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Abstract— This work proposes a novel metric to characterize
the resilience of stochastic cyber-physical systems to attacks and
faults. We consider a single-input single-output plant regulated
by a control law based on the estimate of a Kalman filter.
We allow for the presence of an attacker able to hijack and
replace the control signal. The objective of the attacker is to
maximize the estimation error of the Kalman filter – which in
turn quantifies the degradation of the control performance – by
tampering with the control input, while remaining undetected.
We introduce a notion of ε-stealthiness to quantify the difficulty
to detect an attack when an arbitrary detection algorithm
is implemented by the controller. For a desired value of ε-
stealthiness, we quantify the largest estimation error that
an attacker can induce, and we analytically characterize an
optimal attack strategy. Because our bounds are independent
of the detection mechanism implemented by the controller,
our information-theoretic analysis characterizes fundamental
security limitations of stochastic cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems offer a variety of attack surfaces
arising from the interconnection of different technologies and
components. Depending on their resources and capabilities,
attackers generally aim to deteriorate the functionality of the
system, while avoiding detection for as long as possible [1].

Security of cyber-physical systems is a growing research
area where, recently, different attack strategies and defense
mechanisms have been characterized. While simple attacks
have a straightforward implementation and impact, such as
jamming control and communication channels [2], sophisti-
cated ones may degrade the functionality of a system more
severely [3], [4], and are more difficult to mitigate. In this
work we measure the severity of attacks based on their effect
on the control performance and on their level of stealthiness,
that is, the difficulty of being detected from measurements.
Intuitively, there exists a trade-off between the degradation
of control performance and the level of stealthiness of an
attack. Although this trade-off has previously been identified
for specific systems and detection mechanisms [5], [6], [7],
[8], a thorough analysis of the resilience of stochastic control
systems to arbitrary attacks is still missing.
Related works For deterministic cyber-physical systems the
concept of stealthiness of an attack is closely related to the
control-theoretic notion of zero dynamics [9]. In particular,
an attack is undetectable if and only if it excites only the zero
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dynamics of an appropriately defined input-output system
describing the system dynamics, the measurements available
to a security monitors, and the variables compromised by
the attacker [10], [11]. Thus, the question of stealthiness of
an attack has a binary answer in deterministic systems. For
stochastic cyber-physical systems, instead, the presence of
process and measurements noise offers a smart attacker the
additional possibility to tamper with sensor measurements
and control inputs within the acceptable uncertainty levels,
thereby making the detection task arbitrarily difficult.

Detectability of attacks in stochastic systems has received
only initial attention from the research community, and
there seem to be no agreement on an appropriate notion of
stealthiness. Most works in this area consider detectability
of attacks with respect to specific detection schemes, such
as the classic bad data detection algorithm [12]. In our
previous work [13], we proposed the notion of ε-marginal
stealthiness to quantify the stealthiness level with respect to
the class of ergodic detectors. With respect to [13], in this
work (i) we introduce a novel notion of stealthiness, namely
ε-stealthiness, that is independent of the attack detection
algorithm and thus provides a fundamental measure of the
stealthiness of attacks in stochastic control systems, and (ii)
we explicitly characterize detectability and performance of
ε-stealthy attacks.
Contributions The contributions of this paper are threefold.
First, we propose the notion of ε-stealthiness to quantify
detectability of attacks in stochastic cyber-physical systems.
Our metric is motivated by the Chernoff-Stein Lemma in
detection and information theories [14], and is universal, in
the sense that it is independent of any specific detection
mechanism employed by the controller. Second, we provide
an achievable bound for the degradation of the minimum-
mean-square estimation error caused by an ε-stealthy attack,
as a function of the system parameters, noise statistics,
and information available to the attacker. Third and finally,
we provide a closed-form expression of optimal ε-stealthy
attacks achieving the maximal degradation of the estimation
error. These results characterize the trade-off between per-
formance degradation that an attacker can induce, versus the
fundamental limit of the detectability of the attack.

