapunov equation. Hence,
we conclude that P, > 0.

Taking derivative of (A1), we get

P! = A P/A,
+2AP.B"+ 2BP,AT 4+ 2A(P+ 2aP,)AT + 2022 Q2.

Z

(A2)

Again using (a) and (b) and taking the derivative of Equa-
tion (20), we get AP(;BT = BP(;AT > 0. Thus, Z > 0 and
(A2) resembles a Lyapunov equation. Hence, we get P, >
0. Thus, (t,0) = %tr(QPo/l) >0 and I’,/riv(a, o) =

%tr(QPO/l’) > 0 and the proof is complete. [ ]
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