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Abstract— This work studies consensus networks over finite
fields, where agents process and communicate values from the
set of integers {0, . . . , p − 1}, for some prime number p, and
operations are performed modulo p. For consensus networks
over finite fields we provide necessary and sufficient conditions
on the network topology and weights to ensure convergence. For
instance we show that, differently from the case of consensus
networks over the field of real numbers, consensus networks
over finite fields converge in finite time, and that properties of
the agents interaction graph are not sufficient to ensure finite-
field consensus. Finally, we discuss the application of finite-field
consensus to distributed averaging in sensor networks.

I. INTRODUCTION

Reaching agreement (consensus) is a fundamental task in
distributed systems and networks [1]. Consensus algorithms
have been used in several domains including robotics [2],
estimation [3], and parallel computation [4]. In this work we
focus on the consensus problem for networks of agents with
limited resources and capabilities. In particular, we assume
that agents process and communicate only values from a
finite and pre-specified alphabet, and we model this situa-
tion with the formalism of finite fields, where the alphabet
consists of a set of integers, and operations are performed
according to modular arithmetic [5]. We focus on linear
protocols, where agents update their state as a weighted
combination of their neighbors states. Finite-field consensus
finds applicability, for instance, in distributed averaging, load
balancing, and pose estimation; it is easily implementable,
and resilient to processing and communication noise [6].
Related work Consensus algorithms have been proposed for
different network models, agents dynamics, and communica-
tion schemes [7]–[9], and detailed convergence conditions
have been characterized [10]. While most of these ap-
proaches assume the possibility of processing and transmit-
ting real values, we consider the case of finite communication
bandwidth, and we show that certain topological conditions
ensuring consensus over real values and with real-valued
communications are not sufficient for finite-field consensus.

Consensus with quantized communication channels is
studied, for instance, in [11]–[15]. In quantized consensus
agents communicate quantized data, yet they perform com-
putations over the field of real numbers. Thus, quantized
consensus differs from finite-field consensus, where agents
operate on a finite field.
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Logical consensus is considered in [16] for the purpose
of intruder and event detection. In logical consensus agents
aim to coordinate their decisions via distributed computation
of a function of a set of logical (boolean) events. Finite-field
consensus differs from logical consensus in that (i) the agents
state takes value in an arbitrary finite set, instead of being
a binary variable, (ii) agents perform only two mathematical
operations, namely modular addition and multiplication, and
(iii) agents compute a non-boolean function of the states.

Consensus with integer communication and computation
is studied in [17]. With respect to this work and to [18],
we make use of modular arithmetic, instead of standard
arithmetic, defining therefore a novel and complementary
class of consensus networks. As discussed in [6], modular
arithmetic is advantageous in several applications.

Finally, networks based on modular arithmetic are studied
in [19], in the context of system controllability and observ-
ability, in [20], in the context of (linear) network coding, and
in [21], in the context of finite dynamical systems.
Contributions The contributions of this paper are threefold.

First, we design distributed consensus networks based on
finite fields and modular arithmetic (Section II). Consensus
networks over finite fields are distributed, require limited
memory, computation, and communication resources, and
exhibit finite time convergence. Thus, finite-field consensus
algorithms are suitable for capacity and memory constrained
networks, and for time-constrained applications.

Second, we exhaustively characterize the convergence
properties of consensus networks over finite fields (Section
III). We provide necessary and sufficient constructive condi-
tions on the agents interaction graph and weights to achieve
finite-field consensus. For instance, we show that a network
achieves consensus over a finite field if and only if the
network matrix is row-stochastic over the finite field, and
its characteristic polynomial is sn−1(s − 1). Equivalently,
consensus is achieved if and only if the transition graph of the
network matrix contains exactly p cycles, where p is the field
cardinality. We prove that the convergence time of finite-field
consensus networks is bounded by the network cardinality,
and that graph properties alone are not sufficient to ensure
finite-field consensus. Our analysis differs and complements
the classic literature on real-valued consensus networks.

Third and finally, we discuss the case of finite-field average
consensus, and we show how finite-field average consensus
networks can be employed for the averaging problem in
sensor networks over the field of real numbers.

