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Consider a stochastic process being controlled across a communication channel. The control signal that is
transmitted across the control channel can be replaced by a malicious attacker. The controller is allowed
to implement any arbitrary detection algorithm to detect if an attacker is present. This work characterizes
some fundamental limitations of when such an attack can be detected, and quantifies the performance
degradation that an attacker that seeks to be undetected or stealthy can introduce.
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1. Introduction

Using communication channels to inject malicious data that
degrades the performance of a cyber–physical system has now
been demonstrated both theoretically and practically (Farwell
& Rohozinski, 2011; Kuvshinkova, 2003; Mo, Chabukswar, &
Sinopoli, 2014; Pasqualetti, Dörfler, & Bullo, 2013; Richards, 2008;
Slay & Miller, 2007). Intuitively, there is a tradeoff between the
performance degradation an attacker can induce and how easy it is
to detect the attack (Teixeira, Pérez, Sandberg, & Johansson, 2012).
Quantifying this tradeoff is of great interest to operate and design
secure cyber–physical systems (CPS).

As explained in more detail later, for noiseless systems, zero
dynamics provide a fundamental notion of stealthiness of an at-
tacker, which characterizes the ability of an attacker to stay unde-
tected even if the controller can perform arbitrary tests on the data
it receives. However, similar notions for stochastic systems have
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been lacking. In this work, we consider stochastic cyber–physical
systems, propose a graded stealthiness notion, and characterize
the performance degradation that an attacker with a given level
of stealthiness can induce. The proposed notion is fundamental in
the sense that we do not constraint the detection test that the con-
troller can employ to detect the presence of an attack.
Related work Security of cyber–physical systems is a growing
research area. Classic works in this area focus on the detection
of sensor and actuator failures in control systems (Patton, Frank,
& Clark, 1989), whereas more recent approaches consider the
possibility of intentional attacks at different system layers; e.g., see
Pasqualetti, Dörfler, and Bullo (2015). Both simple attacks, such as
jamming of communication channels (Foroush & Martínez, 2013),
and more sophisticated attacks, such as replay and data injection
attacks, have been considered (Mo & Sinopoli, 2010; Smith, 2011).

One way to organize the literature in this area is based on
the properties of the considered cyber–physical systems. While
initial studies focused on static systems (Dan & Sandberg, 2010;
Giani et al., 2011; Liu, Reiter, & Ning, 2009; Mohsenian-Rad &
Leon-Garcia, 2011; Teixeira, Amin, Sandberg, Johansson, & Sastry,
2010), later works exploited the dynamics of the system either
to design attacks or to improve the performance of the detector
that a controller can employ to detect if an attack is present
(Bhattacharya & Başar, 2013; Hamza, Tabuada, & Diggavi, 2011;
Maharjan, Zhu, Zhang, Gjessing, & Başar, 2013; Manshaei, Zhu,
Alpcan, Başar, & Hubaux, 2011; Zhu & Martínez, 2011; Zhu,
Tembine, & Başar, 2013). For noiseless cyber–physical systems, the
concept of stealthiness of an attack is closely related to the control-
theoretic notion of zero dynamics (Basile &Marro, 1991, Section 4).
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In particular, an attack is undetectable in noiseless systems if
and only if it excites only the zero dynamics of an appropriately
defined input–output system describing the system dynamics, the
measurements available to the security monitor, and the variables
compromised by the attacker (Fawzi, Tabuada, & Diggavi, 2014;
Pasqualetti et al., 2013). For cyber–physical systems driven by
noise, instead, the presence of process and measurements noise
offers the attacker an additional possibility to tamper with sensor
measurements and control inputs within acceptable uncertainty
levels, thereby making the detection task more difficult.

Detectability of attacks in stochastic systems remains an
open problem. Most works in this area consider detectability of
attacks with respect to specific detection schemes employed by
the controller, such as the classic bad data detection algorithm
(Cui et al., 2012; Mo & Sinopoli, 2010). The trade-off between
stealthiness and performance degradation induced by an attacker
has also been characterized only for specific systems and detection
mechanisms (Kosut, Jia, Thomas, & Tong, 2011; Kwon, Liu, &
Hwang, 2013; Liu, Ning, & Reiter, 2011; Mo et al., 2014), and a
thorough analysis of resilience of stochastic control systems to
arbitrary attacks is still missing. While convenient for analysis,
the restriction to a specific class of detectors prevents the
characterization of fundamental detection limitations. In our
previous work (Bai & Gupta, 2014), we proposed the notion of
ϵ-marginal stealthiness to quantify the stealthiness level in an
estimation problem with respect to the class of ergodic detectors.
In this work, we remove the assumption of ergodicity and
introduce a notion of stealthiness for stochastic control systems
that is independent of the attack detection algorithm, and thus
provides a fundamental measure of the stealthiness of attacks
in stochastic control systems. Further, we also characterize the
performance degradation that such a stealthy attack can induce.

We limit our analysis to linear, time-invariant plants with a
controller based on the output of an asymptotic Kalman filter,
and to injection attacks against the actuation channel only.
Our choice of using controllers based on Kalman filters is not
restrictive. In fact, while this is typically the case in practice, our
results and analysis are valid for arbitrary control schemes. Our
choice of focusing on attacks against the actuation channel only,
instead, is motivated by two main reasons. First, actuation and
measurements channels are equally likely to be compromised,
especially in networked control systems where communication
between sensors, actuators, plant, and controller takes place over
wireless channels. Second, this case has received considerably less
attention in the literature – perhaps due to its enhanced difficulty
– where most works focus on attacks against the measurement
channel only; e.g., see Fawzi et al. (2014) and Teixeira et al. (2010).
We remark also that our framework can be extended to the case
of attacks against the measurement channel, as we show in Bai
and Gupta (2014) for scalar systems and a different notion of
stealthiness.

