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Abstract— In this work, we revisit the Linear Quadratic
Gaussian (LQG) optimal control problem from a behavioral
perspective. Motivated by the suitability of behavioral models
for data-driven control, we begin with a reformulation of the
LQG problem in the space of input-output behaviors and
obtain a complete characterization of the optimal solutions.
In particular, we show that the optimal LQG controller can
be expressed as a static behavioral-feedback gain, thereby
eliminating the need for dynamic state estimation character-
istic of state space methods. The static form of the opti-
mal LQG gain also makes it amenable to its computation
by gradient descent, which we investigate via numerical ex-
periments. Furthermore, we highlight the advantage of this
approach in the data-driven control setting of learning the
optimal LQG controller from expert demonstrations.

I. INTRODUCTION

Data-driven control has received increasing interest during
the past few years. Specifically, this interest has been surg-
ing towards optimal control problems [1]–[4]. The Linear
Quadratic Gaussian (LQG) is one of the most fundamen-
tal optimal control problems, which deals with partially-
observed linear dynamical systems in the presence of additive
white gaussian noises [5]. When the system is known, the
LQG problem enjoys an elegant closed-form solution ob-
tained via the separation principle [5, Theorem 14.7]. In the
context of data-driven control, however, the LQG problem is
less studied in the literature due to some major challenges:
(i) the states of the system cannot be directly measured for
learning purposes, (ii) the optimal policy is expressed in the
dynamic controller form where it is not unique [5], and (iii)
the set of stabilizing controllers can be disconnected [6].
On the other hand, the Linear Quadratic Regulator (LQR)
optimal control problem has received more attention in the
context of data-driven control [1]–[3]. Some of the reasons
that make the LQR problem attractive is that the optimal
policy can be expressed as a static feedback gain and it is
unique [5, Theorem 14.2]. Moreover, the set of stabilizing
feedback gains for the LQR problem is connected and the
LQR cost function is gradient dominant [7], [8]. These
properties are useful for providing convergence guarantees
for gradient-based methods for solving the LQR problem [9],
[10] as well as for model-free policy optimization methods
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[11]. However, LQR controllers require measuring the full
states, and are used in deterministic settings, which limits
the use of LQR controllers in practical control applications.
In this paper, we make the LQG problem more accessible
for data-driven methods. In particular, we show that the
optimal LQG controller can be expressed as a static feedback
gain by reformulation of the LQG problem in the space of
input-output behaviors. Then, we highlight the advantages
of having a static LQG gain in the context of data-driven
control and gradient-based algorithms.
Relared work. The LQG control problem has been studied
extensively in the literature [5], [12], where fundamental
properties have been characterized, such as the existence of
optimal solution, how to obtain it using separation principle
[5], and its lack of stability margin guarantees in closed-
loop [13]. However, in the context of data-driven control,
the LQR problem has received more attention than the LQG
problem. The landscape properties for the LQR problem
with state-feedback control has been studied in [7], [8],
which has paved the way for subsequent works investigating
convergence properties of gradient methods for solving the
LQR problem [9]–[11]. Recent studies have revisited the
LQG problem in the context of data-driven methods (e.g.
[14]–[16]). In [6], the authors characterize the optimization
landscape for the LQG problem, showing that the set of
stabilizing dynamic controllers can be disconnected. In the
context of data-driven control, the behavioral approach has
garnered much attention in recent years [17]–[20], as it
circumvents the need for state space representation. Owing it
this fact, it belongs in the same category as the difference op-
erator representation and ARMAX models [21, Sec. 2.3 and
Sec. 7.4], and shares several connections with these classes
of models. We refer the reader to [22] for a comprehensive
overview of the behavioral approach.
Despite recent interest in the behavioral approach, a funda-
mental understanding of the LQG problem from a behavioral
perspective is still lacking, and our work addresses this gap.
Different from the literature, our work seeks to characterize
the optimal behavioral feedback controllers for the LQG
problem and to demonstrate their suitability for data-driven
control and gradient methods for controller design. More
specifically, we show that the optimal LQG controller can
be expressed as a static behavioral-feedback gain, which
underlies its advantages for developing data-driven methods
to learn LQG controllers.