II. NETWORKS OVER FINITE FIELDS

Consider a set of n ∈ N>0 agents and a finite field Fp, for
some prime number p [5]. Let the directed graph G = (V, E)
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describe the agents interaction graph, where V = {1, . . . , n},
i ∈ V denotes the i-th agent, and (i, j) ∈ E if there is a
directed edge from agent j to agent i (agent i senses agent
j, or, equivalently, the behavior of agent j affects agent i).
We allow each agent to process and manipulate values from
the finite field Fp. We consider distributed laws where agent
i updates its state xi ∈ Fp as a weighted combination of
the states of its in-neighbors N in

i = {w ∈ V : (v, w) ∈
E}. Define the network matrix A ∈ Fn×np , A = [aij ], as
the weighted adjacency matrix of G, where aij ∈ Fp is the
weight associated with the edge (i, j), and aij = 0 if (i, j) 6∈
E . Let x : N≥0 → Fnp be a map, where x(t) is the vector of
the agents states at time t. Then the network evolves as

x(t+ 1) = Ax(t), (1)

where all operations are performed in the field Fp.
The transition graph associated with the iteration (1) over

Fp is defined as GA = (VA, EA), where, VA = {v :
v ∈ Fnp } and, for vi, vj ∈ VA, the edge (vi, vj) ∈ EA if
and only if vj = Avi. The transition graph contains pn

vertices and pn edges, since each vertex has unit out-degree.
Additionally, the transition graph is composed of disjoint
weakly-connected subgraphs, each one containing a globally
reachable node1 and one cycle [23]. See Fig. 1 and Fig. 2.

The iteration (1) over a finite field achieves

(i) asymptotic consensus, if for all initial states x(0) ∈
Fp it holds limt→∞ x(t) = α1, with α ∈ Fp and 1 =
[1 . . . 1]T;

(ii) finite-time consensus, if for all initial states x(0) ∈ Fp
there exists a finite time T ∈ N such that x(T ) =
x(T + τ) = α1 for all τ ∈ N, with α ∈ Fp and
1 = [1 . . . 1]T.

Consensus networks with real-valued weights and states
have been extensively studied [1], [10], [24]. In this work
we show that finite-field consensus networks differ from
real-valued consensus networks, and particular care needs
to be taken to ensure the desired properties over finite fields.
Clearly, finite-time consensus implies asymptotic consensus.
We next show that the converse is also true.

Theorem 2.1: (Asymptotic consensus implies finite-time
consensus) The iteration (1) over the field Fp achieves
asymptotic consensus only if it achieves finite-time consen-
sus.

Proof: Let GA = (VA, EA) be the transition graph as-
sociated with the iteration (1). Notice that the state trajectory
x of (1) coincides with a path on GA starting from the vertex
v0 = x(0). Let C ⊂ VA be the set of consensus vertices, that
is, C = {v : v ∈ VA, v = α1, α ∈ Fp}. Suppose that the
iteration (1) achieves consensus on the value vc ∈ C. Since
the vertex set VA is finite, the distance between v0 and vc is
also finite. Consequently, a consensus vertex is reached with
a path on G of finite length and, equivalently, a finite number
of iterations in (1) are sufficient to achieve consensus.

1A globally reachable node of a graph G is a vertex v to which there
exists a directed path from every vertex in the graph, including v itself [22].

TABLE I
SAMPLE STATE TRAJECTORY FOR THE MATRIX A3 IN EXAMPLE 1.

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

1 2 0 1 2 0 1
0 1 2 0 1 2 0
0 1 2 0 1 2 0

While consensus networks over finite fields either con-
verge in finite time or they are not convergent (Theorem 2.1),
consensus networks over the field of real numbers usually
converge asymptotically. An exception is constituted by the
class of de Bruijn graphs, which have been shown to yield
finite-time consensus over the field of real numbers [25]. On
the other hand, de Bruijn graphs rely on a specific interaction
graph, while finite-field consensus networks include a much
broader class of interaction graphs. We conclude this section
with a simple result. A matrix A over the field Fp is nilpotent
if An = 0 and is row-stochastic if A1 = 1.

Lemma 2.2: (Finite-field consensus matrices) Consider
the iteration (1) over the field Fp. If consensus is achieved,
then A is either nilpotent or row-stochastic.

Proof: Since A achieves consensus, Theorem 2.1
implies that Atx(0) = At+1x(0) = α1 for some α ∈ Fp, for
all x(0), and for all t ≥ T , T ∈ N. Then Aα1 = α1, from
which we conclude that either A1 = 1 (A is row-stochastic)
or α = 0 for all initial states x(0) (A is nilpotent).
Following the above Lemma and as in the case of real-valued
networks, we will only consider row-stochastic network
matrices. Although consensus is trivially achieved whenever
the network matrix is nilpotent, this case is of limited interest
because the consensus value is the origin independently of
the agents initial states.