Finally, we remark that since the submission of this work,
some recent literature has appeared that builds on it and uses a
notion of attack detectability that is similar to what we propose
in Bai and Gupta (2014), Bai, Pasqualetti, and Gupta (2015) and
in this paper. For instance, Kung, Dey, and Shi (2016) extend
the notion of ϵ-stealthiness of Bai et al. (2015) to higher order
systems, and show how the performance of the attackermay differ
in the scalar and vector cases (in this paper we further extend
the setup in Kung et al. (2016) by leveraging the notion of right-
invertibility of a system to consider input and output matrices of
arbitrary dimensions). In Zhang and Venkitasubramaniam (2016),
the authors extend the setup in Bai et al. (2015) to vector and
not necessarily stationary systems, but consider a finite horizon
problem. In Guo, Shi, Johansson, and Shi (2017), the degradation of
remote state estimation is studied, for the case of an attacker that
compromises the systemmeasurements based on a linear strategy.
Two other relevant recent works are Weerakkody, Sinopoli, Kar,
andDatta (2016) that use the notion of Kullback-Liebler divergence
as a causal measure of information flow to quantify the effect of
attacks on the system output, while Chen, Kar, and Moura (2016)
characterize optimal attack strategies with respect to a linear
quadratic cost that combines attackers control and undetectability
goals.
Contributions The main contributions of this paper are threefold.
First, we propose a notion of ϵ-stealthiness to quantify detectabil-
ity of attacks in stochastic cyber–physical systems. Our metric is
motivated by the Chernoff–Stein lemma in detection and informa-
tion theories and is universal because it is independent of any spe-
cific detection mechanism employed by the controller. Second, we
provide an information theoretic bound for the degradation of the
minimum-mean-square estimation error caused by an ϵ-stealthy
attack as a function of the system parameters, noise statistics, and
information available to the attacker. Third, we characterize op-
timal stealthy attacks, which achieve the maximal degradation of
the estimation error covariance for a stealthy attack. For right-
invertible systems (Basile &Marro, 1991, Section 4.3.2), we provide
a closed-form expression of optimal ϵ-stealthy attacks. The case of
single-input single-output systems considered in our conference
paper (Bai et al., 2015) is a special case of this analysis. For systems
that are not right-invertible, we propose a sub-optimal ϵ-stealthy
attack with an analytical expression for the induced degradation
of the system performance.We include a numerical study showing
the effectiveness of our bounds. Our results provide a quantitative
analysis of the trade-off between performance degradation that an
attacker can induce versus a fundamental limit of the detectability
of the attack.
Paper organization Section 2 contains the mathematical formu-
lation of the problems considered in this paper. In Section 3, we
propose a metric to quantify the stealthiness level of an attacker,
andwe characterize how thismetric relates to the information the-
oretic notion of Kullback–Leibler Divergence. Section 4 contains
the main results of this paper, including a characterization of the
largest performance degradation caused by an ϵ-stealthy attack, a
closed-form expression of optimal ϵ-stealthy attacks for right in-
vertible systems, and a suboptimal class of attacks for not right-
invertible systems. Section 5 presents illustrative examples and
numerical results. Finally, Section 6 concludes the paper.

2. Problem formulation

Notation: The sequence {xn}
j
n=i is denoted by xji (when clear from

the context, the notation xji may also denote the corresponding
vector obtained by stacking the appropriate entries in the
sequence). This notation allows us to denote the probability
density function of a stochastic sequence xjifxji

, and to define its

differential entropy h(xji) as (Cover & Thomas, 2006, Section 8.1)

h(xji) ,


∞

−∞

−fx̃ji
(t ji ) log fx̃ji

(t ji )dt
j
i .

Let xk1 and yk1 be two random sequences with probability density
functions (pdf) fxk1 and fyk1 , respectively. The Kullback–Leibler

Divergence (KLD) (Cover & Thomas, 2006, Section 8.5) between xk1
and yk1 is defined as

D

xk1 ∥ yk1


,


∞

−∞

log
fxk1(t

k
1)

fyk1(t
k
1)

fxk1(t
k
1)dt

k
1 . (1)

The KLD is a non-negative quantity that gauges the dissimilarity
between two probability density functions with D


xk1 ∥ yk1


= 0
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Fig. 1. Problem setup considered in the paper.

if fxk1 = fyk1 . Also, the KLD is generally not symmetric, that is,

D

xk1 ∥ yk1


≠ D


yk1 ∥ xk1


. A Gaussian random vector x with mean

µx and covariance matrix Σx is denoted by x ∼ N (µx, Σx). We
let I and O be the identity and zero matrices, respectively, with
their dimensions clear from the context. We also let Sn

+
and Sn

++

denote the sets of n× n positive semidefinite and positive definite
matrices, respectively. For a square matrix M, tr(M) and det(M)
denote the trace and the determinant ofM , respectively.

We consider the setup shown in Fig. 1 with the following
assumptions:
Process: The process is described by the following linear time-
invariant (LTI) state-space representation:

xk+1 = Axk + Buk + wk,
yk = Cxk + vk,

(2)

where xk ∈ RNx is the process state, uk ∈ RNu is the control
input, yk ∈ RNy is the output measured by the sensor, and the
sequencesw∞

1 and v∞

1 represent process andmeasurement noises,
respectively.

Assumption 1. The noise random processes are independent
and identically distributed (i.i.d.) sequences of Gaussian random
vectors with wk ∼ N (0, Σw), vk ∼ N (0, Σv), Σw ∈ SNx

++, and
Σv ∈ SNy

++.

Assumption 2. The state-space realization (A, B, C) has no invari-
ant zeros (Basile & Marro, 1991, Section 4.4). In particular, this as-
sumption implies that the pair (A, C) is observable.We also assume
that the pair (A, B) is controllable.

Assumption 3. The controller uses a Kalman filter to estimate and
monitor the process state. Note that the control input itself may be
calculated using an arbitrary control law. The Kalman filter, which
calculates the Minimum-Mean-Squared-Error (MMSE) estimate x̂k
of xk from the measurements yk−1

1 , is described as

x̂k+1 = Ax̂k + Kk(yk − Cx̂k) + Buk, (3)

where the Kalman gain Kk and the error covariance matrix
Pk+1 , E


(x̂k+1 − xk+1)(x̂k+1 − xk+1)

T

are calculated through the

recursions

Kk = APkCT (CPKCT
+ Σv)

−1, and

Pk+1 = APkAT
− APkCT (CPkCT

+ Σv)
−1CPkAT

+ Σw,

with initial conditions x̂1 = E[x1] = 0 and P1 = E[x1xT1].

