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Abstract— Identifying attacks is key to ensure security in
cyber-physical systems. In this paper we remark upon the
computational complexity of the attack identification problem
by showing how conventional approximation techniques may
fail to identify attacks. Then, we propose decentralized and
distributed monitors for attack identification with performance
guarantees and low computational complexity. The proposed
monitors rely on a geometric control framework, yet they
require only local knowledge of the system dynamics and pa-
rameters. We exploit a divide-and-conquer approach, where first
the system is partitioned into disjoint regions, then corrupted
regions are identified via distributed computation, and finally
corrupted components are isolated within regions.

I. INTRODUCTION

Cyber-physical systems are the core of many technological
domains, including health care and biomedicine, telecommu-
nications, and energy management. Due to their importance,
cyber-physical systems are not only prone to sensor and actu-
ator failures as legacy control systems, but also to intentional
attacks against control and communications modules. Attacks
can have major consequences, ranging from economic losses
to instabilities and services disruption [1], [2], [3].

Detection and identification of attacks is necessary to de-
sign effective security mechanisms. Fundamental limitations
in the detectability and identifiability of attacks have recently
been characterized for different system dynamics, attack
models, and monitoring systems. For instance, in [4], [5], [6],
[7] it is shown how attackers with access to sufficiently many
system resources can always avoid detection and identifica-
tion, as well as attackers with more limited resources and
full knowledge of the system dynamics and state. Conversely,
if the monitoring resources and information outbalance the
attack capabilities, the attack locations and strategy can be
promptly reconstructed. Moreover, while detecting attacks
is computationally easy in both centralized and distributed
settings [4], [8], identifying the attack location and strategy
is computationally hard [4].

Despite its importance, few solution have been proposed
for the identification of attacks. A complete, yet computation-
ally intensive, solution to the attack identification problem
is described in [4] by using unknown-input observers and
geometric control techniques [9]. Convex relaxation methods
are employed in [10] to derive an efficient (yet incomplete
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and without guarantees) identification algorithm for the case
of attacks corrupting the system measurements. In [11] it
is shown that certain instances of the identification problem
can in fact be solved efficiently. Finally, decentralized state
estimation and attack identification is discussed in [12],
[13]. In these decentralized approaches local control centers
have sensory information and system data from within their
region, and signals from other regions are either directly
measured or naively treated as unknown inputs.

This paper concerns the computational complexity of the
attack identification problem, and its main contributions
are as follows. First, we highlight the complexity of the
attack identification problem by converting it to an equivalent
cardinality minimization problem. We show how and why
common convex relaxation techniques for static problems
aiming at circumventing the computational complexity may
fail to identify attacks in dynamic systems (Section II).
Our examples highlight that, in large-scale systems, different
output and state attacks may achieve the same cost in relaxed
optimization problems, thereby impeding their identification.

The inherent computational complexity and shortcomings
of relaxation methods motivate our second contribution: we
present a fully decentralized and low-complexity identifi-
cation method and characterize its performance (Section
III-B). Our decentralized method relies on geographically
distributed control centers, which have local knowledge of
the system parameters. We show that the performance of our
decentralized method depends only on the system structure
and parameters, and not on the attack strategy. Hence, our
method also provides guidelines to design secure systems.

As third and main contribution, we propose a distributed
identification method based on the divide-and-conquer prin-
ciple (Section III-C). Our distributed method is based on
local state estimation, cooperation with neighboring control
centers, regional attack detection, and finally regional attack
identification. Analogously to our decentralized method, our
distributed algorithm requires only local model information
and communication, and it achieves guaranteed identification
of a class of attacks. Our distributed method overcomes the
performance of its decentralized counterpart, at the expense
of communication and a more involved algorithmic structure.

