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Abstract— This paper considers the problem of controlling
a linear time-invariant network by means of (possibly)
time-varying set of control nodes. As control metric, we adopt
the worst-case input energy to drive the network state from
the origin to any point on the unit hypersphere in the state
space. We provide a geometric interpretation of the controlla-
bility Gramian of networks with time-varying input matrices,
and establish a connection between the controllability degree
of a network and its eigenstructure. Based on the geometric
structure of the controllability Gramian, we then propose a
scheduling algorithm to select control nodes over time so as to
improve the network controllability degree. Finally, we
numerically show that, for a class of clustered networks, our
algorithm improves upon the performance obtained by a
constant set of control nodes, and outperforms an existing
heuristic-based on column subset selection.

I. INTRODUCTION

Complex networks emerge in diverse contexts including
engineering, biology, and social science. The dynamic
behavior of a complex network depends on the behavior of
its dynamical subsystems or nodes that interact with each
other. Controllability is a desired property, which ensures
our ability to arbitrarily alter the network state in a
predictable manner by means of external inputs affecting a
small subset of nodes. Existing works focus on the case
where the set of control nodes is constant over time.
Instead, in this paper we investigate the possibility of
selecting different control nodes over time, which may be
advantageous to remedy spreading processes and cascading
effects, while limiting the extent of external interventions.
Related work. Network controllability is an active topic of
research, which is receiving considerable attention from
different communities. Existing works can be classified into
qualitative and quantitative studies. Qualitative approaches
adopt the binary controllability notion first introduced in
[1], and employ graphical and combinatorial techniques,
e.g., see [2], [3], [4], [5], [6]. On the other hand, quantita-
tive studies use a graded metric of controllability and
typically leverage control-theoretic methods, e.g., see [7],
[8], [9], [10], [11]. This work falls within the second class,
in that it presents a novel geometric characterization of the
controllability Gramian of networks with time-varying
input matrices, and it describes a control node scheduling
algorithm to maximize the network controllability degree.

The problem of finding an optimal placement of sensors
and actuators is of utmost importance, as this choice
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ultimately determines the performance of a dynamic
control system. Typically, sensors and actuators are selected
to optimize structural properties, such as observability,
controllability, and stability, and the selection is constant
over time [12]. In modern systems, however, the possibility
exists to schedule the use of different sensors and actuators
in order to use them in a more efficient way [13], [14],
[15]. In this paper we depart from the existing literature by
developing an actuator scheduling algorithm based on a
novel characterization of the controllability Gramian. Our
technical approach builds on [16], which develops
geometric interpretations of various controllability notions
for continuous-time and time-invariant systems. In
constrast, here we focus on developing control nodes
scheduling algorithms for discrete-time systems and
time-varying input matrices.
Paper contribution. The contribution of this paper is
twofold. First, we derive a geometric characterization of
the controllability Gramian of linear dynamic networks
with time-varying input matrix. In particular, we define a
parallelepiped in the state space that is tangent to the
ellipsoid defined by the controllability Gramian. This
parallelepiped is an explicit function of the network
eigenvalues and eigenvectors, as well as the choice of input
matrix. Thus, our analysis ultimately provides a
quantitative link between different controllability properties
of a networks and its eigenstructure. Second, we adopt the
worst-case control energy as performance criteria, and
study the problem of selecting an optimal set of control
nodes over time. We propose a heuristic algorithm based
on our geometric characterization of the controllability
Gramian, and we validate its effectiveness via simulations.
Our numerical studies show that, for clustered networks,
our time-varying selection of control nodes provides a
higher controllability degree with respect to any constant
selection, and that our heuristic algorithm outperforms
existing selection methods based on the selection of a
subset of columns from the controllability matrix. For
space reasons, proof are omitted and will appear elsewhere.
Notation. For a vector x ∈ Rn, xi denotes its i-th element.
Given a sequence {x(k)}∞k=0 and j1 ≤ j2 ∈ Z≥0, we use
{x}j2j1 to denote {x(j1), x(j1 + 1), . . . , x(j2)}. We also use

‖x(k)‖ =
√
xT (k)x(k) and ‖{x}j2j1‖ =

√∑j2
k=j1
‖x(k)‖2.