Assumption 4. Given Assumption 2, limk→∞ Pk = P , where P is
the unique solution of a discrete-time algebraic Riccati equation.
For ease of presentation, we assume that P1 = P , although the
results can be generalized to the general case at the expense of
more involved notation. Accordingly, we drop the time index and
let Kk = K and Pk = P at every time step k. Notice that
this assumption also implies that the innovation sequence z∞

1
calculated as zk , yk − Cx̂k is an i.i.d. Gaussian process with
zk ∼ N (0, Σz), where Σz = CPCT

+ Σv ∈ SNy
++.
Let G(Z) denote the Ny × Nu matrix transfer function of the
system (A, B, C).We say that the system (A, B, C) is right invertible
if there exists an Nu ×Ny matrix transfer function GRI(Z) such that
G(Z)GRI(Z) = INy .
Attackmodel: An attacker can replace the input sequence u∞

1 with
an arbitrary sequence ũ∞

1 . Thus, in the presence of an attack, the
system dynamics are given by

x̃k+1 = Ax̃k + Bũk + wk,

ỹk = Cx̃k + vk. (4)

Note that the sequence ỹ∞

1 generated by the sensor in the presence
of an attack ũ∞

1 is different from the nominal measurement
sequence y∞

1 . We assume that the attacker knows the system
parameters, including the matrices A, B, C, Σw , and Σv . The attack
input ũ∞

1 is constructed based on the system parameters and the
information pattern Ik of the attacker. We make the following
assumptions on the attacker’s information pattern:

Assumption 5. The attacker knows the control input uk; thus uk ∈

Ik at all times k. Additionally, the attacker does not know the noise
vectors for any time.

Assumption 6. The attacker has perfect memory; thus, Ik ⊆ Ik+1
at all times k.

Assumption 7. The attacker has causal information; in particular,
Ik is independent of w∞

k and v∞

k+1 for all k.

Example 1 (Attack Scenarios). Attack scenarios satisfying Assump-
tions 5–7 include the cases when:

(i) the attacker knows the control input exactly, that is, Ik =

{uk
1}.

(ii) the attacker knows the control input and the state, that is,
Ik = {uk

1, x
k
1}.

(iii) the attacker knows the control input and delayed measure-
ments from the sensor, that is, Ik = {uk

1, ỹ
k−d
1 } for some d ≥ 1.

Stealthiness of an attacker: The attacker is constrained in the
input ũ∞

1 it replaces since it seeks to be stealthy or undetected
by the controller. If the controller is aware that an attacker has
replaced the correct control sequence u∞

1 by a different sequence
ũ∞

1 , it can presumably switch to a safer mode of operation. Notions
of stealthiness have been proposed in the literature before. As an
example, for noiseless systems, Pasqualetti et al. (2013) showed
that stealthiness of an attacker is equivalent to the existence
of zero dynamics for the system driven by the attack. Similar
to Pasqualetti et al. (2013), we seek to define the notion of
stealthiness without placing any restrictions on the attacker or the
controller behavior. However, we need to define a similar notion
for stochastic systems when zero dynamics may not exist. To this
end, we pose the problem of detecting an attacker by the controller
as a (sequential) hypothesis testing problem. Specifically, the
controller relies on the received measurements to decide the
following binary hypothesis testing problem:

H0 : No attack is in progress (the controller receives yk1);

H1 : Attack is in progress(the controller receives ỹk1).

For a given detector employed at the controller to select one of
the two hypotheses, denote the probability of false alarm (i.e., the
probability of deciding H1 when H0 is true) at time k by pFk , and the
probability of correct detection (i.e., the probability of deciding H1
when H1 is true) at time k + 1 by pDk .

One may envisage that stealthiness of an attacker implies pDk =

0. However, as is standard in detection theory, we need to consider
both pFk and pDk simultaneously. For instance, a detector that always
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declares H1 to be true will achieve pDk = 1. However, it will not be
a good detector because pFk = 1. Intuitively, an attack is harder
to detect if the performance of any detector is independent of the
received measurements. In other words, we define an attacker to
be stealthy if there exists no detector that can perform better (in
the sense of simultaneously achieving higher pDk and lower pFk ) than
a detector that makes a decision by ignoring all the measurements
andmaking a randomguess to decide between the hypotheses.We
formalize this intuition in the following definition.

Definition 1 (Stealthy Attacks). Consider the problem formulation
stated in Section 2. An attack ũ∞

1 is
(i) strictly stealthy, if there exists no detector such that pFk < pDk

for any k > 0.
(ii) ϵ-stealthy, if, given ϵ > 0 and for any 0 < δ < 1, for any

detector for which 0 < 1 − pDk ≤ δ for all times k, it holds that
lim supk→∞ −

1
k log pFk ≤ ϵ.

Intuitively, an attack is strictly stealthy if no detector can perform
better than a random guess in deciding whether an attack is in
progress. Further, an attack is ϵ-stealthy if there exists no detector
such that 0 < 1 − pDk ≤ δ for all time k and pFk converges to zero
exponentially fast with rate greater than ϵ as k → ∞.
Performance metric: The requirement to stay stealthy clearly
curtails the performance degradation that an attacker can cause.
The central problem that we consider is to characterize the
worst performance degradation that an attacker can achieve for
a specified level of stealthiness. In the presence of an attack (and
if the controller is unaware of the attack), it uses the corrupted
measurements ỹ∞

1 in the Kalman filter. Let ˆ̃x
∞

1 be the estimate of
the Kalman filter (3) in the presence of the attack ũ∞

1 , which is
obtained from the recursion
ˆ̃xk+1 = Aˆ̃xk + K z̃k + Buk,

where the innovation is z̃k , ỹk − C ˆ̃xk. Note that the estimate ˆ̃xk+1
is a sub-optimal MMSE estimate of the state xk since it is obtained
by assuming the nominal control input uk, whereas the system is
driven by the attack input ũk. Also, note that the random sequence
z̃∞