Contributions. This paper features three main contri-
butions. First, we introduce equivalent representations for
stochastic discrete-time, linear, time-invariant systems and
the LQG optimal control problem in the behavioral space
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(Lemma 5.2 and Lemma 5.4, respectively). Second, we show
that, in the behavioral space, the optimal LQG controller can
be expressed as a static behavioral-feedback gain, which can
be solved for directly from the LQG problem represented
in the behavioral space (Theorem 2.1). Third, we highlight
the advantages of having a static feedback LQG gain over a
dynamic LQG controller in the context of data-driven control
and gradient-based algorithms (section III).
Notation. A Gaussian random variable x with mean µ and
covariance Σ is denoted as x ∼ N (µ,Σ). The n×n identity
matrix is denoted by In. The expectation operator is denoted
by E[·]. The spectral radius and the trace of a square matrix
A are denoted by ρ(A) and tr [A], respectively. A positive
definite (semidefinite) matrix A is denoted as A � 0 (A � 0).
The Kronecker product is denoted by ⊗, and vectorization
operator is denoted by vec(·). The left (right) pseudo inverse
of a tall (fat) matrix A is denoted by A†.

II. PROBLEM SETUP AND MAIN RESULTS

Consider the discrete-time, linear, time-invariant system

x(t+ 1) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) + v(t), t ≥ 0,
(1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the control
input, y(t) ∈ Rq the measured output, w(t) the process
noise, and v(t) the measurement noise at time t. We assume
that w(t) ∼ N (0, Qw), with Qw � 0, v(t) ∼ N (0, Rv),
with Rv � 0, and x(0) ∼ N (0,Σ0), with Σ0 � 0, are
independent of each other at all times. For the system (1),
the Linear Quadratic Gaussian (LQG) problem asks to find
a control input that minimizes the cost

J , lim
T→∞

E

[
1

T

( T−1∑
t=0

x(t)TQxx(t) + u(t)TRuu(t)
)]

,

(2)

where Qx � 0 and Ru � 0 are weighing matrices of appro-
priate dimension. We assume that (A,B) and (A,Q

1/2
w ) are

controllable, and (A,C) and (A,Q
1/2
x ) are observable. As

a classic result [5], the optimal control input that solves the
LQG problem can be generated by a dynamic controller of
the form

xc(t+ 1) = Exc(t) + Fy(t),

u(t) = Gxc(t) +Hy(t),
(3)

where xc(t) denotes the state at time t, and E ∈ Rn×n, F ∈
Rn×q , G ∈ Rm×n, and H ∈ Rm×p are the dynamic, input,
output and feedthrough matrices of the compensator, re-
spectively. The optimal LQG controller can be conveniently
obtained using the separation principle by concatenating the
Kalman filter for (1) with the (static) controller that solves
the Linear Quadratic Regulator problem for (1) with weight
matrices Qx and Ru. Specifically, after some manipulation,
the optimal input that solves the LQG problem reads as (3),
we refer the reader to Appendix A for the details.
In what follows, we will make use of an equivalent repre-
sentation of the system (1). To this aim, let

z(t) , [U(t− 1)T, Y (t)T,W (t− 1)T, V (t)T]T, (4)

where

U(t− 1) ,
[
u(t− n)T, · · · , u(t− 1)T

]T
,

Y (t) ,
[
y(t− n)T, · · · , y(t)T

]T
,

W (t− 1) ,
[
w(t− n)T, · · · , w(t− 1)T

]T
,

V (t) ,
[
v(t− n)T, · · · , v(t)T

]T
.

We can write an equivalent representation of (1) in the
behavioral space z as (5) (see Appendix B for the derivation).
In fact, given a sequence of control inputs and noise values,
the state z contains the system output y over time, and can



u(t− n + 1)
...

u(t− 1)
u(t)

y(t− n + 1)
...

y(t)
y(t + 1)

w(t− n + 1)
...

w(t− 1)
w(t)

v(t− n + 1)
...

v(t)
v(t + 1)


︸ ︷︷ ︸

z(t+1)

=



0 I 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · I 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 I 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · I 0 0 0 · · · 0 0 0 0 · · · 0
Au Ay Aw Av

0 0 0 · · · 0 0 0 0 · · · 0 0 I 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · I 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 I 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · I
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0


︸ ︷︷ ︸

A



u(t− n)
...

u(t− 2)
u(t− 1)
y(t− n)

...
y(t− 1)
y(t)

w(t− n)
...

w(t− 2)
w(t− 1)
v(t− n)

...
v(t− 1)
v(t)


︸ ︷︷ ︸

z(t)

+



0 0 0
...