Given v1, . . . , vm ∈ Rn, we let span(v1, . . . , vm) denote
the vector space in Rn generated by them. For M ∈ Rn×m,
we use rowi(M) to denote its i-th row, and Mi = coli(M)
its i-th column. {ei}mi=1 represents the canonical basis of
Rm. Given S = {i1, i2, . . . } ⊆ {1, . . . ,m}, we let
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MS = [Mi1 Mi2 . . . ]. Moreover, we use MT
i = (MT )i to

denote the i-th column of MT , while (Mi)
T is a row

vector obtained by transposing the i-th column of M . We
denote the singular values of M in decreasing order by
σmax(M) = σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin(m,n)(M) =
σmin(M) ≥ 0 and its spectral norm by ‖M‖ = σmax(M).
For a square matrix M ∈ Rn×n, we denote its eigenvalues
by λi(M) and the corresponding (right) eigenvectors by
VM,i. For symmetric (square) matrices M , we use M > 0
(resp. M ≥ 0) to denote that M is positive definite (resp.
M is positive semidefinite). We let 0n and 0m×n denote
the n-vector and m × n matrix with all elements equal to
zero, respectively. We let In denote the identity matrix of
dimension n × n. We let diag(M1, . . . ,Mn) denote the
block-diagonal matrix defined by the matrices M1, . . . ,Mn.

II. PROBLEM FORMULATION

We consider discrete-time network dynamics with state-
space representation

x(k + 1) = Ax(k) +B(k)u(k), (1)

where k ∈ Z≥0 is the time index, x(k) ∈ Rn is the
network state (with xi(k) representing the state of node
i ∈ {1, . . . , n}), and u(k) ∈ Rm is the control input (with
ui(k) acting on the network through the input vector
Bi(k) ∈ Rn). Here, A ∈ Rn×n is the weighted adjacency
matrix of the network, characterizing the interactions
among neighboring nodes, and B(k) ∈ Rn×m is a
time-dependent input matrix. We consider the scenario
where there is a finite set of input vectors (also called
library) available for selection at each time step, given by
the matrix B ∈ Rn×m̄, with m̄ ≥ m. The selection function
S maps the time step k to a subset
S(k) = Sk = {i1, . . . , im} ⊆ {1, . . . , m̄} of cardinality m,
corresponding to the input vectors selected at time k. In
other words, B(k) = BSk ∈ Rn×m. For instance, if all
nodes can be controlled, then B = In and m̄ = n. If only
one node can be controlled at each time step, then m = 1
and Sk = {i} ⊂ {1, . . . , n}, which implies that B(k) is a
canonical unit vector in Rn for all k ∈ Z≥0. This formula-
tion also captures the time-invariant case as a special case
by simply requiring the function S to be constant.

Throughout the paper, we assume that A is symmetric.
Given a time horizon K ∈ Z≥, we are interested in the
question of deciding which nodes should be controlled via
external inputs at each time step so that the energy required
to steer the network state from the origin to any target state
is as small as possible. In what follows, we provide a formal
statement of the problem of interest.

Definition 2.1: (Reachable states) For the network (1),
the state xf ∈ Rn is reachable at time K ∈ Z≥0 if there
exists {u}K−1

0 such that x(0) = 0n and x(K) = xf . �
Using (1), one can write the network state as a function

of the input, i.e.,

x(K) =

K−1∑
k=0

AK−k−1B(k)u(k). (2)

From (2) it follows that the state xf is reachable at time
K ∈ Z≥0 if and only if xf ∈ range(ΦK), where

ΦK ,
[
B(K − 1) AB(K − 2) . . . AK−1B(0)