1 need neither be zero mean, nor white or Gaussian.
Since the Kalman filter estimate depends on the measurement

sequence received, as a performance metric, we consider the
covariance of the error in the predicted measurement ˆ̃yk as
compared to true value yk. Further, to normalize the relative
impact of the degradation induced by the attacker among different
components of this error vector, we weight each component of
the error vector by an amount corresponding to how accurate
the estimate of this component was without attacks. Thus, we

consider the performance index E


ˆ̃yk − yk
T

Σ−1
z


ˆ̃yk − yk


=

Tr(P̃kW ), where P̃k is the error covariancematrix in the presence of
an attack, P̃k = E


(ˆ̃xk−xk)(ˆ̃xk−xk)T


, andW = CTΣ−1

z C . To obtain
a metric independent of time and focus on the long term effect of
the attack, we consider the limit superior of the arithmetic mean
of {tr(P̃kW )}∞k=1 and define P̃W , lim supk→∞

1
k

k
n=1 tr(P̃nW ). If

{tr(P̃kW )}∞k=1 is convergent, then limk→∞ tr(P̃kW ) = P̃W , which
equals the Cesàro mean of P̃kW .
Problems considered in the paper: We assume that the attacker
is interested in staying stealthy or undetected for as long as
possible while maximizing the error covariance P̃W . We consider
two problems:
(i) What is a suitable metric for stealthiness of an attacker in

stochastic systems where Assumption 2 holds? We consider
this problem in Section 3.

(ii) For a specified level of stealthiness, what is the worst
performance degradation that an attacker can achieve? We
consider this problem in Section 4.
3. Stealthiness in stochastic systems

Our first result provides conditions that can be used to verify if
an attack is stealthy or not.

Theorem 1 (KLD and Stealthy Attacks). Consider the problem
formulation in Section 2. An attack ũ∞

1 is

(i) strictly stealthy if and only if D

ỹk1 ∥ yk1


= 0∀k > 0.

(ii) ϵ-stealthy if the corresponding observation sequence ỹ∞

1 is
ergodic and satisfies

lim
k→∞

1
k
D

ỹk1 ∥ yk1


≤ ϵ. (5)

(iii) ϵ-stealthy only if the corresponding observation sequence ỹ∞

1
satisfies (5).

Proof. Presented in Appendix A. �

The following result provides a characterization of D

ỹk1 ∥ yk1


that contains additional insight into the meaning of stealthiness of
an attacker.

Proposition 2 (KLD and Differential Entropy). The quantity D

ỹk1 ∥

yk1

can be calculated as

1
k
D

ỹk1 ∥ yk1


=

1
k

k
n=1


I

z̃n−1
1 ; z̃n


+ D


z̃n ∥ zn


, (6)

where I

z̃n−1
1 ; z̃n


denotes the mutual information between z̃n−1

1 and
z̃n (Cover & Thomas, 2006, Section 8.5).

Proof. Due to the invariance property of the Kullback–Leibler
divergence (Kullback, 1997), we have D


ỹk1 ∥ yk1


= D


z̃k1 ∥ zk1


, for

every k > 0. Further, note that z∞

1 is an i.i.d. sequence of Gaussian
random vectors with zk ∼ N (0, Σz). From (1), we obtain

1
k
D

z̃k1 ∥ zk1

 (a)
= −

1
k
h

z̃k1


−

1
k

k
n=1

E

log fzn(zn)


(b)
=

1
k

k
n=1


−h


z̃n

z̃n−1
1


+ h(z̃n)

− h(z̃n) − E

log fzn(zn)


=

1
k

k
n=1


I

z̃n−1
1 ; z̃n


+ D


z̃n ∥ zn


,

where I

z̃n−1
1 ; z̃n


denotes the mutual information between z̃n−1

1
and z̃n. Equality (a) holds because z∞

1 is an independent random
sequence, while (b) follows by applying the chain rule of
differential entropy (Cover & Thomas, 2006, Theorem 8.6.2) on
the term −

1
kh


z̃k1


to obtain 1

k

k
n=1 −h


z̃n|z̃n−1

1


, and adding and

subtracting h(z̃n). �

Intuitively, the mutual information I

z̃n−1
1 ; z̃n


measures how

much information about z̃n can be obtained from z̃n−1
1 , that is,

it characterizes the memory of the sequence z̃∞

1 . Similarly, the
Kullback–Leibler divergence D(z̃n ∥ zn) measures the dissimilarity
between the marginal distributions of z̃n and zn. Proposition 2
thus states that the stealthiness level of an ergodic attacker
can be degraded in two ways: (i) if the sequence z̃∞

1 becomes
autocorrelated, and (ii) if the marginal distributions of the random
variables z̃(k) in the sequence z̃∞

1 deviate from N (0, Σz).
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4. Fundamental performance limitations

We are interested in the maximal performance degradation P̃W
that an ϵ-stealthy attacker may induce. We begin by proving a
converse statement that gives an upper bound for P̃W induced by
an ϵ-stealthy attacker in Section 4.1. In Section 4.2we prove a tight
achievability result that provides an attack that achieves the upper
bound when the system (A, B, C) is right-invertible. In Section 4.3
we prove a looser achievability result that gives a lower bound on
the performance degradation for non right-invertible systems.

We will use a series of preliminary technical results to present
the main results of the paper. The following result is immediate.

Lemma 3. Define the function δ̄ : [0, ∞) → [1, ∞) as δ̄(x) =

2x + 1 + log δ̄(x). Then, for any γ > 0, δ̄(γ ) = argmaxx∈R x,
subject to 1

2x − γ −
1
2 ≤

1
2 log x.

The following result is proved in Appendix B.

Lemma 4. Consider the problem setup above. We have

1
2k

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


≤

Ny

2
+

1
k
D

z̃k1 ∥ zk1


+

Ny

2
log


1

Nyk

k
n=1

tr

E[z̃nz̃Tn ]Σ−1

z


. (7)

Further, if the sequence z̃∞

1 is a sequence of independent and
identically distributed (i.i.d.) Gaussian random variables, z̃k, eachwith
mean zero and covariance matrix E


z̃kz̃Tk


= αΣz , for some scalar α,

then (7) is satisfied with equality.