II. THE CENTRALIZED IDENTIFICATION PROBLEM

In this section we present our setup for the attack identifi-
cation problem, and we recall some results and fundamental
limitations of centralized identification methods.
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A. Centralized setup and notation

We represent a cyber-physical system under attack with
the continuous-time, linear, and time-invariant system1

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where x : R≥0 → Rn, y : R≥0 → Rp, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The inputs
Bu : R≥0 → Rn and Du : R≥0 → Rp are assumed to
be unknown. Besides reflecting the genuine failure of sys-
tems components, these unknown inputs model the effect of
attacks against cyber and physical components. We assume
that each state and output variable can be independently
compromised. Accordingly, we partition the input matrices
and attack signals as B = [In×n 0n×p], D = [0p×n Ip×p],
and u = [uTx , u

T
y ]T, where ux and uy are referred to as

state attack and output attack, respectively. As shown in [4],
many interesting cyber-physical systems and attacks can be
modeled by system (1) with unknown inputs.

The attack signal depends upon the attack strategy. In
particular, if the attack set (or attacked variables) is K ⊆
{1, . . . , n + p}, with |K| = k, then only the entries of u
indexed by K are nonzero over time, that is, for each i ∈ K,
there exists a time t such that ui(t) 6= 0 and uj(t) = 0 for all
j 6∈ K and at all times. To underline this sparsity relation, we
use uK to denote the attack signal, that is the subvector of u
indexed by K. Analogously, the pair (BK , DK), where BK
and DK are the submatrices of B and D with columns in K,
are referred to as the attack signature. Hence, Bu = BKuK ,
and Du = DKuK . Finally, we assume that the cardinality k
of the attack set, or an upper bound, is known.

B. Identifiability of cyber-physical attacks

Informally, an attack K is unidentifiable if it cannot be
distinguished (from knowledge of the measurements and
the system parameters) from another attack R corrupting
equally many or fewer variables. Here, we confine ourselves
to comparing the attack set K with other attack sets R with
|R| ≤ |K| since sufficiently large attack sets can always
be designed to be unidentifiable, for instance, by corrupting
sufficiently many sensors [14].

More formally, let y(x0, u, t) be the output sequence
generated from the state x0 under the attack signal u. We
adopt the following definition of identifiability of attacks [4]:

Definition 1: (Identifiability of cyber-physical attacks)
For the system (1) with initial state x0, the at-
tack (BKuK , DKuK) is unidentifiable if and only if
y(x0, uK , t) = y(x1, uR, t) for some initial state x1 ∈ Rn,
for some attack (BRuR, DRuR) with |R| ≤ |K| and R 6= K,
and for all t ∈ R≥0.

In [4, Theorem 3.4], we provided the following equivalent
system-theoretic characterization of identifiability:

1The results stated in this paper for continuous-time systems hold also in
discrete time and for singular descriptor systems, see Remark 1. Moreover,
due to linearity of (1), known inputs do not affect our results and are not
included in the model.

Theorem 2.1: (Algebraic test for identifiability of cyber-
physical attacks) For the system (1) and an attack set K, the
following statements are equivalent:

(i) the attack set K is unidentifiable; and
(ii) there is an attack set R, with |R| ≤ |K| and R 6= K,

some s ∈ C, and vectors gK ∈ C|K|, gR ∈ C|R|, and
x ∈ Cn, with x 6= 0, such that

(sI −A)x−
[
BK BR

] [gK
gR

]
= 0,

Cx+
[
DK DR

] [gK
gR

]
= 0.

(2)

Condition (2) shows the equivalence between unidentifi-
able attacks of cardinality k and the existence of invariant
zeros for the system (A,BK̄ , C,DK̄) with |K̄| ≤ 2k [9].

C. Centralized identification: complexity and pitfalls

The attack identification problem is concerned with iden-
tifying the attack set K from measurements y and knowl-
edge of the system parameters (A,C). The identification
problem can be reformulated as the following cardinality
minimization problem [4, Lemma 4.4]: given a system with
state transition matrix A ∈ Rn×n, measurement matrix
C ∈ Rp×n, and measurement signal y : R≥0 → Rp, find
the minimum cardinality input signals vx : R≥0 → Rn and
vy : R≥0 → Rp and an initial condition ξ0 ∈ Rn that explain
the measurements y, that is,

min
vx, vy, ξ0

‖vx‖L0 + ‖vy‖L0

subject to ξ̇(t) = Aξ(t) + vx(t),
y(t) = Cξ(t) + vy(t),
ξ(0) = ξ0 ∈ Rn .