]
is the controllability matrix at time K. The network is
reachable at time K if all states xf ∈ Rn are reachable at
time K, and this holds if and only if rank(ΦK) = n. By
the Cayley-Hamilton Theorem [17], a network is reachable
at time K ≥ n if and only if rank(Φn) = n. We focus on
networks that are reachable, i.e., there exists at least one
input matrix sequence {B(k)}n−1

0 such that rank(Φn) = n.
The notion of reachable state in Definition 2.1 does not

take into account the input energy required to drive the
network to the desired state. A theoretically feasible input
sequence may require arbitrarily large energy, which in
practice could make the target state not reachable. This
observation justifies our focus on the states reachable using
input sequences with no more than unit energy, which we
refer to as unit-energy inputs for simplicity.

Definition 2.2: (Reachable set using unit-energy inputs)
Given a sequence of input matrices {B(k)}K−1

0 that ensures
reachability, the set of states that are reachable at time K
with unit-energy inputs is

R(K) = {xf ∈ Rn |xf =

K−1∑
k=0

AK−k−1B(k)u(k),

‖{u}K−1
0 ‖ ≤ 1}. (3)

�

Note that R(K) ⊂ R(K + 1), which means that given
more time, more states can be reached using the same, or
less, input energy. It can be shown that the minimum-energy
input that steers the state from the origin to xf in time K is

u∗(k) = B
T

(k)(A
T

)K−k−1W−1
K xf , k ∈ {0, 1, . . . ,K−1},

where
WK(A, {B(k)}K−1

k=0 ) = ΦKΦT
K (4)

is the K-step controllability Gramian. Note that the energy
of this input is ‖{u∗}K−1

0 ‖2 = xTfW
−1
K (A, {B(k)}K−1

k=0 )xf .
For convenience, we often refer to the Gramian simply by
WK , dropping the notational dependence on the network or
the sequence of input matrices. Given a network adjacency
matrix A and a library of input vectors B, the Gramian WK

is only a function of the selection function S. The reachable
set using unit-energy inputs can be written as

R(K) = {xf ∈ Rn |xTfW−1
K xf ≤ 1}. (5)

This expression clearly shows that the set R(K) is a
hyperellipsoid in Rn. The shape of R(K) characterizes
quantitatively the difficulty of steering the network state
along different directions. Specifically, each axis of R(K)
is associated to an eigenvalue λi(WK) of the Gramian, has
length equal to

√
λi(WK), and direction given by the

corresponding eigenvector. We are finally ready to formally
state the objective of this paper.
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Problem 2.3: (Improving network controllability by
controlling a time-varying set of nodes) Given a library of
input vectors B ∈ Rn×m̄, the network dynamics (1), and
the time horizon K ∈ Z≥0, find a time-varying selection
function S that maximizes λmin(WK({Sk}K−1

k=0 )). �
Roughly speaking, we would like the ellipsoid R(K) to

be as close to a sphere as possible. It is worth pointing out
that even if we restrict our attention to the case where the
selection function is time-invariant, the optimization in
Problem 2.3 is known to be NP-hard, e.g., see [5], [18].
Thus, we focus on understanding if and how a time-varying
input matrix can lower the energy required to steer the
network state, and on developing efficient approximate
input selection algorithms.

Remark 2.4: (Gramian-based reachability metrics) Re-
cent work has explored various controllability/reachability
metrics based on the spectrum of the controllability
Gramian in the context of complex networks [18], [19],
[20]. The determinant det(WK) reflects the volume of
R(K), the minimum eigenvalue λmin(WK) characterizes
the minimum input energy required in the worst case to
reach a state on the unit hypersphere in the state space Rn

in time K (while the corresponding eigenvector
characterizes the direction that is most difficult to move the
state towards), and the trace tr(WK) determines the
average minimum input energy required to reach all states
on the unit hypersphere in the state space. Roughly
speaking, for ease of controllability, one would like all
eigenvalues of WK to be as large as possible. �

In [19] it is shown that symmetric networks are difficult
to control, in the sense that the control energy grows
exponentially when the set of inputs remains constant. To
conclude this section, in the next result we show that this is
also the case when the set of inputs is allowed to be
time-varying.