Combining Lemmas 3 and 4 leads to the following result.

Lemma 5. Consider the problem setup above. We have

1
Nyk

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


≤ δ̄

 1
Nyk

D

z̃k1 ∥ zk1


, (8)

where δ̄(.) is as defined in Lemma 3.

The following result relates the covariance of the innovation and
the observation sequence.

Lemma 6. Consider the problem setup above. We have

CPkCT
= E


zkzTk


− Σv (9)

CP̃kCT
= E


z̃kz̃Tk


− Σv. (10)

Proof. By definition, zk = yk−Cx̂k = C(xk− x̂k)+vk, and similarly
z̃k = C(x̃k−ˆ̃xk)+vk. Since (xk− x̂k) and (x̃k−ˆ̃xk) are independent of
the measurement noise vk due to Assumptions 1 and 7, the result
follows. �

4.1. Converse

We now present an upper bound of the weighted MSE induced
by an ϵ-stealthy attack.

Theorem 7 (Converse). Consider the problem setup above. For any
ϵ-stealthy attack ũ∞

1 generated by an information pattern I∞

1 that
satisfies Assumptions 5–7,

P̃W ≤ tr(PW ) +


δ̄


ϵ

Ny


− 1


Ny, (11)

where Ny is the number of outputs of the system, the function δ̄ is
defined in Lemma 3, and tr(PW ) is the weighted MSE in the absence
of the attacker.
Proof. We begin by writing

P̃W = lim sup
k→∞

1
k

k
n=1

tr(P̃nCTΣ−1
z C)

= lim sup
k→∞

1
k

k
n=1

tr(CP̃nCTΣ−1
z )

= lim sup
k→∞

1
k

k
n=1

tr


E[z̃nz̃Tn ] − Σv


Σ−1

z


,

where we have used the invariance of trace operator under cyclic
permutations and the relation in (10), respectively. The right hand
side has two terms. The first term can be upper bounded using
Lemma 5, so that we obtain

P̃W ≤ lim sup
k→∞

Nyδ̄


1

Nyk
D


z̃k1 ∥ zk1


− tr


ΣvΣ

−1
z


.

Since the function δ̄ is continuous and monotonic, we can rewrite
the above bound as

P̃W ≤ Nyδ̄


lim sup
k→∞

1
Nyk

D

z̃k1 ∥ zk1


− tr


ΣvΣ

−1
z


.

Since the attack is ϵ-stealthy, we use Theorem 1 to bound the
Kullback–Leibler divergenceD


z̃k1 ∥ zk1


to obtain P̃W ≤ Nyδ̄


ϵ
Ny


−

tr

ΣvΣ

−1
z


. Finally, substituting for Σv from (9) on the right hand

side and usingW = CTΣ−1
z C completes the proof. �

Remark 8 (Stealthiness versus Induced Error). Theorem 7 provides
an upper bound for the performance degradation P̃W for ϵ-stealthy
attacks. Since δ̄


ϵ
Ny


is a monotonically increasing function of

ϵ, the upper bound (11) characterizes a trade-off between the
induced error and the stealthiness level of an attack.

To further understand this result, we consider two extreme
cases, namely, ϵ = 0, which implies strictly stealthiness, and
ϵ → ∞, that is, no stealthiness level.

Corollary 9. A strictly stealthy attacker cannot induce any perfor-
mance degradation. Further, for an ϵ-stealthy attacker, the upper
bound in (11) increases linearly with ϵ as ϵ → ∞.

Proof. A strictly stealthy attacker corresponds to ϵ = 0. Using the
fact that δ̄(0) = 1 in Theorem 7 yields that tr(P̃W ) ≤ tr(PW ). The
second statement follows by noting that the first order derivative
of the function δ̄(x) → 2 from the right as x tends to infinity. �

4.2. Achievability for right invertible systems

We now show that the bound presented in Theorem 7 is
achievable if the system (A, B, C) is right invertible. We begin with
the following preliminary result.

Lemma 10. Let the system (A, B, C) be right invertible. Then, the
system (A − KC, B, C) is also right invertible.

Let G′

RI be the right inverse of the system (A − KC, B, C). We
consider the following attack.
Attack A1: The attack sequence is generated in three steps. In the
first step, a sequence ζ∞

1 is generated, such that each vector ζk is
independent and identically distributed and independent of the
information pattern Ik of the attacker, with probability density
function ζk ∼ N


0,


δ̄( ϵ

Ny
) − 1


Σz


. In the second step, the

sequence φ∞

1 is generated as the output of the system G′

RI with ζ∞

1
as the input sequence. Finally, the attack sequence ũ∞

1 is generated
as ũk = uk + φk.
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Remark 11 (Information Pattern of Attack A1). The attack A1
can be generated by an attacker with any information pattern
satisfying Assumptions 5–7.

We note the following property of the attack A1.

Lemma 12. Consider the attack A1. With this attack, the innovation
sequence z̃∞

1 as calculated at the controller, is a sequence of
independent and identically distributed Gaussian random vectors
with mean zero and covariance matrix E[z̃kz̃Tk ] = δ̄


ϵ
Ny


Σz .

Proof. Consider an auxiliary Kalman filter that is implemented as
the recursion

x̂ak+1 = Ax̂ak + Kzak + Bũk, (12)

with the initial condition x̂a1 = 0 and the innovation zak =

ỹk − Cx̂ak. The innovation sequence is independent and identically
distributed with each zak ∼ N (0, Σz). Now, we express z̃k =

zak − Cẽk, where ẽk , ˆ̃xk − x̂ak. Further, ẽk evolves according to the
recursion

ẽk+1 = (Aˆ̃xk + K z̃k + Buk) − (Ax̂ak + Kzak + Bũk)

= (A − KC)ẽk − Bφk, (13)

with the initial condition ẽ1 = 0. Together, z̃k and (13) define a
system of the form

ẽk+1 = (A − KC)ẽk + B(−φk),
zak − z̃k = Cẽk.