(3)

Here we use the shorthands supp(x)={i ∈ {1, . . . , n} : xi 6=
0} for a vector x ∈ Rn and ‖v‖L0

= | ∪t∈R≥0
supp(v(t))|

for a vector-valued signal v : R≥0 → Rn.
The optimization problem (3) is generally combinatorial

and belongs to the class of NP-hard problems [4, Corol-
lary 4.5]. As a consequence of this inherent complexity,
existing complete solutions to identify the attack set K
require a combinatorial procedure, since, a priori, K is one of
the
(
n+p
|K|
)

possible attack sets. In [4, Section 4.D], the authors
provided a solution based on the implementation of

(
n+p
|K|
)

residual filters [9] each determining whether a predefined set
coincides with the attack set. The solution in [4] is complete,
but does not scale to large attack sets.

In the case of discrete-time systems subject to output
attacks, the attack identification problem can be solved
efficiently if the monitoring system has access to a substantial
amount of resources. The particular assumption is that the
pair (A,C) remains observable after removing any set of
2 |K| rows of C (that is, any set of 2 |K| sensors) [11, Propo-
sitions 3.2 and 3.3]. If this strong observability assumption
is not met, or in case of state attacks on (regular or singular)
systems, a natural approach is to apply convex relaxation
approaches to the optimization problem (3). Cardinality
minimization problems of the form minv∈Rn supp(y − Av)
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Fig. 1. A consensus system (A,B,C), where the state variable 3 is
corrupted by the attacker, and the state variables 2, 4, and 7 are directly
measured. Due to the sparsity pattern of (A,B,C) any attack of cardinality
one is generically detectable and identifiable; see [4], [16] for further details.

can often be efficiently solved via the `1 regularization
minv∈Rn ‖y−Av‖`1 [15]. This procedure can be adapted to
problem (3) after converting it into an algebraic problem, for
instance by taking subsequent derivatives of the output y, or
by discretizing the continuous-time system (1) and recording
several measurements. As shown in [10], for discrete-time
systems the `1 regularization performs reasonably well in the
presence of output attacks. However, in the presence of state
attacks such an `1 relaxation may perform poorly. In what
follows we present a intuition explaining why this approach
may fail, particularly in large-scale systems.

Example 1: (Ineffectiveness of regularization methods
for sufficiently distant attacks) Consider a consensus system
with underlying network graph (reflecting the sparsity pattern
of A) illustrated in Fig. 1. In our model (1), the system matrix
A is parameterized by 0 < ε� 1, and given by the Laplacian

A =


−0.8 0.1 0 0.2 0.5 0 0 0
0.1 −0.4−ε ε 0 0 0.3 0 0
0 3ε −9ε 0 0 0 6ε 0

0.1 0 ε −0.5−ε 0 0 0 0.4
0.1 0 0 0 −0.6 0.2 0 0.3
0 0.4 0 0 0.1 −0.6 0.1 0
0 0 3ε 0 0 0.4 −0.6−3ε 0.2
0 0 0 0.3 0.2 0 0.2 −0.7

 .
Let the measurement matrix and the attack signature be

C =
[

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

]
, BK = [ 0 0 1 0 0 0 0 0 ]

T
,

and define the transfer matrix GK(s) = C(sI−A)−1BK . It
can be verified that the state attack K = {3} is identifiable.

Consider also the state attack R = {2, 4, 7} with signature

BT
R =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

]
= C,

and define the transfer matrix GR(s) = C(sI − A)−1BR.
Let UK(s) and UR(s) be the Laplace transforms of uK(t)
and uR(t), respectively. Notice that GR(s) is right-invertible
[9]. Thus, letting G−rR denote the right-inverse of GR,

Y (s) = GK(s)UK(s) = GR(s)
(
G−rR (s)GK(s)UK(s)

)
.