We focus on single-input single-output systems with an
observer-based controller. However, our methods are general,
and applicable to multiple-input multiple-output systems via
a more involved technical analysis.
Paper organization Section II contains our mathematical
formulation of the problem and our model of attacker. In
Section III we discuss our metric to quantify the stealthiness
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level of an attack. The main results of this paper are presented
in Section IV, including a characterization of the largest
perturbation caused by an ε-stealthy attack, and a closed-
form expression of optimal ε-stealthy attacks. Section V
contains our illustrative examples and numerical results.
Finally, Section VI concludes the paper.

II. SYSTEM AND ATTACK MODELS

In this section we detail our system and attack mod-
els. Throughout the paper, we let xji denote the sequence
{xn}jn=i, and x ∼ N (µ, σ2) a Gaussian random variable
with mean µ and variance σ2.

A. System model

We consider the single-input single-output time-invariant
system described by

xk+1 = axk + uk + wk, yk = cxk + vk, (1)

where a, c ∈ R, c 6= 0, w∞1 and v∞1 are random sequences
representing process and measurement noise, respectively.
We assume the sequences w∞1 and v∞1 to be independent and
identically distributed (i.i.d.) Gaussian processes with wk ∼
N (0, σ2

w), vk ∼ N (0, σ2
v) for all k > 0. The control input uk

is generated based on a causal observer-based control policy,
that is, uk is a function of the measurement sequence yk1 .
In particular, the controller employes a Kalman filter [15],
[16] to compute the Minimum-Mean-Squared-Error (MMSE)
estimate x̂k+1 of xk+1 from the measurements yk1 . The
Kalman filter reads as

x̂k+1 = ax̂k +Kk(yk − cx̂k) + uk, (2)

where the Kalman gain Kk and the mean squared error
Pk+1 , E

[
(x̂k+1 − xk+1)2

]
can be calculated by the

recursions

Kk =
acPk

c2Pk + σ2
v

, Pk+1 = a2Pk + σ2
w −

a2c2P 2
k

c2Pk + σ2
v

.

with the initial condition x̂1 = E[x1] = 0 and P1 = E[x21].
If the system (1) is detectable (i.e., |a| < 1 or c 6= 0),
then the Kalman filter converges to the steady state in the
sense that limk→∞ Pk = P exists [16], where P can be
obtained uniquely through the algebraic Riccati equation. For
the ease of presentation, we assume that P1 = P . Hence,
we obtain a steady state Kalman filter with Kalman gain
Kk = K and Pk = P at every time step k. The sequence
z∞1 calculated as zk , yk − cx̂k is called the innovation
sequence. Since we consider steady state Kalman filtering,
the innovation sequence is an i.i.d. Gaussian process with
zk ∼ N (0, c2P + σ2

v).

B. Attack model

We consider an attacker capable of hijacking and replacing
the control input u∞1 with an arbitrary signal ũ∞1 . Assume
that the attacker knows the system parameters a, c, σ2

w, σ
2
v .

Let Ik denote the information available to the attacker
at time k. The attack input ũ∞1 is constructed based on

the system parameters and the attacker information pattern,
which satisfies the following assumptions:

(A1) the attacker knows the control input uk, that is, uk ∈
Ik at all times k;

(A2) the information available to the attacker is non-
decreasing, that is, Ik ⊆ Ik+1;

(A3) Ik is independent of the w∞k and v∞k+1 due to causality.

Attack scenarios satisfying assumptions (A1)–(A3) include:

(i) the attacker knows the control input, that is, Ik =
{uk1};

(ii) the attacker knows the control input and the state, that
is, Ik = {uk1 , xk1};

(iii) the attacker knows the control input and the (delayed)
measurements received by the controller, that is, Ik =
{uk1 , ỹk−d1 } with d ≤ 0;

(iv) the attacker knows the control input and take additional
measurements ȳk, that is, Ik = {uk1 , ȳk1}.

Let ỹ∞1 be the sequence of measurements received by the
controller in the presence of the attack ũ∞1 . Then, ỹ∞1 is
generated by the dynamics

xk+1 = axk + ũk + wk, ỹk = cxk + vk. (3)

Notice that, because the controller is unaware of the attack,
the corrupted measurements ỹ∞1 , and hence the attack input
ũ∞1 , drive the Kalman filter (2) as an external input. Let ˆ̃x∞1
be the estimate of the Kalman filter (2) in the presence of
the attack ũ∞1 , which is obtained from the recursion

ˆ̃xk+1 = aˆ̃xk +Kz̃k + uk,

with innovation is z̃k , ỹk−cˆ̃xk. Notice that (i) the estimate
ˆ̃xk+1 is sub-optimal, because it is obtained by assuming the
nominal control input, whereas the system is driven by the
attack input, and (ii) the random sequence z̃∞1 need neither
be stationary, nor zero mean, white or Gaussian, because the
attack input is arbitrary.