(14)

We now note that (i) the above system is (A − KC, B, C), (ii) φ∞

1
is the output of the right inverse system of (A − KC, B, C) with
input ζ∞

1 , and (iii) the system in Eq. (14) is linear. These three facts
together imply that the output of (14), i.e., {zak−z̃k}∞k=1 is a sequence
of independent and identically distributed random variables with
each random variable distributed as N


0,


δ̄( ϵ

Ny
) − 1


Σz


. Now

since zak is independent of ẽk1, we obtain that z̃∞

1 is an independent
and identically distributed sequence with each random variable
z̃k as Gaussian with mean zero and covariance matrix E[z̃kz̃Tk ] =
δ̄


ϵ
Ny


− 1


Σz + Σz = δ̄


ϵ
Ny


Σz . �

Theorem 13 (Achievability for Right Invertible Systems). Suppose
that the LTI system (A, B, C) is right invertible. The attack A1 is ϵ-
stealthy and achieves

P̃W = tr(PW ) + Ny


δ̄


ϵ

Ny


− 1


,

where W = CTΣ−1
z C.

Proof. For the attack A1, Lemma 12 states that z̃∞

1 is a sequence
of independent and identically distributed (i.i.d.) Gaussian random
variables z̃k each with mean zero and covariance matrix E


z̃kz̃Tk


=

αΣz , with α = δ̄( ϵ
Ny

). Lemma 4, thus, implies that (7) holds with
equality. Further, following theproof of Theorem7, if (7) holdswith
equality, then (11) also holds with equality. Thus, the attack A1
achieves the converse in terms of performance degradation.

Next we show that the attack is ϵ-stealthy. Once again, from
Lemma 4 and the expression for the covariance matrix of z̃k, we
have for every k > 0,

1
k
D

z̃k1 ∥ zk1


=

1
2k

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


−

Ny

2

−
Ny

2
log


1

Nyk

k
n=1

tr

E[z̃nz̃Tn ]Σ−1

z


=
1
2k

k
n=1

tr


δ̄


ϵ

Ny


ΣzΣ

−1
z


−

Ny

2

−
1
2k

k
n=1

log det


δ̄


ϵ

Ny


ΣzΣ

−1
z


=

Ny

2
δ̄
 ϵ

Ny


−

Ny

2
−

Ny

2
log δ̄

 ϵ

Ny


= ϵ.

Now with this attack, z̃∞

1 is an independent and identically
distributed sequence and the measurement sequence ỹ∞

1 is
ergodic. Thus, from Theorem 1, the attack A1 is ϵ-stealthy. �

Remark 14 (Attacker Information Pattern). Intuitively, we may
expect that the more information about the state variables that
an attacker has, larger the performance degradation it can induce.
However, Theorems 7 and 13 imply that the only critical piece
of information for the attacker to launch an optimal attack is the
nominal control input u∞

1 .

4.3. Achievability if system is not right invertible

If the system is not right invertible, the converse result in
Theorem 7 may not be achieved. We now construct a heuristic
attack A2 that allows us to derive a lower bound for the
performance degradation P̃W induced by ϵ-stealthy attacks against
such systems.
Attack A2: The attack sequence is generated as ũk = uk + Lẽk − ζk,
where ẽk = ˆ̃xk − x̂ak as in (14), and the sequence ζ∞

1 is generated
such that each vector ζk is independent and identically distributed
with probability density function ζk ∼ N


0, Σζ


and independent

of the information pattern Ik of the attacker. The feedbackmatrix L
and the covariancematrixΣζ are determined in three steps, which
are detailed next.
Step 1 (Limiting the memory of the innovation sequence z̃∞

1 ): Notice
that, with the attack A2 and the notation in (12), the dynamics of
ẽk and z̃k are given by

ẽk+1 = (A − KC − BL)ẽk + Bζk
z̃k = Cẽk + zak .

(15)

The feedback matrix L should be selected to eliminate the memory
of the innovation sequence computed at the controller. One way
to achieve this aim is to set A − KC − BL = 0. In other words,
if A − KC − BL = 0, then z̃∞

1 is independent and identically
distributed. It may not be possible to select L to achieve this aim
exactly. Thus, we propose the following heuristic. Note that if A −

KC−BL = 0, then the cost function limk→∞
1
k

k
n=1 tr


E[ẽnẽTn]W


,

is minimized, with W = CTΣ−1
z C . Since

k
n=1 tr


E[ẽnẽTn]W


=

E
k

n=1 ẽ
T
nWẽn


, selecting L to satisfy the constraint A − KC −

BL = 0 is equivalent to selecting L to solve a cheap Linear
Quadratic Gaussian (LQG) problem (Hespanha, 2009, Section VI).
Thus, heuristically, we select the attack matrix L as the solution to
this cheap LQG problem and, specifically, as

L = lim
η→0

(BTTηB + ηI)−1BTTη(A − KC), (16)

where Tη is the solution to the discrete algebraic Riccati equation

Tη = (A − KC)T

Tη − TηB(BTTηB + ηI)−1BTTη


(A − KC) + W .

Step 2 (Selection of the covariance matrix Σζ ): Notice that the
selection of the feedback matrix L in Step 1 is independent of the
covariancematrixΣζ . As the second step, we select the covariance
matrixΣζ such that CΣẽCT is close to a scalar multiplication ofΣz ,
say α2Σz . From (15), notice that limk→∞ E[z̃kz̃Tk ] = CΣẽCT

+ Σz ,
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where Σẽ ∈ SNx
+ is the positive semi-definite solution to the

equation

Σẽ = (A − KC − BL)Σẽ(A − KC − BL)T + BΣζBT . (17)

We derive an expression for Σζ from (17) by using the
pseudoinverse matrices of B and C , i.e.,