Theorem 2.5: (Symmetric networks remain difficult to
control) Consider a network defined by (1) and assume that
A is symmetric. Then

λmin(WK({Sk}K−1
k=0 )) ≤ λ

2(d n
me−1)

max (A)

1− λ2
max(A)

, (6)

where |Sk| = m for k = 0, . . . ,K − 1.

III. GEOMETRY OF THE HYPERELLIPSOID DEFINED BY
THE CONTROLLABILITY GRAMIAN

In this section, we establish a connection between the
hyperellipsoid defined by the controllability Gramian and
the network eigenstructure. Inspired by [16], we find n
tangent hyperplanes to R(K) that are expressed in terms of
the eigenvectors of the network adjacency matrix A. This
result is the basis for our control node selection algorithm.

Since, by assumption, A is diagonalizable, its normalized
eigenvectors Vi form a basis of Rn. Therefore, for all k ∈
Z≥0 there exists C(k) ∈ Rn×m such that

B(k) = V C(k) =

n∑
i=1

Vi rowi(C(k)), (7)

where rowi(C(k)) ∈ R1×m is the i-th row of C(k). By
substituting (7) into (2) we obtain

x(K) =

n∑
i=1

K−1∑
k=0

AK−k−1Vi rowi(C(k))u(k)

=

n∑
i=1

Vi

K−1∑
k=0

λK−k−1
i rowi(C(k))u(k)

=

n∑
i=1

Viηi, (8)

where λi = λi(A), and

ηi ,
K−1∑
k=0

λK−k−1
i rowi(C(k))u(k) ∈ R (9)

represents the i-th coordinate of x(K) for the basis formed
by the vectors Vi. Using the Cauchy–Schwarz
inequality [17],

ηi ≤ η∗i ‖{u}K−1
0 ‖ ≤ η∗i ,

where

η∗i ,

√√√√K−1∑
k=0

λ
2(K−k−1)
i ‖ rowi(C(k))‖2, (10)

and, for the last inequality, ‖{u}K−1
0 ‖ ≤ 1. By inspection,

the equality ηi = η∗i is achieved if and only if

ui(k) = u∗i (k) = (η∗i )−1λK−k−1
i rowi(C(k))T . (11)

One can see from equations (8)-(11) that η∗i is the
maximal distance that one can drive the network state
along the direction of the network eigenvector Vi.
Therefore, the vector η∗ characterizes the network
controllability, both qualitatively and quantitatively. For
instance, as shown in [16] for the case of a constant input
matrix, if η∗i = 0 for some i ∈ {1, . . . , n}, then R(K)
loses a dimension and the network is uncontrollable.

We continue our analysis by drawing a connection
between the network controllability degree and the
geometric interpretation of the controllability Gramian.

Theorem 3.1: (Relationship between the Gramian and
the network eigenstructure) For each i ∈ {1, . . . , n}, define
the hyperplanes H+

i ,H
−
i ,⊆ Rn by

H+
i = η∗i Vi + span(V1,

i
^. . ., Vn),

H−i = −η∗i Vi + span(V1,
i
^. . ., Vn),

where the symbol i
^

denotes that the i-th vector is removed
from the list. The 2n hyperplanes
H+

1 , . . . ,H+
n ,H−1 , . . . ,H−n , define a parallelepiped tangent

to R(K).
The counterpart of Theorem 3.1 for continuous-time

linear time-invariant systems is stated in [16] without proof.
Theorem 3.1 establishes a relation between the network
controllability Gramian and the eigenstructure of the net-
work. From (10), one can see that reducing the magnitude
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Algorithm 1: Selection of a constant control set
Input : Number of control nodes m, network matrix A, control

horizon K, input library B;
Output : Input matrix with m columns;

for all subsets {i1, . . . , im} of {1, . . . , m̄} do
1 Let Choose B(k) = Bi1,...,im for all k ∈ {0, . . . ,K − 1};
2 Compute WK(i1, . . . , im) =WK(A, {B(k)}K−1

k=0 ) using (4);