Let P̃k+1 = E[(ˆ̃xk+1 − xk+1)2] be the second moment
of the estimation error ˆ̃xk+1 − xk+1, and assume that the
attacker aims to maximize P̃k+1. We consider the asymptotic
behavior of P̃k+1 to measure the performance degradation in-
duced by the attacker. Since the attack sequence is arbitrary,
the sequence P̃∞1 may diverge. Accordingly, we consider
the limit superior of arithmetic mean of the sequence P̃∞1 as
given by

P̃ , lim sup
k→∞

1

k

k∑
n=1

P̃n.

Notice that if the sequence P̃∞1 is convergent, then
limk→∞ P̃k+1 = P̃ , which equals the Cesàro mean1 [14].

1The steady state assumption is made in order to obtain an i.i.d. innovation
sequence. If the Kalman filter starts from an arbitrary initial condition P1,
then the innovation sequence is an independent, asymptotically identically
distributed, Gaussian process. This identity guarantees that the results for
the case of non-steady state Kalman filter coincide with the main results
(i.e., Theorem 1 and Theorem 2) in this paper.
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III. ATTACK STEALTHINESS FOR STOCHASTIC SYSTEMS

In this section we motivate and define our notion of ε-
stealthiness of attacks. Notice that the system (3) with σ2

w =
0 and σ2

v = 0 (i.e., deterministic single-input single-output
system) features no zero dynamics. Hence, every attack
would be detectable [10]. However, the stochastic nature
of the system provides an additional degree of freedom to
the attacker, because the process noise and the measurement
noise induce some uncertainty in the measurements. Building
on this idea, we now formally define attack stealthiness. Con-
sider the problem of detecting an attack from measurements.
Notice that the detector must rely on the statistical properties
of the received measurement sequence as compared with
their expected model in (1). This can be formulated by the
following binary hypothesis testing problem:

H0 : No attack is in progress (the controller receives yk1 );

H1 : Attack is in progress (the controller receives ỹk1 ).

Suppose that a detector is employed by the controller. Let
pFk be the probability of false alarm (decide H1 when H0

is true) at time k and let pDk be the probability of detection
(decide H1 when H1 is true) at time k. In detection theory,
the performance of the detector can be characterized by the
trade-off between pFk and pDk , namely, the Receiver Operat-
ing Characteristic (ROC) [17]. From the ROC perspective,
the attack that is hardest to detect is the one for which, at
every time k, there exists no detector that performs better
than a random guess (e.g., to make a decision by flipping a
coin) independent of the hypothesis. If a detector makes a
decision via a random guess independent of the hypothesis,
then the operating point of the ROC satisfies pFk = pDk .

Definition 1: (Strict stealthiness) The attack ũ∞1 is
strictly stealthy if there exists no detector such that pFk < pDk
at any k > 0. �

The reader may argue that strict stealthiness is a too
restrictive notion of stealthiness for an attacker, and it signif-
icantly limits the set of stealthy attacks. In fact, the attacker
may be satisfied with attack inputs that are difficult to detect,
in the sense that the detector would need to collect more
measurements to make a decision with a desired operating
point of ROC. Although it is impractical to compute the exact
values of these two probabilities for an arbitrary detector at
every time k, we are able to apply the techniques in detection
theory and information theory to obtain bounds for pFk and
pDk . A classical example is the Chernoff-Stein Lemma [14].
This lemma characterizes the asymptotic exponent of pFk ,
while pDk can be arbitrary. Motivated by Chernoff-Stein
Lemma, we propose the following notion of ε-stealthiness.

Definition 2: (ε-stealthiness) Let ε > 0 and 0 < δ <
1. The attack ũ∞1 is ε-stealthy if there exists no detector
such that the following two conditions can be satisfied
simultaneously:

(i) The detector operates with 0 < 1−pDk ≤ δ at all times
k.