...
...

0 0 0
I 0 0
0 0 0
...

...
...

0 0 0
CB C I
0 0 0
...

...
...

0 0 0
0 I 0
0 0 0
...

...
...

0 0 0
0 0 I


︸ ︷︷ ︸
[Bu Bw Bv ]

[
u(t)
w(t)

v(t + 1)

]
,

yz(t) =

 I 0 · · · 0 0 0 · · · 0
0 I · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · I 0 0 · · · 0


︸ ︷︷ ︸

C

z(t)

(5)



be used to reconstruct the exact value of the system state x.
This also implies that a controller for the system (1) can
equivalently be designed using the dynamics (5). In fact, we
show that any dynamic controller for (1) can be equivalently
represented as a static controller for (5), see Appendix C.
Next, we reformulate the LQG problem (2) for the behavioral
dynamics (5) and characterize its optimal solution. The LQG
problem (2) can be equivalently written in the behavioral
space as:

Jz , lim
T→∞

E

[
1

T

( T−1∑
t=n

z(t)TQzz(t) + u(t)TRuu(t)
)]

,

(6)

subject to (5), where Qz is presented in Appendix D along
with the derivation of (6), and Ru is as in (2). The solution
to the LQG problem in the behavioral space is given by a
static controller, which we characterize next.

Theorem 2.1: (Behavioral solution to the LQG problem)
Let u∗ be the minimizer of (6) subject to (5). Then,

u∗(t) =−
(
Ru + BTuMBu

)−1 BTuMAPCT (CPCT)†︸ ︷︷ ︸
K

yz(t)

(7)

where M � 0 and P � 0 are the unique solutions of the
following coupled Riccati equations:

M = ATMA−ATMBuSMBTuMA+Qz

+
(
I − PCTSPC

)TATMBuSMBTuMA
(
I − PCTSPC

)
P = APAT −APCTSPCPAT + BwQwBTw + BvRvBTv
+
(
I −MBuSMBTu

)TAPCTSPCPAT
(
I −MBuSMBTu

)
with SM , (Ru + BTuMBu)−1 and SP , (CPCT)†. �

The proof of Theorem 2.1 is postponed to Appendix E. The
gain K is not unique since CPCT is generally not invertible.
In some cases, such as with SISO systems, the gain K
becomes unique, which gives solving for the optimal LQG
controller in the behavioral space an advantage over solving
for it in the state space. The issue of non-uniqueness of K
stems from the fact that yz has components that are depen-
dent on each other, which makes the left kernel of CPCT
non-empty. We can avoid this issue by carefully choosing
the time window of U and Y that form the behavioral space
in (4), but we leave this aspect for future work. Note that,
solving the coupled Riccati equations that characterize the
LQG gain in Theorem 2.1 can be challenging. One method
to solve for the LQG gain is to solve for the LQR and the
Kalman gains, then use (16) and Lemma 5.3.

Example 1: (LQG controller in the behavioral space)
Consider the system (1) with A = 1.1, B = 1, C = 1,
Qw = 0.5, and Rv = 0.8. Also, consider the optimal
control problem (2) with Qx = Ru = 1. The Kalman
and the LQR gains are Kkf = 0.5474 and Klqr = 0.7034,
respectively, which can be written as (3) using (16) with
E = 0.1716, F = 0.0973, G = −0.7034, and H =
−0.3991. Using (4), we define the behavioral space as z(t) ,
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Fig. 1. This figure shows the free response and the LQG feedback response
of (1) and (5) for the setting defined in Example 1. In both panels, the
solid blue line and the dashed red line represent the output of (1) and the
output of (5) that corresponds to y(t), respectively. Panel (a) shows the
free response of (1) and (5), we observe that the response of both systems
are equal, which agrees with Lemma 5.2. Panel (b) shows the feedback
response of (1) and (5) to the LQG controller (16) and the behavioral LQG
controller in Theorem 2.1, respectively. We observe that both systems have
equal responses, which agrees with Lemma 5.4 and Theorem 2.1. Notice
that the response of (5) starts at time t = n = 1 since we have to wait
n = 1 time steps in order to get the equivalent initial condition for (5).