3 return {i∗1, . . . , i∗m} = arg maxλn(WK(i1, . . . , im));

of λi, while keeping the other eigenvalues and all the
eigenvectors constant, reduces η∗i and the network becomes
more difficult to control. Moreover, given that the axes of
R(K) are associated to the eigenvalues of the Gramian, if
mini∈{1,...,n} η

∗
i is small, then λmin(WK) is also small.

Example 3.2: (Two-node network with weak
interaction) This example illustrates how the network
eigenstructure defines a tangent parallelepiped of the
ellipsoid containing all reachable states using unit-energy
inputs. Consider a network with two nodes described by[
x1(k + 1)
x2(k + 1)

]
=

[
0.5 0.02
0.05 0.75

] [
x1(k)
x2(k)

]
+

[
1
0

]
u(k),

where u(k) ∈ R, and the control horizon is K = 4. The
ellipsoid defined by {x ∈ R2 |xTW−1

K x ≤ 1} is plotted in
Figure 2 in solid blue. The eigenvectors of A are[
−0.9812 0.1932

]T
with η∗1 = 1.1538,[

−0.0785 −0.9969
]T

with η∗2 = 0.2802 and they
characterize a parallelepiped tangent to the ellipsoid, as
plotted in dotted blue in Figure 1. �
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Fig. 1. Hyperellipsoid R(4) containing all reachable states in 4 timesteps
using unit-energy inputs for a 2-node network, cf. Example 3.2. Here
λmin(W4) = 0.0082.

IV. CONTROL NODE SELECTION ALGORITHMS

Here we present two greedy algorithms to select the input
matrix over time, so as to provide an approximate solution
to Problem 2.3. As reference benchmark, we later compare
their performance against the optimal choice over all time-
invariant selection functions (corresponding to controlling a
constant set of nodes at every step), which we find using
exhaustive search; see Algorithm 1.

Algorithm 2: Control selection based on eigenstructure
Input : Number of control nodes m, network matrix A, control

horizon K, input library B;
Output : Sequence of K input matrices with m columns;

1 Compute eigenvalues λi and normalized eigenvectors Vi of A;
2 Decompose B as B = V C =

∑n
i=1 Vi rowi(C);

for j = 0 : K − 1 do

3 S∗j = arg max mini
∑j
k=0 λ

2(K−k−1)
i ‖ rowi(C(k))‖2,

where Sj ⊆ {1, . . . , m̄}, |Sj | = m, and {S}j−1
0 = {S∗}j−1

0 ;

4 return {S∗}K−1
0 ;

A. Greedy node selection motivated by the geometric repre-
sentation of the controllability Gramian

Theorem 3.1 shows that, when mini η
∗
i is small, the

smallest Gramian eigenvalue λmin(WK) is also small.
Thus, a heuristic procedure to select the input matrix is
based on the maximization of mini η

∗
i . From a geometric

viewpoint, instead of making R(K) close to a hypersphere,
our heuristic procedure attempts to make its tangent
parallelepiped close to a cube. Our greedy procedure is in
Algorithm 2. Note that, at each time k, the algorithm solves

max
Sk,{Si=S∗i }

k−1
i=0 ,{Si=∅}K−1

i=k+1

min
i
η∗i ({Sk}K−1

k=0 ),

where S∗k = arg maxSk,{Si=S∗i }
k−1
i=0 ,{Si=∅}K−1

i=k+1
mini η

∗
i

and B∅ = 0n. That is, at every timestep k, we maximize
mini η

∗
i (Sk) by choosing exhaustively a set of m control

nodes, denoted by Sk, out of m̄ candidates.
B. Greedy node selection via column subset selection