In other words, the measurements Y (s) generated by the
attack UK(s) can equivalently be generated by the attack

UR(s) = G−rR (s)GK(s)UK(s).

Notice that 3 = ‖uR‖L0 > ‖uK‖L0 = 1, that is, the attack
set K achieves a lower cost than R in the problem (3).

Consider now the numerical realization with ε = 0.0001,
x(0) = 0, and uK(t) = 1 for all t ∈ R≥0. The corresponding
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Fig. 2. In Fig. 2 we plot the attack mode uR for the attack set R =
{2, 4, 7} to generate the same output as the attack set K = {3} with attack
mode uK = 1. Although |R| > |K|, we have that |uR,i(t)| < |uK(t)|/3
for i ∈ {1, 2, 3}.

attack signal uR = [uR,1 uR,2 uR,3] is shown in Fig. 2.
Observe that

‖uK(t)‖`p > ‖uR(t)‖`p
holds point-wise in time for all integers p ≥ 1. We also have

‖uK(t)‖Lq/`p > ‖uR(t)‖Lp/`q

for any integers p, q ≥ 1 and with the Lq/`p signal norm

‖uK(t)‖Lq/`p =

(∫ ∞
0

‖uK‖qpdτ
)1/q

.

Hence, the attack set R achieves a lower cost than K for any
version of the optimization problem (3) penalizing a `p cost
point-wise in time or a Lq/`p cost over a time interval. On
the other hand, we have ‖uR‖L0 > ‖uK‖L0 . We conclude
that, in general, the identification problem cannot be solved
by a point-wise `p or Lq/`p regularization for any p, q ≥ 1.
Finally, we remark that for any choice of network parameters,
a value of ε can be found such that a point-wise `p or a Lq/`p
regularization procedure fails at identifying the attack set.�

We emphasize that Example 1 is not of pathological na-
ture, but large-scale stable systems often exhibit this behavior
independently of the system parameters for attacks which are
“sufficiently distant” from the sensors.

III. THE DISTRIBUTED IDENTIFICATION PROBLEM

The obstacles and pitfalls in the centralized attack iden-
tification problem motivate our study of divide-and-conquer
methods. In this section, we design distributed attack iden-
tification algorithms with performance guarantees, requiring
low computational cost and local knowledge of the system.

A. Distributed setup and notation

Let G = (V, E) be the undirected graph associated with the
matrix A, where the vertex set V = {1, . . . , n} corresponds
to the system states, and the set of edges E = {(i, j) :
aij 6= 0} is induced by the sparsity pattern of A; see also
[4, Section IV]. Assume that V is partitioned into N disjoint
subsets as V = V1 ∪ · · · ∪ VN , with |Vi| = ni, and let
Gi = (Vi, Ei) be the i-th subgraph of G with vertices Vi and
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edges Ei = E ∩ (Vi × Vi). According to this partition, and
possibly after relabeling the states, the system matrix A in
(1) can be written as

A =

 A1 · · · A1N

...
...

...
AN1 · · · AN

 = AD +AC ,

where Ai ∈ Rni×ni , Aij ∈ Rni×nj , AD is block-
diagonal, and AC = A − AD. Notice that, if AD =
blkdiag(A1, . . . , AN ), then AD represents the isolated sub-
systems and AC describes the interconnection structure
among the subsystems. Additionally, if the original system
is sparse, then several blocks in AC vanish.

We assume the following on the subsystem decomposition:
(A1) the matrix C = blkdiag(C1, . . . , CN ) is block-

diagonal with Ci ∈ Rpi×ni , and each pair (Ai, Ci)
is observable.