[u(t− 1), y(t− 1), y(t), w(t− 1), v(t− 1), v(t)]
T for t ≥ 1.

Using Lemma 5.2, we write the equivalent dynamics of
(1) in the behavioral space as (5) with Au = 0.4977,
Ay =

[
0.5475 0.6023

]
, Aw = 0.4977, and Ay =[

−0.5475 −0.6023
]
. Using Theorem 2.1, the LQG gain is

K = [0.1716, 0,−0.3991]. Fig. 1(a) shows the free response
of (1) and (5) with equal initial conditions. Fig. 1(b) shows
the response of (1) and (5) to the LQG controllers (16) and
(7), respectively. �

III. IMPLICATIONS OF BEHAVIORAL REPRESENTATION IN
NUMERICAL METHODS

In this section, we highlight some implications of our be-
havioral representation and results. In particular, we provide
an analysis of learning the LQG controller from finite expert
demonstration, and an analysis of solving for the behavioral
LQG gain via a gradient descent method. First, we present
the following Lemma regarding the sparsity of the LQG gain
in (7), which we use in our subsequent analysis.

Lemma 3.1: (Sparsity of the optimal LQG gain) Consider
the LQG gain written in the behavioral space as

u(t) =
[
K1 K2 K3

]  U(t− 1)
y(t− n)
Y (t)

 , (8)

where Y (t) ,
[
y(t− n+ 1)T, · · · , y(t)T

]T
. Then K2 = 0.�

A proof of Lemma 3.1 is presented in Appendix F.

A. Learning LQG controller from expert demonstrations

Consider the system (1), assume that the system is sta-
bilized by an expert that uses an LQG controller. We also
assume that the system and the noise statistics are unknown.
Our objective is to learn the LQG controller from finite
expert demonstrations, which are composed of input and
output data. In the behavioral representation, this boils down
to learning the gain K of the subspace u(t) = Kyz(t) for
t ≥ n. Using Lemma 3.1, we only need to learn K1 and K3,



which are obtained as [K1 K3] = UNY
†
N +Knull, where

UN ,
[
u(t) · · · u(t+ k − 1)

]
,

YN ,



u(t− n) · · · u(t− n+ k − 1)
...

. . .
...

u(t− 1) · · · u(t− 2 + k)
y(t− n+ 1) · · · y(t− n+ k)

...
. . .

...
y(t) · · · y(t− 1 + k)


,

(9)

for t ≥ n, where k is the number of columns, and Knull is
any matrix with appropriate dimension whose rows belong
to the left null space of YN . Note that Knull will disappear
when multiplied by the feedback yz(t), i.e., Knullyz(t) = 0.
Therefore, without loss of generality, we set Knull = 0.

Lemma 3.2: (Sufficient number of expert data to com-
pute the optimal LQG gain) Consider input and output
expert samples U = [u(t), · · · , u(t + N − 1)] and Y =
[y(t), · · · , y(t + N − 1)] generated by LQG controller to
stabilize system (1), such that U is full-rank. Then, N =
n + nm + np expert samples are sufficient to compute the
LQG gain K. �

A proof of Lemma 3.2 is presented in Appendix G. We note
that the rank condition on the input matrix U in the statement
of Lemma 3.2 is a reasonable assumption owing to the fact
that system (1) is driven by i.i.d. process noise w and that
the measurement noise v is also i.i.d. Furthermore, note that
we can learn the dynamic controller matrices E, F , G, and
H in (3) (up to a similarity transformation) using subspace
identification methods for deterministic systems (see [23])
with U and Y treated as the output and input signals to
(3), respectively. Using [23, Theorem 2], we need at least
N = 2(n + 1)(m + p + 1) − 1 expert samples to learn (3),
which is more than the sufficient number of expert samples
to learn K (Lemma 3.2).

Example 2: (Learning LQG controller from expert data)
Consider the system in Example 1 where the system dy-
namics and the noise statistics are assumed to be unknown.
The system is driven by an expert that uses an LQG policy.
According to Lemma 3.2, we collect N = n+nm+np = 3
expert input/output samples to form the data matrices

UN =
[
−0.2269 −0.1231

]
, YN =

[
1.7878 −0.2269
1.3371 0.211

]
.