Σζ = α2BĎ

CĎΣz(CT )Ď

− (A − KC − BL)CĎΣz(CT )Ď(A − KC − BL)T

(BT )Ď, (18)

where Ď denotes the pseudoinverse operation. It should be noted
that the right-hand side of (18) may not be positive semidefinite.
Many choices are possible to construct a positive semi-definite
Σζ . We propose that if the right-hand side is indefinite, we set its
negative eigenvalues to zero without altering its eigenvectors.
Step 3 (Enforcing the stealthiness level): The covariance matrix Σζ

obtained in Step 2 depends on the parameter α. We now select
α so as to make the attack A2ϵ-stealthy. To this aim, we first
compute an explicit expression for the stealthiness level and the
error induced by A2. For the entropy rate of z̃∞

1 , since z̃∞

1 is
Gaussian, we obtain

lim
k→∞

1
k
h

z̃k1


= lim

k→∞

h

z̃k+1

z̃k1 (19)

= lim
k→∞

1
2
log


(2πe)Nydet


E[(z̃k+1 − gk(z̃k1))

× (z̃k+1 − gk(z̃k1))
T
]


(20)

=
1
2
log


(2πe)Nydet(CSCT

+ Σz)


(21)

where gk(z̃k1) is the minimum mean square estimate of ẽk+1 from
z̃k1 , which can be obtained from Kalman filtering, and S ∈ SNy

+ is the
positive semidefinite solution to the following discrete algebraic
Riccati equation

S = (A − KC − BL)

S − SCT (CSCT

+ Σz)
−1CS


× (A − KC − BL)T + BΣζBT . (22)

Note that the equality (19) is due to Cover and Thomas (2006,
Theorem 4.2.1); (20) is a consequence of themaximumdifferential
entropy lemma (Gamal & Kim, 2011, Section 2.2); the positive
semidefinite matrix S that solves (22) represents the steady-state
error covariance matrix of the Kalman filter that estimates z̃k+1
from z̃k1 . Thus, the level of stealthiness for the attack A2 is

lim
k→∞

1
k
D

z̃k1 ∥ zk1


= ϵ = −

1
2
log(2πe)Nydet(CSCT

+ Σz)

+
1
2
log


(2π)Nydet(Σz)


+

1
2
tr


(CΣẽCT

+ Σz)Σ
−1
z


= −

1
2
log det(I + SW ) +

1
2
tr(ΣẽW ) +

1
2
Ny, (23)

whereW = CTΣ−1
z C . To conclude our design of the attack A2, we

use (23) to solve for the desired value of α, and compute the error
induced by A2 as

P̃W = lim
k→∞

1
k

k
n=1

tr(E[z̃nz̃Tn ]Σ−1
z ) − tr(ΣvΣ

−1
z )

= tr(PW ) + tr(ΣẽW ) − Ny (24)

where Σẽ is the solution to the Lyapunov equation (17).
Fig. 2. The converse and achievability for the right invertible system, where the
weighted MSE P̃W is the upper bound in (11) and the weight matrixW = CTΣ−1

z C .

5. Numerical results

Example 2. Consider a right invertible system (A, B, C)

A =

2 0 0 0
0 −1 0 0
1 0 1 0
0 0 0 2

 , B =

1 0
1 0
0 2
0 1

 ,

C =

0 0
0 1
2 0
0 1


T

,

and let Σw = 0.5I and Σv = I . Fig. 2 plots the upper bound (11)
of performance degradation achievable for an attacker versus the
attacker’s stealthiness level ϵ. From Theorem 13, the upper bound
can be achieved by a suitably designed ϵ-stealthy attack. Thus,
Fig. 2 represents a fundamental limitation for the performance
degradation that can be induced by any ϵ-stealthy attack. Observe
that plot is approximately linear as ϵ becomes large, as predicted
by Corollary 9.

Example 3. Consider the system (A, B, C)

A =


2 −1 0 0 0
1 −3 0 0 0
0 0 −2 0 0
0 0 0 −1 0
0 0 0 0 3

 , B =


2 0
1 0
0 1
0 1
1 1

 ,

C =

 1 −1 2 0 0
−1 2 0 3 0
2 1 0 0 4


,

which fails to be right invertible. Let Σw = 0.5I and Σv = I .
In Fig. 3, we plot the upper bound for the value of P̃W that an
ϵ-stealthy attacker can induce, as calculated using Theorem 7. The
value of P̃W achieved by the heuristic attack A2 is also plotted.
Although the bound is fairly tight as compared to the performance
degradation achieved by the heuristic attack; nonetheless, there
remains a gap between the two plots.

6. Conclusion

This work characterizes fundamental limitations and achiev-
ability results for performance degradation induced by an attacker
in a stochastic control system. The attacker is assumed to know
the system parameters and noise statistics, and is able to hijack
and replace the nominal control input. We propose a notion of
ϵ-stealthiness to quantify the difficulty of detecting an attack from
the measurements, and we characterize the largest degradation of
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Fig. 3. The converse and achievability for the right non-invertible system with
the weight matrix W = CTΣ−1

z C . The converse is obtained from (11) and the
achievability is the weighted MSE P̃W induced by the heuristic algorithm A2 .

Kalman filtering induced by an ϵ-stealthy attack. For right invert-
ible systems, our study reveals that the nominal control input is
the only critical piece of information to induce the largest perfor-
mance degradation. For systems that are not right invertible, we
provide an achievability result that lower bounds the performance
degradation that an optimal ϵ-stealthy attack can achieve.

Appendix A. Proof of Theorem 1

The first statement follows directly from the Neyman–Pearson
Lemma (Poor, 1998).

For the second statement, we apply the Chernoff–Stein lemma
for ergodic measurements (see Polyanskiy &Wu, 2012–2013) that
states that for any given attack sequence ũ∞

1 , for a given 0 <

1 − pDk ≤ δ where 0 < δ < 1, the best achievable decay exponent
of pFk is given by limk→∞

1
kD


ỹk1 ∥ yk1


. For this attack sequence and

with any detector, we obtain

lim sup
k→∞

−
1
k
log pFk ≤ lim

k→∞

1
k
D

ỹk1 ∥ yk1


≤ ϵ.