Let Ni = {j ∈ {1, . . . , N}\{i} : ‖Aij‖ 6= 0 or ‖Aji‖ 6=
0} be the neighbors of subsystem i, and let N k

i be the set of
neighbors at distance k from i, with subsystem i excluded.
Each subsystem Gi has a control center with the following
capabilities:
(A2) the i-th control center knows the matrices Ai and Ci,

as well as the neighboring matrices Aij , j ∈ Ni; and
(A3) the i-th control center can transmit an estimate of its

state to the j-th control center if j ∈ Ni.
Given the above structure, the system (1) can be written

as the interconnection of N subsystems of the form

ẋi(t) = Aixi(t) +
∑
j∈Ni

Aijxj(t) +BKi
uKi

(t),

yi(t) = Cixi(t) +DKi
uKi

(t), i ∈ {1, . . . , N}.
(4)

Here Ki = (K ∩ Vi) ∪ Kp
i is the attack set in region

Gi, and Kp
i is the set of corrupted measurements in region

Gi. Clearly, if the inter-subsystem signals Aijxj are known
or directly measured, then the regional attack identification
problem within each subsystem reduces to the centralized
problem. We will not make this assumption since it is
restrictive and precludes the case that the inter-subsystem
signals Aijxj themselves are corrupted by an attacker.

B. Fully decoupled attack identification

As a first low-complexity identification method we con-
sider the fully decoupled case (no cooperation among control
centers). In the spirit of fully decentralized state estimation
[12], the neighboring states xj affecting xi are treated as
unknown inputs fi to the i-th subsystem, and equation (4)
becomes

ẋi(t) = Aixi(t) +Bb
i fi(t) +BKi

uKi
(t),

yi(t) = Cixi(t) +DKi
uKi

(t), i ∈ {1, . . . , N}, (5)

where Bb
i = [Ai1 · · · Ai,i−1Ai,i+1 · · · AiN ]. We refer to (5)

as to the i-th decoupled system, and we let V b
i ⊆ Vi be the

set of boundary nodes of (5), that is, the nodes j ∈ Vi with
Ajk 6= 0 for some k ∈ {1, . . . , n} \ Vi. Due to partitioning,

control centers are able to perform attack identification only
on local subsystems.

Under certain identifiability assumptions (see Theorem
3.1 below), the i-th control center can uniquely identify
the attack set Ki by again implementing a set of residual
generators (e.g., see [17]), where the residual output is
insensitive to the attack matrices BRi and DRi (for every
attack set Ri of cardinality |Ki|), and to the boundary inputs
Bb
i , which are here considered as unknown inputs. Observe

that the i-th control center needs to construct
(
ni

|Ki|
)

residual
filters, as opposed to

(
n
|K|
)
, with |K| =

∑N
i=1 |Ki|, in the

centralized case. The reduction of the combinatorial logic
comes at the expenses of having a restricted set of identifiable
attacks due to unknown boundary inputs Bb

i .
Theorem 3.1: (Fully decoupled attack identification) For

the partitioned system (5) and an attack set K, the following
statements are equivalent:

(i) the attack set K in (5) is unidentifiable by the fully
decoupled identification algorithm; and

(ii) for some region i ∈ {1, . . . , N} with Ki 6= ∅, there
exists an attack set Ri, with |Ri| ≤ |Ki| and Ri 6= Ki,
so that the system (A, [Bb

i BKi BRi ], C, [DKi DRi ])
has invariant zeros.

Proof: Let yi(xi,0, uKi
, fi, t) denote the output of

system (5) at time t, with initial value xi,0, attack input
uKi , and boundary input fi. Notice that the boundary in-
put fi is considered arbitrary and unknown by the fully
decoupled attack identification method. The attack set Ki is
undistinguishable from Ri if and only if y(xi,0, uKi

, fi, t) =
y(xi,1, uRi

, hi, t) at all times t, for some initial conditions
xi,0 and xi,1, attack inputs uKi and uRi , and boundary inputs
fi and hi. Due to linearity of the system, Ki is unidentifiable
if and only if y(xi,0 − xi,1, uKi

− uRi
, fi − hi, t) = 0 at all

times, which can be guaranteed if and only if the quadruple
(A, [Bb

i BKi
BRi

], C, [DKi
DRi

]) features invariant zeros
[9]. In the absence of invariant zeros, identifiability of attacks
is ensured as in [4] for the centralized case.