(ii) The probability of false alarm pFk converges to zero
exponentially fast with rate greater than ε as k grows.

In other words, for any detector that satisfies 0 < 1−pDk ≤ δ
for all times k, it holds

lim sup
k→∞

−1

k
log pFk ≤ ε. (4)

�
Definition 2 provides a characterization of the detectability

for ε-stealthy attacks. We now provide a sufficient condition
and a necessary condition for an attack to be ε-stealthy,
which rely on the Kullback-Leibler divergence (or relative
entropy) [14], [18] defined as follows.

Definition 3: (Kullback-Leibler divergence) Let xk1 and
yk1 be two random sequences with joint probability density
functions fxk

1
and fyk1 , respectively. The Kullback-Leibler

Divergence (KLD) between xk1 and yk1 equals

D
(
xk1
∥∥yk1) =

∫ ∞
−∞

log
fxk

1
(ξk1 )

fyk1 (ξk1 )
fxk

1
(ξk1 )dξk1 . (5)

�
The KLD is a non-negative measure of the dissimilarity

between two probability density functions. It should be
observed that D

(
xk1
∥∥yk1) = 0 if fxk

1
= fyk1 . Also, the KLD

is generally not symmetric, that is, D
(
xk1
∥∥yk1) 6= D

(
yk1
∥∥xk1).

Using the Chernoff-Stein Lemma, we can provide a sufficient
condition for an attack to be ε-stealthy.

Lemma 1: (Sufficient condition for ε-stealthiness) Let
ỹ∞1 be the random sequence generated by the attack ũ∞1 .
Let ỹ∞1 be ergodic and satisfy

lim
k→∞

1

k
D
(
ỹk1
∥∥yk1) ≤ ε. (6)

Then, the attack ũ∞1 is ε-stealthy.
Proof: We apply the Chernoff-Stein Lemma for ergodic

measurements (e.g., see [19]). For such an attack ũ∞1 , given
0 < 1 − pDk ≤ δ where 0 < δ < 1, the best achievable
exponent of pFk is given by limk→∞

1
kD
(
ỹk1
∥∥yk1). For any

detector, we obtain

lim sup
k→∞

−1

k
log pFk ≤ lim

k→∞

1

k
D
(
ỹk1
∥∥yk1) ≤ ε.

By Definition 2, the attack is ε-stealthy.
Next, we provide a necessary condition for an attack to

be ε-stealthy.
Lemma 2: (Necessary condition for ε-stealthiness) Let

the attack ũ∞1 be ε-stealthy. Then

lim sup
k→∞

1

k
D
(
ỹk1
∥∥yk1) ≤ ε. (7)

Proof: The proof can be found in [20].
We conclude this section with a method to compute the

KLD between the sequences ỹk1 and yk1 . For observed-based
controllers, note that zk and z̃k are invertible functions of yk1
and ỹk1 , respectively. Recall from the invariance properties of
the KLD [18] that, for every k > 0,

D
(
ỹk1
∥∥yk1) = D

(
z̃k1
∥∥zk1).
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Moreover, z∞1 is an i.i.d. Gaussian random sequence with
zk ∼ N (0, σ2

z). From (5) we obtain

1

k
D
(
z̃k1
∥∥zk1) = −1

k
h
(
z̃k1
)

+
1

2
log(2πσ2

z) +
1

k

k∑
n=1

E
[
z̃2n
]

2σ2
z

,

(8)
where h

(
z̃k1
)

=
∫∞
−∞−fz̃k1 (ξk1 ) log fz̃k1 (ξk1 )dξk1 is the differ-

ential entropy of z̃k1 [14].

IV. PERFORMANCE BOUNDS AND LIMITATIONS

We are interested in the maximal performance degradation
P̃ that an ε-stealthy attack may induce. We present such a
fundamental limit in two parts: the converse statement that
gives an upper bound for P̃ as induced by an ε-stealthy
attack, and the achievability result that provides an attack
that achieves the upper bound of the converse result.