Using the data, we obtain [K1 K3] = [0.1716 −0.3991] with
Knull = 0, which matches the LQG gain in Example 1. �

B. Gradient descent in the behavioral space

In this section, we use gradient descent to solve for K:

K(i+1) = K(i) − α(i)∇Jz(K(i)) for i = 0, 1, 2, · · · (10)

where the index i refers to the iteration number, α(i) is
the step size at iteration i, and ∇Jz(K(i)) is computed
using (26). We initialize the gradient descent method with
a stabilizing gain K(0). We determine the step size α(i) by

0 3,000 6,000 9,000

105

100

10−7

Iterations i

J
(i
)

z
−
J

∗ z

0 3,000 9,000 15,000

105

100

10−2

Iterations i

J
(i
)
−
J

∗

(a) (b)

Fig. 2. This figure shows the convergence performance (measured by the
suboptimality gap) of the gradient descent applied to the system in Example
3. The solid blue line, dashed red line and the dash-dotted green line
represent different initial conditions, respectively. Panels (a) and (b) shows
the convergence performance of the gradient descent overK and the gradient
descent over over the controller matrices E, F , G and H , respectively.

the Armijo rule [24, Chapter 1.3]: initialize α(0) = 1, repeat
α(i) = βα(i) until

Jz(K(i+1)) ≤ Jz(K(i))− σα(i)
∥∥∥∇Jz(K(i))

∥∥∥2
F

is satisfied, with β, σ ∈ (0, 1).
Example 3: (Gradient descent) We consider the example

in [13] discretized with sampling time Ts = 0.4,

A =

[
1.4918 0.5967

0 1.4918

]
, B =

[
0.1049
0.4918

]
, C =

[
1 0

]
,

Qw =

[
4.6477 3.7575
3.7575 3.0639

]
, Qx =

[
3.0639 3.7575
3.7575 4.6477

]
,

Rv = 2.5 and Ru = 0.5966. The LQG gain from Theorem
2.1 is K = [−0.0366,−0.103, 0, 5.8461,−4.7434]. Using
Lemma 3.1, we only need to do the search over K1 and
K3 since K2 = 0. We use gradient descent in (10) to
solve for the LQG gain. We choose a stabilizing initial gain
K(0) that randomly place the closed-loop eigenvalues within
[0.45, 0.92]. We use the Armijo rule to compute the step size
with α(0) = 1, β = 0.8, and σ = 0.7. We set the stopping cri-
teria to be when the gradient vanishes or when the maximum
number of iterations is reached (in this example we set it to
15000 iterations). For numerical comparison, we use gradient
descent to solve for the optimal LQG dynamic controller in
the form of (3) as in [6], where we optimize the LQG cost
(2) and apply the gradient search over the control parameters
E, F , G, and H .1 Fig. 2 shows the convergence perfor-
mance of the gradient descent for different initial conditions.
We observe that the gradient descent over K in Fig. 2(a)
converges to K∗ = [−0.0366,−0.1030, 0, 5.8460,−4.7434]
before reaching the maximum number iterations for different
initial conditions. Starting from initial conditions equivalent
to the ones in Fig. 2(a), the gradient descent over the
controller matrices E, F , G and H in Fig. 2(b) did not
converge within 15000 iterations. �

1In [6], H = 0 since it is assumed that the control input u(t) at time t
depends on the history {u(0), · · · , u(t− 1), y(0), · · · , y(t− 1)}. In this
paper, u(t) depends also on y(t), therefore H is nonzero (see Appendix A).
We computed the gradient of J w.r.t. the controller matrices E, F , G and
H as in [6] adapted to the case where H is nonzero. We have not included
the derivations in this paper due to space constraint.



IV. CONCLUSION AND FUTURE WORK

In this work, we introduced a behavioral space which
consists of a window of input and output measurements aug-
mented with a window of the noise history. Then, we derived
equivalent representations for discrete-time, linear, time-
invariant systems and the LQG problem in the behavioral
space. After that, we showed that the optimal LQG controller
can be expressed as a static behavioral-feedback gain, which
can be solved for directly from the LQG problem in the
behavioral space. Finally, we highlighted the advantages of
having a static LQG gain over a dynamic LQG controller
in the context of data-driven control and gradient-based
algorithms, which arise from the fact that the behavioral
approach circumvents the need for a state space represen-
tation and the fact that the optimal behavioral feedback is a
static gain. There still remain several unexplored questions,
including the investigation of the optimization landscape of
the LQG problem in the behavioral space, which will pave
the way for an improved understanding of the convergence
properties of data-driven and gradient algorithms, as well as,
for investigating the uniqueness of the optimal LQG gain.
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APPENDIX