By comparing Theorems 2.1 and 3.1 we conclude that,
with the fully decoupled identification procedure, the i-
th control center cannot distinguish between an unknown
input from a safe subsystem, an unknown input from a
corrupted subsystem, and a boundary attack with the same
input direction.

Corollary 3.2 (Limitation of decoupled algorithm):
The following statements hold for the partitioned system (5)
with the fully decoupled identification algorithm:
(L1) any (boundary) attack set Ki ⊆ V b

i is not identifiable
by the i-th control center (in fact Ki is not detectable2),
and

(L2) any (external) attack set K \Ki is not identifiable by
the i-th control center (in fact Ki is not detectable).

C. Cooperative attack identification
In this section we improve upon the fully decoupled

method presented in Subsection III-B and propose an identifi-

2An attack is detectable if it can be distinguished from the zero attack
[4].
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cation method based on a divide-and-conquer procedure with
cooperation. In particular, the identification method proposed
in this section differs from the fully decoupled identification
method because control centers are allowed to exchange their
estimates, which reduces the uncertainty due to unknown
boundary inputs. In developing our method, we implicitly
assume that communication among control centers is secure.

Our cooperative identification method is informally de-
scribed as follows. First, control centers independently es-
timate the state of their local region subject to unknown
inputs from the neighboring regions. Because of the presence
of unknown inputs, the estimation computed by a control
center is correct modulo some uncertainty subspace. Con-
trol centers exchange their estimate and the corresponding
uncertainty subspaces. Second, control centers check the
compatibility between their estimate and those received from
the neighboring regions. Third, if the received estimates
are not compatible with local estimates, then the system is
recognized under attack. Finally, control centers implement
a local attack identification procedure by leveraging local
system parameters and estimates, and estimates received
from their neighbors.

We next detail our cooperative identification method.
(S1: local state estimation) Each control center estimates
the state of its own region by means of an unknown-input
observer for the i-th subsystem subject to the unknown input
Bb
i fi. We adopt the technique in [9, Section 4.3.1], which

exploits the derivatives of the output signal to reconstruct the
system state instantaneously. In the presence of process and
measurement noise, different methods should be used.

Assume that the state xi can be reconstructed modulo
some subspace Fi.3 Let Fi = Basis(Fi) be the uncertainty
matrix, and partition the state accordingly as

xi = x̂i + x̃i, (6)

where x̂i(t) ⊥ Fi is the portion of the state that can be
estimated by the i-th control center in the presence of the
unknown input Bb

i fi, and x̃i(t) ∈ Fi. Let zi(t) be the
estimate at time t of x̂i. Notice that, if the i-th region
is not corrupted, then zi(t) = x̂i(t), whereas it may be
zi(t) 6= x̂i(t) when Ki 6= ∅.
(S2: communication) Control centers transmit their estimate
x̂i and uncertainty matrix Fi to every neighboring control
center.
(S3: regional attack detection) Observe that

Aijxj = Aij x̂j +Aij x̃j ,

where x̂j and x̃j are defined as in (6). After carrying out step
(S1), since the matrices Aij are known to the i-th control
center due to Assumption (A6), only the inputs Aij x̃j are
unknown to the i-th control center, while the inputs Aij x̂j
are known to the i-th center due to communication. Let

Bb
iFi =

[
Ai1F1 · · · Ai,i−1Fi−1 Ai,i+1Fi+1 · · · AiNFN

]
,

3For nonsingular systems without feedthrough matrix, Fi is as small as
the largest (Ai, B

b
i )-controlled invariant subspace contained in Ker(Ci)

[9].