Theorem 1: (Converse) Consider the system stated in (1).
Let the sequence I∞1 satisfy assumptions (A1)–(A3). Let ũ∞1
be an ε-stealthy attack generated by I∞1 . Then, the estimation
error induced by the attacker satisfies

P̃ = lim sup
k→∞

1

k

k∑
n=1

P̃n ≤ δ̄(ε)P +
(δ̄(ε)− 1)σ2

v

c2
(9)

where the function δ̄ : [0,∞)→ [1,∞) is such that

δ̄(D) = 2D + 1 + log δ̄(D). (10)

Proof: Observe that z̃k = ỹk− cˆ̃xk = c(xk− ˆ̃xk) + vk,
and (xk − ˆ̃xk) is independent of vk. We have

E[z̃2k] = c2P̃k + σ2
v . (11)

Since σ2
v is a constant and c2 > 0, we can represent P̃ in

terms of E[z̃2k]. From (8), we have

1

2
· 1

k

k∑
n=1

E[z̃2n]

σ2
z

=
1

k
D
(
z̃k1
∥∥zk1)− 1

2
log(2πσ2

z) +
1

k
h
(
z̃k1
)

≤ 1

k
D
(
z̃k1
∥∥zk1)− 1

2
log(2πσ2

z) +
1

k

k∑
n=1

h(z̃n) (12)

≤ 1

k
D
(
z̃k1
∥∥zk1)− 1

2
log(2πσ2

z) +
1

k

k∑
n=1

1

2
log
(
2πeE[z̃2n]

)
(13)

=
1

k
D
(
z̃k1
∥∥zk1)+

1

2
+

1

2
log

(
k∏

n=1

E[z̃2n]

σ2
z

) 1
k

≤ 1

k
D
(
z̃k1
∥∥zk1)+

1

2
+

1

2
log

(
1

k

k∑
n=1

E[z̃2n]

σ2
z

)
, (14)

where the inequalities (12) is due to the subadditivity of
differential entropy [14, Corollary 8.6.1], the inequality (13)
is a consequence of the maximum entropy theorem [14,
Theorem 8.6.5], and the inequality (14) follows from the

arithmetic mean and geometric mean inequality. Consider
the following maximization problem

maxx∈R x,

subject to 1
2x−D −

1
2 ≤

1
2 log x,

(15)

where D ≥ 0. Since the logarithm function is concave, the
feasible region of x in (15) is a closed interval upper bounded
by δ̄(D) as defined in (10); see Fig. 1. Thus, the maximum
in (15) is δ̄(D). By (14) and the maximization problem (15),
we obtain

1

k

k∑
n=1

E[z̃2n]

σ2
z

≤ δ̄
(1

k
D
(
z̃k1
∥∥zk1)). (16)

From (11) and (16) we obtain’

P̃ = lim sup
k→∞

1

k

k∑
n=1

P̃n = lim sup
k→∞

1

k

k∑
n=1

E[z̃2n]− σ2
v

c2

≤ lim sup
k→∞

δ̄
(

1
kD
(
z̃k1
∥∥zk1))σ2

z − σ2
v

c2
(17)

=
δ̄
(

lim supk→∞
1
kD
(
z̃k1
∥∥zk1))σ2

z − σ2
v

c2
(18)

≤ δ̄(ε)σ2
z − σ2

v

c2
, (19)

where the inequality (17) can be obtained by the definition
of limit superior, the equality (18) is due to the continuity
and monotonicity of the function δ̄, and the inequality (19)
follows from Lemma 2. Finally, the desired result is obtained
by substituting σ2

z = c2P + σ2
v into (19).

0 1

0
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2 log x

1
2x−D −

1
2

Fig. 1. Illustrations for the optimization problem (15) and the function δ̄ :
[0,∞) → [1,∞) defined in (10). Notice that the function δ̄ is continuous
and monotonically increasing.