III. CONSENSUS NETWORKS OVER FINITE FIELDS

Convergence conditions for real-valued consensus are dis-
cussed, among others, in [1], [10], [24]. For instance, suffi-
cient conditions ensuring real-valued consensus are that the
network matrix A is row-stochastic and that the associated
directed graph is strongly connected and aperiodic. The
following example shows that graph-theoretic properties are
not sufficient for finite-field consensus.

Example 1: (Graph properties are not sufficient for
finite-field consensus) Consider a fully connected network
with three agents over the field F3, and the network matrices

A1 =

2 1 1
2 1 1
2 1 1

 , A2 =

2 1 1
1 2 1
1 2 1

 , A3 =

2 1 1
1 2 1
1 1 2

 .
Notice that A1, A2, and A3 are row-stochastic with fully
connected interaction graph. It can be verified that only the
network matrix A1 achieves consensus over the field F3,
while A2 and A3 exhibit oscillatory dynamics for certain
initial conditions. An example of oscillatory dynamics gen-
erated by A3 is reported in Table I.

As discussed in Example 1, graph properties of the net-
work matrix are not sufficient to guarantee consensus for
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0 1 2 0 2 1 1 0 1 1 1 0 1 2 2 2 0 2 2 1 1 2 2 0

0 0 0

0 0 2 0 1 1 0 2 0 1 0 0 1 1 2 1 2 1 2 0 1 2 1 0

2 2 2

0 0 1 0 1 0 0 2 2 1 0 2 1 2 0 2 0 0 2 1 2 2 2 1

1 1 1

Fig. 1. Transition graph GA1 associated with the matrix A1 ∈ F3×3
3

in Example 1. Since GA1
contains exactly 3 cycles corresponding to the

self-loops around the consensus vertices, the network matrix A1 achieves
consensus (see Theorem 3.1).

0 0 0 0 1 2 0 2 1 1 0 2 1 1 1 1 2 0 2 0 1 2 1 0 2 2 2

0 0 1 2 2 0

1 1 2

0 0 2 1 1 0

2 2 1

0 1 0 2 0 2

1 2 1

0 1 1 1 2 2

2 0 0

0 2 0 1 0 1

2 1 2

0 2 2 2 1 1

1 0 0

Fig. 2. Transition graph GA3 associated with the matrix A3 ∈ F3×3
3 in

Example 1. Since GA3
contains more than 3 cycles, the network matrix

A3 does not achieve consensus (see Theorem 3.1). The oscillatory state
trajectory in Table I corresponds to the bottom right cycle in this figure.

iterations over a finite field. Indeed, although the considered
network matrices feature the same connectivity properties,
only one of them achieves finite-field consensus. In what
follows we provide finite-field consensus conditions based
on the algebraic properties of the network matrix, and on
the topological properties of its transition graph.

The transition graph of a finite-field network completely
describes its dynamic behavior. The next theorem provides a
necessary and sufficient condition for finite-field consensus
based on the transition graph.

Theorem 3.1: (Transition graph of a consensus network)
Consider the iteration (1) over the field Fp with row-
stochastic matrix A, and let GA = (VA, EA) be its associated
transition graph. The following statements are equivalent:

(i) the iteration (1) achieves consensus, and
(ii) the transition graph GA contains exactly p cycles,

corresponding to the unit cycles around the vertices
α1, α ∈ {0, . . . , p− 1}.

Example 2: (Transition graph) The transition graphs as-
sociated with the matrices A1 and A3 in Example 1 over
the field F3 are reported in Fig. 1 and Fig. 2, respectively.
As previously discussed, the matrix A1 achieves consensus,
while the matrix A3 does not.

Proof of Theorem 3.1:
Notice that every state trajectory of the iteration (1) is in

bijective correspondence with a path on its transition graph.
(i) =⇒ (ii) Since A is row-stochastic, it holds A1 = 1, and
the transition graph of A contains p unit cycles corresponding
to the vertices α1 ∈ VA, with α ∈ Fp. Suppose by
contradiction that there exists an additional cycle C. Notice
that the vertices α1, with α ∈ Fp, cannot be contained in C
since the out-degree of each vertex in the transition graph is

one (the transition graph is determined by the linear map A).
Thus, there exist state trajectories along C not converging to
consensus, which contradicts the initial hypothesis.
(ii) =⇒ (i) Suppose that transition graph GA contains
exactly p unit cycles located at the vertices α1 ∈ VA, with
α ∈ Fp. Then, since each vertex in the transition graph
has unit out-degree, every (sufficiently long) path in GA
eventually reaches one of the cycles, and, consequently, every
state trajectory converges to a consensus state.