A. Optimal LQG controller

The optimal LQG controller that solves (2) is written as

x̂(t+ 1) = (In −KkfC)(A−BKLQR)x̂(t) +Kkfy(t+ 1),

u(t) = −KLQRx̂(t),
(11)

where Kkf and KLQR are the Kalman and LQR gains,
respectively. To write the controller (11) in the form of (3),
we need the following lemma.

Lemma 5.1: (Equivalent compensator forms) Consider
the compensator (3) and a compensator of the form:

ξc(t+ 1) = Eξc(t) + Fy(t+ 1),

u(t) = Gξc(t),
(12)

with ξc ∈ Rn denoting the state, and E ∈ Rn×n, F ∈ Rn×q ,
and G ∈ Rm×n denoting the dynamic, input, and output
matrices of the compensator, respectively. Let xc(0) = ξc(0)
and y(0) = 0, then, the compensators (3) and (12) output
the same u(t) given the same input y(t) if:

E = E, F = EF, G = G, H = GF. (13)
Proof: Using (3) with y(0) = 0, we can write

u(t) = GEtxc(0) +
[
GEt−2F · · · GF H

]
y, (14)

where y = [y(1)T, · · · , y(t)T]T. Using (12), we can write

u(t) = GEtξc(0) +
[
GEt−1F · · · GF

]
y. (15)



Under the same y, (14) is equal to (15) for E = E, F = EF ,
G = G, and H = GF .
Using Lemma 5.1 and (11), we can write the LQG controller
in the form of (3) with

E = (In −KkfC)(A−BKLQR),

F = (In −KkfC)(A−BKLQR)Kkf,

G = −KLQR,

H = −KLQRKkf.

(16)

B. System representation in the behavioral space

The following Lemma provides an equivalent representa-
tion of (1) in the behavioral space, z, which is written in (5).

Lemma 5.2: (Equivalent dynamics) Let z be as in (4).
Then,

z(t+ 1) = Az(t) + Buu(t) + Bww(t) + Bvv(t+ 1),

where A, Bu, Bw, and Bv are as in (5), and

Au , F2 − CAn+1O†F1, Ay , CA
n+1O†,

Aw , F4 − CAn+1O†F3, Av , −CAn+1O†,

O ,


C
CA

...
CAn

 , F1 ,


0 · · · 0
CB · · · 0

...
. . .

...
CAn−1B · · · CB

 ,
F2 ,

[
CAnB · · · CAB

]
,

and the matrices F3 and F4 are obtained by replacing B
with I in F1 and F2, respectively.

Proof: We can write the evolution of y(t+ 1) as

y(t+ 1) =CAn+1x(t− n) + F2U(t− 1) + F4W (t− 1)

+ CBu(t) + Cw(t) + v(t+ 1), (17)

where, F2 and F4 are as in Lemma 5.2, and U(t − 1) and
W (t − 1) are as in (4). Also, we can write Y (t) in (4) in
terms of U(t− 1), W (t− 1), and V (t):

Y (t) = Ox(t− n) + F1U(t− 1) + F3W (t− 1) + V (t),
(18)

where O, F1, and F3 are same as in Lemma 5.2 and V (t)
is as in (4). Then using (18), we substitute x(t− n) in (17)
to get

y(t+ 1) =
[
Au Ay Aw Av

] 
U(t− 1)
Y (t)

W (t− 1)
V (t)


︸ ︷︷ ︸

z(t)

+CBu(t)

+ Cw(t) + v(t+ 1),

where Au, Ay , Aw, and Av are as in Lemma 5.2.

C. From dynamic to static controller
Lemma 5.3: (From dynamic to static controllers) Let the

control input u be the output of the dynamic controller (3).
Then, equivalently,

u(t) =
[
GEnT †1 T2 −GEnT †1M

]
yz(t), (19)

where z is as in (4) and follows the dynamics (5), and

T1 ,


G
GE

...
GEn−1

 , T2 ,
[
GEn−1F · · · GF H

]
,

M ,



H 0 0 · · · 0 0
GF H 0 · · · 0 0

GEF GF H · · · 0 0
...