Remark 1: (Effect of strictly stealthy attacks) Strictly
stealthy attacks do not degrade the performance of the
Kalman filter. To see this, notice that if an attack is strictly
stealthy then D

(
ỹk1
∥∥yk1) = 0 for all k > 0 (this is

a consequence of Definition 1 and the Neyman-Pearson
Lemma [17]). Moreover, by using (11), (16), and the fact
that δ̄(0) = 1 whenever D

(
z̃k1
∥∥zk1) = 0 for all k > 0,

we obtain E[z̃2k] = c2P̃k + σ2
v ≤ c2P + σ2

v . Consequently
P̃k ≤ P , that is, the mean squared error of the Kalman filter
under attack is less or equal to the minimum mean squared
error in the absence of attacks. �

In the next theorem we construct an ε-stealthy attack that
achieves the upper bound in Theorem 1.
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Theorem 2: (Achievability) Let ζ∞1 be an i.i.d. sequence
of random variables ζk ∼ N

(
0,

σ2
z

c2 (δ̄(ε) − 1)
)

independent
of {xk1 , ỹk1 , Ik1 }, and let the attack be defined as

ũk = uk − (a−Kc)ζk−1 + ζk, (20)

with ζ0 = 0. Then, the attack ũ∞1 is ε-stealthy and it achieves
the converse result in Theorem 1, that is,

P̃ = lim
k→∞

1

k

k∑
n=1

P̃n = δ̄(ε)P +
(δ̄(ε)− 1)σ2

v

c2
,

where the function δ̄ : [0,∞)→ [1,∞) satisfies (10).
Proof: For the ease of analysis and without affecting

generality, we assume that the attack ũ∞1 is generated by
an attacker with the information pattern I∞1 , with Ik =
{uk1 , ỹk1} for every k > 0.

We first show that the upper bound (9) is achieved by the
attack. Notice that the attacker implements the Kalman filter
x̂Ak+1 = ax̂Ak +KzAk + ũk with the initial condition x̂A1 = 0
where zAk = ỹk−cx̂Ak . Thus, x̂Ak+1 is the MMSE estimate of
the state with the mean squared error E[(x̂Ak+1−xk+1)2] = P
when Ik is given. Note that z̃k can be expressed as

z̃k = ỹk− cˆ̃xk = ỹk− cx̂Ak + c(x̂Ak − ˆ̃xk) = zAk − cẽk, (21)

where ẽk = ˆ̃xk − x̂Ak . In addition, the dynamics of ẽk are
given by

ẽk+1 = (aˆ̃xk +Kz̃k + uk)− (ax̂Ak +KzAk + ũk)

= (a−Kc)ẽk + (a−Kc)ζk−1 − ζk, (22)

and the initial condition is ẽ1 = 0. Equation (22) implies
that ẽk+1 = −ζk for every k > 0. Further, for every k > 0,
P̃k+1 can be expressed as

P̃k+1 = E
[
(ˆ̃xk+1 − x̂Ak+1 + x̂Ak+1 − xk+1)2

]
= E

[
(ˆ̃xk+1 − x̂Ak+1)2

]
+ E

[
(x̂Ak+1 − xk+1)2

]
+ 2E

[
(ˆ̃xk+1 − x̂Ak+1)(x̂Ak+1 − xk+1)

]
(23)

= E
[
(ẽk+1)2

]
+ P

=
σ2
z

c2
(δ̄(ε)− 1) + P

= δ̄(ε)P +
(δ̄(ε)− 1)σ2

v

c2
. (24)

In (23), the fact E
[
(ˆ̃xk+1 − x̂Ak+1)(x̂Ak+1 − xk+1)

]
= 0 is

due to the principle of orthogonality, i.e., all the random
variables generated by Ik is independent of the estimation
error (x̂Ak+1−xk+1) of the MMSE estimate. Hence, the upper
bound of P̃ in (9) is achieved by this attack.

Now we show that the attack ũ∞1 is ε-stealthy. From (21)
and (22), we obtain z̃k = zAk + cζk−1. Since {zAk }∞k=1 is
an i.i.d. random sequence with zAk ∼ N (0, σ2

z), the random
sequence z̃∞1 is i.i.d. Gaussian with z̃k ∼ N (0, δ̄(ε)σ2

z). For

every k > 0, we can calculate the KLD as

1

k

k∑
n=1

D
(
ỹk1
∥∥yk1) =

1

k

k∑
n=1

D
(
z̃k1
∥∥zk1)

=
1

k

k∑
n=1

−1

2
log
(
2πeδ̄(ε)σ2

z

)
+

1

2
log(2πσ2

z) +
δ̄(ε)σ2

z

2σ2
z

= −1

2
− 1

2
log δ̄(ε) +

1

2
δ̄(ε)

= ε

where the differential entropy of z̃k1 is given by h(z̃k1 ) =∑k
n=1 h(z̃n) = k

2 log
(
2πeδ̄(ε)σ2

z

)
because z̃∞1 is an i.i.d.