From condition (ii) in Theorem 3.1 and the fact that each
vertex in the transition graph has unit out-degree, we also
note that the transition graph of a consensus matrix is com-
posed of p disjoint weakly-connected subgraphs. Moreover,
by means of [23, Proposition 3.4] it can be shown that these
disjoint subgraphs have the same graph topology.

A direct verification of the convergence condition in The-
orem 3.1 may be prohibitive, due to the exponential growth
of the size of the transition graph with the number of agents
in the network (the transition graph contains pn vertices and
pn edges, since each vertex has unit out-degree). In what
follows we shall derive consensus conditions based on the
network matrix instead of its transition graph. Consider the
inverse recursion

St+1
α = A−1(Stα) = {x ∈ Fnp : v = Ax, ∀v ∈ Stα}, (2)

where S0α = {α1} and Stα ⊂ Fnp for all times t. Notice
that the inverse recursion defines a sequence of sets, and
that the set Stα contains the initial states converging to the
consensus value α1 in at most t iterations. We say that
the recursion (2) is convergent with limiting set Sα if there
exists T < n satisfying Sα = STα = ST+1

α . The following
theorem exploits the inverse recursion and the structure of
the transition graph to characterize finite-field consensus.

Theorem 3.2: (Recursion sets of a consensus network)
Consider the iteration (1) over the field Fp with row-
stochastic matrix A. The following statements are equivalent:

(i) the iteration (1) achieves consensus,
(ii) there exists α ∈ Fp such that the recursion (2) is

convergent and the limiting set Sα satisfies |Sα| =
pn−1, and

(iii) for all α ∈ Fp the recursion (2) is convergent and each
limiting set Sα satisfies |Sα| = pn−1.

Example 3: (Inverse recursion) For the matrix A1 ∈
F3×3
3 in Example 1, the set S1 generated by the inverse

recursion (2) is

S1 =


1

1
1

,
0

0
1

,
0

1
0

,
0

2
2

,
1

0
2

,
1

2
0

,
2

0
0

,
2

1
2

,
2

2
1

 .

Since |S1| = 32, the network matrix A1 achieves consensus
due to Theorem 3.2. Instead, for the network matrix A3 ∈
F3×3
3 in Example 1, the inverse recursion yields S1 = {1},

so that A3 does not achieve consensus.

Proof of Theorem 3.2: Consider the transition graph GA =
(V, E), and define the reverse graph ḠA = (V, Ē), where
(i, j) ∈ Ē if and only if (j, i) ∈ E . Notice that the recursion
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(2) is convergent if and only if ḠA contains no cycle of length
greater than 1 reachable from α1. Recall from [23, Theorem
1] that GA (resp. ḠA) is obtained as the graph product of
a tree by a set of cycles. Hence, the graph GA (resp. ḠA)
is composed of disjoint weakly-connected subgraphs, and
these disjoint subgraphs have the same structure. From this
argument we conclude that (ii) and (iii) are equivalent.
(i) =⇒ (ii) Since A achieves consensus, the graph GA
contains exactly p unit cycles corresponding to the consensus
vertices (see Theorem 3.1 and Fig. 1). By [23, Theorem 1],
the above reasoning, and the fact that A achieves consensus,
it follows that |S0|+· · ·+|Sp−1| = pn, and that |Sα| = pn−1

for all α ∈ Fp.
(ii) =⇒ (i) Since A1 = 1, the transition graph contains
p cycles of unit length located at the consensus vertices.
Let the recursion (2) be convergent for some α ∈ Fp.
From [23, Theorem 1], the graph GA contains p identical,
disjoint, weakly-connected subgraphs, each one terminating
in a consensus vertex. Since |Sα| = pn−1, it follows that
consensus is achieved from pn states (every initial state),
which concludes the proof.

From Theorem 3.2, it suffices to iterate the inverse recur-
sion (2) for some α ∈ Fp to assess the convergence of the
network (1). This method avoids the analysis of the transition
graph. Our last and most explicit condition for finite-field
consensus is based on the characteristic polynomial of the
network matrix (over the finite field).