...
...

. . .
...

...

GEn−2F GEn−3F · · · · · · H 0


.

Proof: Using (3), we can write

u(t) = GEnxc(t− n) + T2Y (t), (20)

where T2 and Y (t) are as in Lemma 5.3 and (4), respectively.
Further, we can write U(t− 1) in (4) as

U(t− 1) = T1xc(t− n) +MY (t), (21)

where T1 and M are as in Lemma 5.3. Using (21) we
substitute xc(t− n) in (20) to get

u(t) =
[
GEnT †1 T2 −GEnT †1M

] [U(t− 1)
Y (t)

]
︸ ︷︷ ︸

yz

.

D. LQG problem in the behavioral space
Lemma 5.4: (LQG problem in the behavioral space) The

input u∗ is the minimizer of (2) subject to (1) if and only if
it is the minimizer of

Jz , lim
T→∞

E

[
1

T

( T−1∑
t=0

z(t)TQzz(t) + u(t)TRuu(t)
)]

(22)

subject to (5), where Qz = HTQxH and

H ,
[
G1 −AnO†F1 AnO† G2 −AnO†F3 −AnO†

]
,

G1 ,
[
An−1B · · · B

]
, G2 ,

[
An−1 · · · In

]
.

Proof: We begin by proving that the costs in (2) and
(22) are equivalent. We can express x(t) for t ≥ n as

x(t) = Anx(t− n) + G1U(t− 1) + G2W (t− 1), (23)

where G1 and G2 are as in Lemma 5.4, and U(t − 1)
and W (t − 1) are as in (4). Using (18), we can substitute
x(t − n) in terms of U(t − 1), Y (t), W (t − 1), and V (t)
in (23) to get x(t) = Hz(t), where H is as in Lemma 5.4.
Substituting x(t) = Hz(t) in the cost (2) yields the cost
(22). Further, Lemma 5.2 shows that the systems (1) and (5)
are equivalent. Therefore, the minimizer of (2) subject to (1)
is the minimizer of (22) subject to (5).



E. Proof of Theorem 2.1

For the proof of Theorem 2.1, we need the following
technical results from the literature.

Lemma 5.5: (Steady-state cost) For a controller u(t) =
Kyz(t) with stabilizing gain K, the cost (6) at steady-state
is written as

Jz(K) = tr [QKP ] , (24)

where QK , Qz + CTKTRuKC, and P � 0 is the unique
solution of the following Lyapunov equation

P = AcPAT
c + BwQwBTw + BvRvBTv . (25)

with Ac , A+ BuKC.
Proof: Since u(t) = Kyz(t) is stabilizing, the closed-

loop matrix Ac = A+ BuKC is stable. We can write

E
[
z(t)z(t)T

]
=AcE

[
z(t− 1)z(t− 1)T

]
AT

c + BwQwBTw
+ BvRvBTv ,

where we have used the fact that z(t − 1), w(t − 1), and
v(t) are uncorrelated, and E

[
w(t− 1)w(t− 1)T

]
= Qw and

E
[
v(t)v(t)T

]
= Rv . Since Ac is stable, lim

t→∞
E
[
z(t)z(t)T

]
converges to a finite value, and at steady state we have P ,
lim
t→∞

E
[
z(t)z(t)T

]
= lim

t→∞
E
[
z(t− 1)z(t− 1)T

]
, where P

satisfies the following Lyapunov equation

P =AcPAT
c + BwQwBTw + BvRvBTv .

The cost (6) is written as

Jz , lim
T→∞

E

[
1

T

(
T−1∑
t=0

z(t)T
(
Qz + CTKTRuKC

)
z(t)

)]
= lim

t→∞
E
[
tr
[
z(t)TQKz(t)

]]
= tr

[
QK lim

t→∞
E
[
z(t)z(t)T

]]
=tr [QKP ] ,

where QK , Qz + CTKTRuKC. The proof is complete.
Lemma 5.6: (Property of the solution to Lyapunov equa-

tion, [25]) Let A, B, Q be matrices of appropriate dimen-
sions with ρ(A) < 1. Let Y satisfy Y = AY AT +Q. Then,
tr [BY ] = tr

[
QTM

]
, where M satisfies M = ATMA+BT.