Gaussian sequence. In this case, ỹ∞1 is ergodic. From
Lemma 1, the attack ũ∞1 is ε-stealthy. To conclude the
proof, notice that the attack (20) can be generated by any
information pattern satisfying (A1)–(A3).

Remark 2: (Attacker information pattern) As a counter-
intuitive fact, Theorem 1 and Theorem 2 imply that knowl-
edge of the system state does not increase the performance
degradation induced by an attacker. In fact, the only critical
piece of information for the attacker is the nominal control
input u∞1 . It should be also noticed that knowledge of the
nominal control input may not be necessary for different
system and attack models. For instance, in the case the
control input is transmitted via an additive channel, the
attacker may achieve the upper bound (9) exploiting the
linearity of the system, and without knowing the nominal
control input. �

Remark 3: (Properties of the optimal attack) Recall
that we make no assumption on the form of attacks. Yet,
Theorem 2 implies that the random sequence z̃∞1 generated
the optimal attack remains i.i.d. Gaussian with zero mean.
This property follows from the fact that the inequalities (12),
(13) and (14) hold with equalities in the case of optimal
attacks.

V. NUMERICAL RESULTS

We now present numerical results to illustrate the fun-
damental performance bounds derived in Section IV. The
following results are stated based on the ratio P̃ /P , which
can be interpreted as the attacker gain. If the ratio P̃ /P = 1,
then the attacker can induce no degradation of the mean
squared error. In Theorem 1 and Theorem 2 we characterize
how an attacker must compromise between stealthiness and
performance degradation at the system level. To illustrate
such a trade-off, in Fig. 2 we report the ratio P̃ /P as
a function of the attack stealthiness ε, for given system
parameters.

In Fig. 3 we illustrate the relation between the attacker
gain P̃ /P and the quality of the measurements, as measured
by c2/σ2

v . As expected, for a desired level of stealthiness,
the attacker gain is smaller for larger values of c2/σ2

v .
Consider now the limiting situation of an unstable system

with c2/σ2
v → 0+. In this case the open loop unstable system

is not detectable and thus P → ∞. By taking the limit of
(9) as c2/σ2

v → 0+ we obtain P̃ → ∞. In accordance with

199



0 1 2 3 4 5
0

4

8

12

16

ε

P̃
/
P

Fig. 2. This figure shows that attack stealthiness (ε) and performance
degradation at the system level (P̃ /P ) are competing objectives. The
degradation P̃ is induced by the optimal ε-stealthy attack in (20). The system
parameters are a = 2, c = 1, σ2

w = 0.5, and σ2
v = 0.1.
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Fig. 3. This figure shows that, for a desired value of stealthiness, the larger
the quality of measurements (c2/σ2

v) the smaller the attacker gain (P̃ /P ).
The system parameters are a = 2 and σ2

w = 0.5, and the degradation P̃ is
induced by the optimal ε-stealthy attack in (20).

these results, Fig. 3 shows that P̃ /P remains bounded as
c2/σ2

v → 0+.
Similarly, we consider the limiting situation of a stable

system with c2/σ2
v → 0+. The attacker gain P̃ /P as a

function of c2/σ2
v is reported in Fig. 4. It can be observed

that P̃ /P grows unbounded as c2/σ2
v → 0+. In fact, since

the system is stable, the mean squared error of the Kalman
filter P is bounded for all c2/σ2

v ≥ 0. On the other hand, by
taking the limit of (9) we observe that P̃ goes to infinity as
c2/σ2

v → 0+.

VI. CONCLUSION

This work characterizes fundamental limitations and per-
formance bounds for the security of stochastic control sys-
tems. The scenario is considered where the attacker knows
the system parameters and noise statistics, and is able to
hijack and replace the nominal control input. We propose a
notion of ε-stealthiness to quantify the difficulty to detect an
attack from measurements, and we characterize the maximal
degradation of the control performance induced by an ε-
stealthy attack. Our study reveals that an ε-stealthy attacker
only need to know the nominal control input to cause the
largest performance degradation in Kalman filtering.

REFERENCES
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