Algorithm 1: Cooperative attack identification
Input : Matrices Ai, Aij for j ∈ Ni;
Require : Conditions (i), (ii), and (iii) in Theorem 3.3;
Output : Attack set Ki;

1 Compute the uncertainty subspace Fi = Im(Fi);
2 Transmit Fi to control centers Ni;

while True do
3 Estimate state x̂i (state x modulo Fi);
4 Transmit x̂i to Ni, and receive x̂j from Ni;
5 Compute residual ri as in (7);
6 Transmit ri to Ni, and receive rj from Ni;

if ri 6= 0 or rj 6= 0 for all j ∈ Ni then
7 Identify Ki in local subsystem;
8 return Ki

and rewrite the signal Bb
i x̃ as Bb

i x̃ = Bb
iFifi, for some

unknown signal fi. The dynamics of the i-th subsystem read
as

ẋi(t) = Aixi(t) +Bb
i x̂(t) +Bb

iFifi(t) +BKi
uKi

(t),

where x̂ is the vector of x̂i for all i ∈ {1, . . . , N}.
Next, we construct a residual generator that is insensitive

to the input Bb
iFifi (e.g., see [17]) and makes use of the

state estimates Bb
i z transmitted to control center i by its

neighbors:

ẇi(t) = (Ai + LiCi)wi(t)− Liyi(t) +Bb
i z(t),

ri(t) = Mwi(t)−Hyi(t).
(7)

(S4: cooperative attack identification) Neighboring control
centers exchange the zero/nonzero status of the previously
computed residuals, identify corrupted regions, and indepen-
dently identify attacks in each attacked region. Our coop-
erative identification procedure for the i-th control center
is summarized in Algorithm 1. We make the following
technical assumptions:
(A4) corrupted regions have one neighbor at distance 2, that

is, |N 2
i | ≥ 1 for all regions i with Ki 6= ∅, and

(A5) corrupted regions are separated by 3 non-corrupted
regions, that is, Kj = ∅ for all j ∈ N 3

i and i with
Ki 6= ∅.

Assumption (A4) requires a sufficiently large number
of clusters, while assumption (A5) restricts our procedure
to localized attacks. The next theorem characterizes the
effectiveness of our cooperative identification procedure.

Theorem 3.3: (Cooperative attack identification) For the
partitioned system (4), the attack set K is identifiable by the
cooperative identification algorithm if the following condi-
tions hold:

(i) every system (Ai, B
b
i , Ci) has no invariant zeros, and

(ii) every system (Ai, [B
b
iFi BKi

BRi
], Ci, [DKi

DRi
])

has no invariant zeros for every attack set Ri with
|Ri| ≤ |Ki|.

In Theorem 3.3, conditions (i) with assumptions (A4) and
(A5) ensure regional identifiability, that is, the possibility
to identify corrupted regions from local residuals and com-
munication with neighboring regions. Condition (ii) ensures
regional detectability as (7) and local identifiability, that is,
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attack identifiability within each corrupted region from local
measurements and communication with neighboring regions.
We defer the proof of Theorem 3.3 to VI-A.

We conclude this section with the following observations.
First, the cooperative identification procedure is implemented
only on the corrupted regions (line 7 in Algorithm 1). Thus,
the combinatorial complexity of our distributed identifica-
tion procedure is

∑`
i=1

(
ni+pi
|Ki|

)
, where ` is the number

of corrupted regions. Hence, the distributed identification
procedure greatly reduces the combinatorial complexity of
the centralized procedure presented in [4] that requires the
implementation of

(
n+p
|K|
)

filters. Second, the conditions in
Theorem 3.3 for cooperative identification improve upon
those in Theorem 3.1 for fully decoupled identification; see
Section IV for an example. Third, our cooperative identifi-
cation procedure is effective when attacks are localized in
some regions, and regions under attack are sufficiently far
from each other. Under these assumptions, our cooperative
identification overcomes the limitations described in Exam-
ple 1, because it does not rely on the magnitude of the
measurements, and has provable performance guarantees.