Thus, by Definition 1, the attack is ϵ-stealthy.
Finally, the proof for the third statement follows by contradic-

tion. Assume that (5) does not hold and there exists an ϵ-stealthy
attack ũ∞

1 such that lim supk→∞
1
kD


ỹk1 ∥ yk1


> ϵ. Suppose that

the detector employs the standard log-likelihood ratio test with

threshold λk at every time k + 1. Thus, the test is Lk(ηk
1)

H0
<
≥

H1

λk,

where Lk(ηk
1) = log

f
ỹk1

(ηk1)

f
yk1

(ηk1)
is the log-likelihood ratio and ηk

1 = yk1

(resp. ηk
1 = ỹk1) if H0 (resp. H1) is true. Define the conditional

cumulant generating function for the log-likelihood ratio to be
gk|0(s) = logE


esLk

H0

and gk|1(s) = logE


esLk

H1

. Note that

gk|0(s) = gk|1(s−1). Let λk be chosen to ensure that 0 < 1−pDk ≤ δ

for every k > 0 (notice that such λk always exists, because pDk in-
creases to one as λk decreases to zero). Then, for any sk > 0, Cher-
noff’s inequality yields

pFk = P[Lk ≥ λk|H0] ≤ e−skλk+gk|0(sk)

⇒ − log pFk ≥ skλk − gk|0(sk)
≥ skλk − gk|1(sk − 1)

= skλk − logE

e(sk−1)Lk

H1

.

Now, by applying Jensen’s inequality twice we obtain

− log pFk ≥ skλk + logE

e−(sk−1)Lk

H1


≥ skλk + E[−(sk − 1)Lk|H1].
Finally, using E[Lk|H1] = D

ỹk1 ∥ yk1


implies

− log pFk ≥ D

ỹk1 ∥ yk1


+ sk


λk − D


ỹk1 ∥ yk1


. (A.1)

Now, for any time index k such that 1
kD


ỹk1 ∥ yk1


> ϵ, let

sk =
D

ỹk1 ∥ yk1


− kϵ

2
D

ỹk1 ∥ yk1

− λk

 . (A.2)

Using (A.1), (A.2) and lim supk→∞
1
kD


ỹk1 ∥ yk1


> ϵ, we obtain

lim supk→∞ −
1
k log pFk > ϵ, which contradicts the definition

of ϵ-stealthiness. Hence, the attack cannot be stealthy, and the
condition stated in (5) must be true.

Appendix B. Proof of Lemma 4

By definition, we can write Kullback–Leibler divergence

D

z̃k1 ∥ zk1


=


∞

−∞

fz̃k1 (t
k
1) log fz̃k1 (t

k
1)dt

k
1

−


∞

−∞

fz̃k1 (t
k
1) log fzk1 (t

k
1)dt

k
1

= −h

z̃k1


−


∞

−∞

fz̃k1 (t
k
1) log fzk1 (t

k
1)dt

k
1 .

Now, zk1 is the innovation sequence without any attack and is thus
an independent and identically distributed sequence of Gaussian
random variables with mean 0 and covariance Σz . Plugging into
the above equation yields

D

z̃k1 ∥ zk1


= −h


z̃k1


+

k
2
log


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
+

1
2
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
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z̃nz̃Tn


Σ−1

z


,

which we can rewrite as

1
2k

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


=

1
k
D
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z̃k1 ∥ zk1
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−

1
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log
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(2π)Nydet(Σz)


+

1
k
h

z̃k1


. (B.1)

We can upper-bound the right hand side by first using the
sub-additivity property of differential entropy (Cover & Thomas,
2006, Corollary 8.6.1), and then further bounding the entropy h(z̃n)
using the maximum differential entropy lemma (Gamal & Kim,
2011, Section 2.2) for multivariate random variables. Thus, we
obtain

1
2k

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


≤

1
k
D

z̃k1 ∥ zk1


−

1
2
log


(2π)Nydet(Σz)


+

1
k

k
n=1

h(z̃n)

≤
1
k
D

z̃k1 ∥ zk1


−

1
2
log


(2π)Nydet(Σz)


+

1
k

k
n=1

1
2
log


(2πe)Nydet(E[z̃nz̃Tn ])


,

with equality if the sequence z̃k1 is an independent sequence
of random variables with each random variable z̃n as Gaussian
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distributed with mean zero for all n. Straight-forward algebraic
manipulation yields

1
2k

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


≤

1
k
D

z̃k1 ∥ zk1


−

1
2
log


(2π)Ny


−

1
2
log


det(Σz)


+

1
k

k
n=1

1
2
log


(2πe)Ny


+

1
k

k
n=1

1
2
log


det(E[z̃nz̃Tn ])


≤

1
k
D

z̃k1 ∥ zk1


−

1
2
log


(2π)Ny


+

1
k

k
n=1

1
2
log


(2πe)Ny


+

1
k

k
n=1

1
2
log


det(E[z̃nz̃Tn ])


−

1
2
log


det(Σz)


=

1
k
D

z̃k1 ∥ zk1


+

Ny

2
+

1
k

k
n=1

1
2
log


det(E[z̃nz̃Tn ])(detΣ−1

z )

.

We can further bound

det(E[z̃nz̃Tn ])(det(Σz))
−1

= det(E[z̃nz̃Tn ]Σ−1
z )

≤


1
Ny

tr(E[z̃nz̃Tn ]Σ−1
z )

Ny

,

⇒
1
2k

k
n=1

tr

E

z̃nz̃Tn


Σ−1

z


≤

1
k
D

z̃k1 ∥ zk1


+

Ny

2
+

Ny

2k

×

k
n=1

log
 1
Ny

tr

E[z̃nz̃Tn ]Σ−1

z


,

with equality if the matrix E[z̃nz̃Tn ] is a scalar multiplication of Σz
for all n. Finally, using the Arithmetic Mean and Geometric Mean
(AM–GM) inequality yields the desired result (7). For the AM–GM
inequality to hold with equality we need that tr(E[z̃nz̃Tn ]Σ−1

z ) is
constant for every n. Collecting all the above conditions for equality
at various steps, (7) holds with equality if E


z̃kz̃Tk


= αΣz for some

scalar α.
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