Theorem 3.3: (Characteristic polynomial of a consensus
network) Consider the iteration (1) over the finite field Fp
with row-stochastic matrix A. The following statements are
equivalent:

(i) the iteration (1) achieves consensus, and
(ii) PA(s) = sn−1(s− 1).
Example 4: (Characteristic polynomial) Consider the

network matrices in Example 1 over the field F3. It can be
verified that

PA1(s) = s2(s− 1), PA2(s) = s(s2 − 2s+ 1), and

PA3
(s) = s3 − 1.

As predicted by our previous analysis and by Theorem 3.3,
only the network matrix A1 achieves consensus.

The proof of this theorem is postponsed to the Appendix.
Theorem 3.3 is equivalently restated as follows: A achieves
finite-field consensus if and only if σp(A) = {1, 0, . . . , 0}. In
other words, the eigenvalues of a finite-field matrix achieving
consensus are all contained in the considered finite field and,
consequently, every finite-field matrix achieving consensus
can be represented in Jordan canonical form; see [26] and
[27, Theorem 3.5]. We conclude this section by characteriz-
ing the convergence value of a finite-field consensus network.

Theorem 3.4: (Finite-field consensus time and value)
Consider the iteration (1) over the finite field Fp with row-
stochastic matrix A and with initial state x(0) ∈ Fnp . Assume
that the iteration (1) achieves consensus. Let T < n denote
the dimension of the largest Jordan block associated with the
eigenvalue 0. Let π ∈ Fnp be the unique eigenvector satisfying

πA = π and π1 = 1. Then

AT = 1π,

so that consensus is achieved at the value πx(0) after T
iterations. Moreover, the i-th component of π is nonzero only
if the i-th vertex of the directed graph associated with A is
a root.2

Proof: Since A achieves consensus, we have σp(A) =
{1, 0, . . . , 0}, and A admits a Jordan canonical form JA =
V −1AV over Fp. Moreover, the matrix A converges in T <
n iterations. The next part of the proof follows the reasoning
in [28, Theorem 3]. Let the first column of V be 1, and
let the matrix JA have a unit entry in position (1, 1). Since
V −1A = JAV

−1, the first row of V −1, say π, satisfies πA =
π. Then AT = V JTAV

−1 = 1π. Since A1 = 1, it follows
that 1 = AT1 = 1π1, and consequently π1 = 1. To show
the last statement, let G be the directed graph associated with
A, and let i be a vertex of G. Assume that i is not a root of
G, and let the initial state x(0) be all zeros, except for the
i-th component. Since i is not a root, there exists a node j
which is not reachable from i, and, consequently, the value
of the j-th agent is not affected by the i-th agent. Since
A achieves consensus for all initial states, the j-th entry of
1πx(0) needs to be zero, from which the statement follows.

Note that Theorem 3.4 is not a direct consequence of the
theory of non-negative matrices over the field of real numbers
[26]. In fact, if regarded as a real-valued matrix, a finite-field
consensus matrix is generally unstable.

IV. APPLICATION TO AVERAGE CONSENSUS

In this section we discuss the use of finite-field consensus
for averaging (over real numbers) in sensor networks.

Consider a sensor network, and let x0 ∈ Fnp denote
the vector containing the agents initial states. Let xR =
1Tx0/n ∈ R be the average of the agents initial states over
the field of real numbers. The average of the agents initial
states over the field Fp follows from Fermat’s little theorem
[29] as xF = np−21Tx0 ∈ Fp, where we assume n 6= kp,
with k ∈ N, for the inverse of n over Fp to exist.

In what follows, first we show how to compute the average
xF by means of finite-field consensus networks. Then we
describe conditions to recover the average xR from the
knowledge of xF and the total number of agents n. We
say that the iteration (1) over the field Fp achieves average
consensus if it achieves consensus, and the consensus value
is np−21Tx0 for every initial state x0.

Theorem 4.1: (Finite-field average consensus) Consider
the iteration (1) over the field Fp with row-stochastic matrix
A. Assume that the field characteristic satisfies n 6= kp for
all k ∈ N. The following statements are equivalent:

(i) the iteration (1) achieves average consensus, and
(ii) PA(s) = sn−1(s− 1), and 1TA = 1T.
Example 5: (A finite-field average consensus network)

Consider the network matrix
2A root node of a graph G is a vertex v from which there exists a directed

path to every vertex in the graph, including v itself [22].