The problem of selecting a time-varying set of control
nodes can be reformulated as a special case of selecting a
subset of columns from the controllability matrix obtained
by considering all possible input channels. In particular,
columns (and hence input matrices) should be selected so
that the reduced matrix is spectrally similar to the original
full size matrix. The problem of column subset selection
has been studied extensively due to its importance in data
analysis [21], [22], [23], [24]. For our problem, consider
the controllability matrix candidate

ΦK =
[
B AB . . . AK−1B

]
∈ Rn×m̄K , (12)

the objective is to find a selection function {Sk}K−1
k=0 , such

that the minimum singular value of the submatrix

ΦK,{Sk}K−1
k=0

=
[
BSK−1

ABSK−2
. . . AK−1BS0

]
is maximized (recall that σ2

min(ΦK,{Sk}K−1
k=0

) =

λmin(WK({Sk}K−1
k=0 ))). Note that this column subset selec-

tion problem is a special type of the general one, because
in each n× m̄ block, exactly m columns must be selected.

The general column subset selection problem is known
to be NP-hard [24]. The greedy algorithm in [21] removes
one column (denoted by φi ∈ Rn) from ΦK at every step
i = 1, . . . , m̄K −mK while minimizing

tr[(ΦSi−1
ΦT
Si−1
− φiφ

T
i )−1] = tr[(ΦSiΦ

T
Si)
−1]
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Algorithm 3: Control selection based on column removal
Input : Number of control nodes m, network matrix A, control

horizon K, input library B;
Output : Sequence of K input matrices with m columns;

1 Compute Φ =
[
B AB . . . AK−1B

]
;

2 S0 = {1, . . . , m̄K};
3 Initialize counter =

[
m̄ . . . m̄

]
for j = 0 : (m̄−m)K − 1 do

4 Compute singular value decomposition of ΦSi = U(i)Σ(i)Y (i);

5 ji = arg minr∈Si,‖Yr(i)‖2<1

∑n
l=1 Yrl(i)σ

−1
l

(ΦSi )

1−‖Yr(i)‖22
, where

counterdr/ne(i) ≥ m.

6 Si+1 = Si \ {ji};
7 counterdji/ne = counterdji/ne−1;

8 return Extract input matrices from Sm̄K−mK ;

= tr[Φ†Si(Φ
†
Si)

T ] = ‖Φ†Si‖F ,

under the assumption that the matrix never loses rank. Here
Si indicates the remaining m̄K − i columns at step i,
S0 = {1, . . . , m̄K}, Φ†Si , ΦT

Si(ΦSiΦ
T
Si)
−1 is the

Moore–Penrose generalized inverse of ΦSi . Because of the
relation ‖Φ†Si‖F ≥ σ1(Φ†Si) = σ−1

n (ΦSi), minimizing
‖Φ†Si‖F maximizes a lower bound of σn(ΦSi). [24]
generalizes the algorithm in [21] by intentionally ensuring
that the column removed at the i-th step does not render
ΦSi rank deficient. To apply the algorithm in [24] to our
problem, we have to add a constraint that exactly m
columns need to be chosen from each block AkB,
k = 0, . . . ,K − 1, which is ensured by the vector ‘counter’
in the revised algorithm given in Algorithm 3. The reader
is referred to [24] for more details and discussions,
including the rationale behind Steps 4− 7.

V. SIMULATIONS

In this section, we illustrate the performance of the
control node selection algorithms proposed in Section IV in
two examples, and compare it against the optimal
time-invariant selection. In terms of computational
complexity, one can see from their definitions that
Algorithm 2 is more efficient than Algorithm 3.