�

Proof of Theorem 2.1: Using Lemma 5.5, we can write
the cost (6) at steady-state as (24). Next, we compute the
derivative of Jz(K) with respect to the variable K. Taking
the differential of (25) with respect to the variable K, we get

dP = AcdPAT
c + dAcPAT

c +AcPdAT
c , AcdPAT

c +X

=⇒ tr [QKdP ]
(a)
= tr [XM ]

(b)
= 2tr

[
CPAT

cMBudK
]
,

where M � 0 satisfies M = AT
cMAc + QK, (a) follows

from Lemma 5.6, and (b) follows from tr
[
dAcPAT

cM
]

=
tr
[
(dAcPAT

cM)T
]

and using the cyclic property. Taking the
differential of QK, we get

dQK = CTdKTRuKC + CTKTRudKC

=⇒ tr [dQKP ]
(c)
= 2tr

[
CPCTKTRudK

]
,

where (c) follows similarly as (b). For notational conve-
nience, we denote Jz(K) by Jz . Taking the differential of
Jz in (24), we get,

dJz = dtr [QKP ] = tr [dQKP ] + tr [QKdP ]

= 2tr
[(
CPCTKTRu + CPAT

cMBu
)
dK
]

=⇒ dJz
dK

= 2
(
RuKCPCT + BTuMAcPCT

)
(26)

= 2
(
Ru + BTuMBu

)
KCPCT + 2BTuMAPCT

The stationary optimality condition implies dJz

dK = 0, we get

K = −
(
Ru + BTuMBu

)−1 BTMAPCT (CPCT)† +Knull,
(27)

where we have used the right pseudo inverse of CPCT since
it is rank deficient, and Knull is any matrix with appropriate
dimension whose rows belong to the left null space of CPCT.
Next we derive the Riccati equations of M and P . Let SM ,
(Ru + BTuMBu)−1 and SP , (CPCT)†. Substituting the
expression of K in (27) into (25), we get

P = APAT −APCTSpCPATMBuSMBTu
− BuSMBTuMAPCTSPCPAT + BwQwBTw + BvRvBTv
+ BuSMBTuMAPCT SP

(
CPCT

)
SP︸ ︷︷ ︸

(d)
=Sp

CPATMBuSMBTu

(e)
=APAT −APCTSpCPATMBuSMBTu
− BuSMBTuMAPCTSPCPAT + BwQwBTw + BvRvBTv
+ BuSMBTuMAPCTSPCPATMBuSMBTu
+APCTSpCPAT −APCTSpCPAT

=APAT −APCTSPCPAT + BwQwBTw + BvRvBTv
+
(
I −MBuSMBTu

)TAPCTSPCPAT
(
I −MBuSMBTu

)
,

where (d) follows from the Moore-Penrose conditions, and in
(e) we have added and subtracted the term APCTSpCPAT.
The Riccati equation of M is derived in similar manner. �

F. Proof of Lemma 3.1

K2 in Lemma 3.1 corresponds to the first block of T2 −
GEnT †1M in (19). We start by expanding GEnT †1M. Since
T †1 is full column rank, we have

T †1 =
(
T T
1 T1

)−1 T T
1

=
(
GTG+ · · ·+ (En−1)TGTGEn−1)−1︸ ︷︷ ︸

,S

T T
1 ,

then we have

GEnT †1M =

GEnS
[
GTH + · · ·+ (En−1)TGTGEn−2F X · · · X

]
,



where X denotes any matrix. Then, we take the first block
of GEnT †1M and the first block of T2 to write K2 as

K2 =GEn−1F

−GEnS
(
GTH + · · ·+ (En−1)TGTGEn−2F

)
(a)
=GEn−1F

−GEn S
(
G

T
G+ · · ·+ (E

n−1
)TG

T
GE

n−1)︸ ︷︷ ︸
(b)
=I

F

(c)
=GEn−1F −GEn−1F = 0,

where in steps (a), (b) and (c) we have used Lemma 5.1. �

G. Proof of Lemma 3.2

Since the rank of YN in (9) is Rank(YN ) ≤ nm+ np ,
k = nm+ np columns are enough for Rank(YN ) to
stop increasing. To construct YN with k = nm+ np
columns, nm + np + n samples are required. Therefore,
N = nm+ np+ n expert samples are sufficient to learn the
LQG gain K. This completes the proof. �
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