2632



0 1 2 1 3 4 2 0 1 3 2 3 4 4 0

0 4 4

1 1 1

0 2 1 1 4 3 2 1 0 3 3 2 4 0 4

2 3 3

0 3 0 1 0 2 2 2 4 3 4 1 4 1 3

4 2 2

0 0 3 1 2 0 2 4 2 3 1 4 4 3 1

3 0 0

Fig. 3. A subgraph of the transition graph associated with the network
matrix A in Example 5. Notice that the sum of the initial states is
maintained, and thus average consensus is achieved.

A =

2 3 1
2 4 0
2 4 0

 ,
over the field F5. It can be verified that A1 = 1, 1TA = 1T,
and PA = s2(s − 1). By Theorem 4.1 the network matrix
A achieves average consensus over F5. In Fig. 3 we show a
subgraph of the transition graph associated with A.

Proof of Theorem 4.1:
(i) =⇒ (ii) Since the iteration achieves consensus, it follows
from Theorem 3.3 that PA(s) = sn−1(s − 1), and from
Theorem 3.4 that An = 1π, where π satisfies πA = π.
Because A achieves average consensus, it needs to be 1π =
np−211T. Then π = np−21T, and 1TA = 1T.
(ii) =⇒ (i) Because A is row-stochastic and PA(s) =
sn−1(s−1), the network achieves consensus due to Theorem
3.3. Notice that 1TA = 1T implies that 1Tx(t) = 1Tx(0)
at all times t. Let α be the consensus value, and notice that
1Tα1 = nα = 1Tx(0). Finally, α = np−21Tx(0), and the
network achieves average consensus.

Theorem 4.1 provides a necessary and sufficient condition
for a network with n 6= kp agents to achieve average
consensus over Fp. The condition n 6= kp is actually
necessary for average consensus. In fact, if n = kp for some
k ∈ N, then there exists no network matrix satisfying all
conditions in Theorem 4.1 and, therefore, average consensus
cannot be achieved. To see this, let x(0) be the network initial
state, with 1Tx(0) 6= 0, and assume by contradiction that α is
the corresponding consensus value. Since 1Tx(t) = 1Tx(0)
at all times t, it needs to be nα = 1Tx(0). Then 0 = nα =
1Tx(0) 6= 0, since kp and 0 are the same element in Fp.

Suppose now that the average xF has been computed,
and that each agent knows the total number of agents, the
field characteristic, and its own initial state. With these
assumptions, it is generally not possible to recover the
average xR. To see this, consider the case n = 3, p = 5,
and the initial conditions x1 = [2 2 2]T and x2 = [0 0 1]T.
Over the field of real numbers we have x1,R = 1Tx1/n = 2
and x2,R = 1Tx2/n = 1/3. Over the field F5, instead,
x1,F = np−21Tx1 = 2 and x2,F = np−21Tx2 = 2.
Since x1,F = x2,F and x1,R 6= x2,R, it is not possible to
recover the average value over the field of real numbers from
the average over a finite field and knowledge of network
cardinality and parameters. The next theorem contains a
sufficient condition to recover the real-valued average from
its finite-field counterpart.

Theorem 4.2: (Average computation) Let x0 ∈ Fnp , let
xR = 1Tx0/n ∈ R, and let xF = np−21Tx0. If the field

characteristic satisfies n‖x0‖∞ ≤ p, then

nxR = mod(nxF, p),

where mod(·) denotes the modulus operation.
Proof: The statement follows from the relation

mod(nxF, p) = mod(np−11Tx0, p) = 1Tx0,

where we have used mod(np−1, p) = 1 and n‖x0‖∞ ≤ p.
A finite-time averaging algorithm is readily derived from

Theorem 4.1 and Theorem 4.2. We conclude by noticing that
the condition n‖x0‖∞ ≤ p in Theorem 4.2 is not restrictive.
In fact, the field characteristic p is a design parameter and it
can be chosen to satisfy the above condition if the network
cardinality and a bound on the agents initial state are known.

V. CONCLUSION AND FUTURE WORK

In this work we study consensus networks over finite
fields, where agents process and communicate values from
the set {0, . . . , p−1}, for some prime number p, and opera-
tions are performed modulo p. For finite-field consensus we
identify necessary and sufficient convergence conditions, and
we characterize several properties including the convergence
time. Finite-field consensus is a novel consensus mechanism,
which is advantageous for estimation and coordination prob-
lems in capacity and memory constrained networks.