Example 5.1: (Two-node network with weak interaction
– cont’d) This example illustrates how Algorithm 2 can
improve network controllability by making the ellipsoid
containing all reachable states using unit-energy inputs
closer to a sphere, based on our result in Theorem 3.1.
Consider the network in Example 3.2 with time-varying
input matrix:[
x1(k + 1)
x2(k + 1)

]
=

[
0.5 0.02
0.05 0.75

] [
x1(k)
x2(k)

]
+B(k)u(k),

where B(k) ∈ B = {
[

1 0
]T
,
[

0 1
]T }, that is,

m = 1, m̄ = 2, u(k) ∈ R, and the control horizon is
K = 4. Notice that the coupling between the two nodes is
weak, so immediately one can see that it should be difficult
to steer the state of the whole network by controlling any

node alone. The selection function found by Algorithm 1
finds the time-invariant selection function S ≡ {1}. This
means that one achieves larger λmin(WK) by controlling
node 1 than controlling node 2. This makes intuitive sense,
because node 1 has a larger impact on node 2
(0.05 > 0.02) and node 2 has smaller damping
(0.75 > 0.5). The ellipsoid and corresponding tangent
parallelepiped has been plotted in Figure 1. On the other
hand, Algorithm 2 finds the time-varying selection function
{Sk}3k=0 = {{1}, {1}, {2}, {1}}, which results in
η∗1 = 1.0416 and η∗2 = 0.7821. This selection makes the
parallelepiped closer to a square and the ellipsoid closer to
a circle, as shown in dashed and solid red, respectively, in
Figure 2. As can be observed, the minimum eigenvalue of
the controllability Gramian is increased by about 70 times
through controlling different nodes at different time steps.�
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Fig. 2. Hyperellipsoid R(4) containing all reachable states in 4 timesteps
using unit-energy inputs for a 2-node network with a time-varying set of
control nodes, cf. Example 5.1. Here λmin(W4) = 0.5671.

Example 5.2: (Clustered random network) This
example shows how Algorithm 2 can increase the
minimum eigenvalue of the controllability Gramian of
clustered networks. We consider a group of 10 random
networks that are weakly interconnected. The network with
index p has dynamics matrix Ap ∈ R2p×2p and consists of
p subnetworks, p ∈ {1, . . . , 10}. Each subnetwork has two
nodes and a random dynamics matrix Ap,ii ∈ R2×2 with
[Ap,ii]11, [Ap,ii]22 having a uniform distribution in
{x ∈ R | 0.35 < x < 0.6} and [Ap,ii]12, [Ap,ii]21 having a
uniform distribution in {x ∈ R | 0 < x < 0.25}. Here
Ap,ii’s denote the matrix blocks on the diagonal of Ap.
The entries in the off-diagonal blocks of Ap have a
uniform distribution in {x ∈ R | 0 < x < 0.005}. For each
network, the library Bp contains all the canonical vectors in
the state space (m̄p = 2p) and m = 1. Figure 3 compares
the performances of Algorithms 1-3. One can see that we
can increase the minimum eigenvalue of the controllability
Gramian dramatically by controlling a time-varying set of
nodes and Algorithm 2 achieves the best performance.
Figure 4 shows the control nodes selected at each time step
for the network with 20 nodes (p = 10). �
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Fig. 3. Reachability metric evaluated at the input selections obtained from
Algorithms 1-3 in the random network of Example 5.2.
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Fig. 4. Control nodes selected by Algorithms 1-3 for a clustered random
network composed of 10 subnetworks with 2 nodes each, cf. Example 5.2.

VI. CONCLUSIONS

We have derived a geometric characterization of the
controllability Gramian of linear discrete-time networks
with time-varying input matrices. Our analysis provides a
detailed link between the eigenstructure of the network and
its controllability properties. by showing how the former
determines a parallelepiped tangent to the ellipsoid
representing the reachable states using unit-energy inputs.
We have exploited this geometric characterization of the
Gramian to design a scheduling algorithm for the selection
of optimal control nodes over time. We have showed that,
for clustered networks, our procedure outperforms any
constant selection of control nodes, and existing selection
algorithms based on column subset selection. Future work
will include characterizing the gap between our current
algorithm and the optimal selection of control nodes in
complex networks, either for the worst-case target state or
a specified target state, and identifying network structures
for which the scheduling of control nodes can provide a
significant improvement in their reachability properties.
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