APPENDIX

Before proving Theorem 3.3, we recall the following
fundamental results and facts in linear algebra.

Theorem 5.1: (Primary decomposition theorem [30]) Let
A : V → V be a linear operator on some vector space
V over some field F, and let p(s) =

∏r
i=1 pi(s) be an

annihilating polynomial for A with degree greater than 1,
for some relatively prime polynomials p1, . . . , pr. Then

(i) Wi = Ker(pi(A)) is a A-invariant subspace for all
i ∈ {1, . . . , r},3

(ii) V =W1⊕W2⊕ · · · ⊕Wr, where ⊕ denote the direct
sum operator, and

(iii) if
∏r
i=1 pi(s) = PA(s) and Ai is the restriction of A

to Wi, then pi is the characteristic polynomial of Ai.
Recall that the order of a polynomial g ∈ F[s], denoted

by ord(g), is the smallest positive integer r such that g(s)
divides sr − 1 over F, that is, the smallest positive integer r
such that there exists q ∈ F[s] satisfying sr − 1 = g(s)q(s).

Theorem 5.2: (Order of a polynomial over a finite field
[21]) Let g ∈ F[s] be an irreducible polynomial satisfying
g(0) 6= 0 and ord(g) = e. Consider f = gs, and t is the
smallest integer such that pt ≥ s, then ord(f) = ept.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3: Let PA ∈ Fp[s] be the characteristic
polynomial of A, and notice that PA can be written as

PA(s) = det(sI −A) = shP̄ (s), (A-1)

3Ker(A) = {x ∈ Fm
p : Ax = 0} and Im(A) = {y ∈ Fn

p :
y = Ax, x ∈ Fm

p } are the null space and the range space of the matrix
A ∈ Fn×m

p , respectively.
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for some h ∈ N≥0, and P̄ (s) ∈ Fp[s] with P̄ (0) 6= 0.
(i) =⇒ (ii) Since A is row-stochastic, we have 1 ∈ σp(A).
Thus, we factorize PA in irreducible polynomials as

PA(s) = (s− 1)k
r∏
j=1

Qj(s)
mj ,

where k,mj ∈ N are given by the algebraic multiplicity of
the corresponding eigenvalue.

We start by showing that k = 1. Assume by contradiction
that k > 1. Let W2 = Ker((I − A)k), and let A2 be
the restriction of A to W2. Recall from [23] that the cycle
structure of the transition graph G2 of A2 is

Cycles(G2) = C1 +

k∑
i=1

(pi − pi−1)C1, (A-2)

where the sum of cycles is simply the corresponding union
graph, and C1 denotes a unit cycle, that is, a fixed point for
A. From (A-2) it follows that, if k > 1, then the number of
cycles in G2 is strictly greater than p. By Theorem 3.1 we
conclude that k = 1.

We now show that r = 0. Assume by contradiction that
r > 0. Let W3 = Ker(Qj(A)mj ), and let A3 be the
restriction of A to W3. Then the cycle structure of the
transition graph G3 of A3 is

Cycles(G3) = C1 +

mj∑
i=1

pdeg(Qj)i − pdeg(Qj)(i−1)

`i
C`i ,

where `i = ord(Q
nj

j ) ≥ deg(Qj) ≥ 1 from Theorem 5.2,
and deg(·) denotes the degree of a polynomial. Since the
graph structure of A is given by the product of the graphs
associated with the irreducible factors of its characteristic
polynomial [23], the number of cycles is greater than p
whenever either k > 1 or r > 0 (see Example 4 and Fig. 2).
(ii) =⇒ (i) LetW1 = Ker(A−I) = Im(1) and recall from
Theorem 5.1 that W1 is A-invariant. Let V = [V1 1] be an
invertible matrix, where the columns of V1 are a basis for
W⊥1 . Then we have

Ã = V −1AV =

[
A11 0
A21 1

]
.

Since the eigenvalues of a matrix are not affected by sim-
ilarity transformations, the characteristic polynomial of the
matrix A11 is sn−1, so that A11 is nilpotent. It follows that
every vector in W⊥1 converges to the origin in at most n−1
iterations, while vectors in W1 (consensus vectors) are fixed
points for the matrix A. This concludes the proof.
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