Remark 1 (Extension to descriptor systems): The pro-
posed methods can be extended to descriptor systems

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(8)

where E ∈ Rn×n is a singular matrix. Descriptor models
are encountered in cyber-physcial systems with conserva-
tion laws such as power, gas, or water networks [4]. The
following assumptions guarantee existence of non-impulsive
solutions [18]:
(A6) the pair (E,A) is regular, that is, the determinant

|sE −A| is nonzero for almost all values s ∈ C;
(A7) the initial condition x(0) ∈ Rn is consistent, that is,

(Ax(0) +Bu(0)) ∈ Im(E); and
(A8) the input u is smooth.
The characterization of identifiability (2) extends to descrip-
tor systems [4, Theorem 3.4], residual filters can be designed
as in [4, Section IV.D], and the state estimation step (S1) can
be extended akin to [19, Appendix]. �

IV. ILLUSTRATIVE EXAMPLE

We now present an example showing that, contrary to
the limitations of the naive fully decoupled approach (see
Corollary 3.2), boundary attacks Ki ⊆ V b

i can be identified
by our cooperative attack identification method.

Consider the sensor network in Fig. 3, where the state
of the blue nodes {2, 5, 7, 12, 13, 15, 19, 22, 23} is measured
and the state of the red node {3} is corrupted by an attacker.
Assume that the network evolves according to linear time-
invariant dynamics. Assume further that the network has
been partitioned into the three areas V1 = {1, . . . , 8}, V2 =
{9, . . . , 16}, and V3 = {17, . . . , 24}. Since {3, 4} are the
boundary nodes for the first area, the attack set K = 3 is not
identifiable via the fully decoupled procedure in Section III-
B; see Corollary 3.2. It can be verified that the conditions in
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Fig. 3. This figure shows a network composed of three subsystems. A
control center is assigned to each subsystem. Each control center knows
the local dynamics. The state of the blue nodes {2, 5, 7, 12, 13, 15} is
continuously measured by the corresponding control center, and the state of
the red node {3} is corrupted by an attacker. The decoupled identification
procedure presented in Subsection III-B fails at detecting the attack. Instead,
our cooperative identification procedure identifies the corrupted agent.

Theorem 3.3 are verified for generic network parameters [4,
Section III.B], and that the attack can be identified via our
cooperative identification procedure. We conclude that our
cooperative identification algorithm outperforms the naive
decoupled identification algorithm.

V. CONCLUSION

The problem of identifying attacks in cyber-physical sys-
tems requires a substantial computational effort. This paper
shows how standard relaxation techniques may fail to iden-
tify state attacks in cyber-physical systems, and proposes
two distributed algorithms with performance guarantees for
attack identification by a set of geographically deployed
control centers. The algorithms require local measurements,
local knowledge of the system, and communication with
neighboring control centers. This paper provides promising
results on the distributed attack identification problem, high-
lights its challenges and limitations, and foster the adoption
of geometric control techniques for the solution of distributed
control and estimation problems.

VI. APPENDIX

A. Proof of Theorem 3.3

We start with some preliminary results.
Lemma 6.1: (Residual of isolated non-corrupted re-

gions) If Ki = ∅ and Kj = ∅ for all j ∈ Ni, then the
residual ri(t) in (7) is identically zero.

Proof: Consider a region j with Kj = ∅. Notice that the
state estimation zj satisfies zj = x̂j (see paragraph (S1: local
state estimation)). Because Ki = ∅, from (7) we conclude
that the residual ri is driven only by the input Bb

iFifi. To
conclude, notice that the residual generator (7) is constructed
so that ri is insensitive to the signature (Bb

iFi, 0).
Lemma 6.2: (Residual of isolated corrupted regions) For

the partitioned system (4), let Ki 6= ∅. If
(i) Kj = ∅ for all j ∈ N 2

i ,
(ii) every system (Aj , B

b
j , Cj) has no invariant zeros for

all j ∈ Ni, and
(iii) the system (Ai, [B

b
iFi BKi

BRi
], Ci, [DKi

DRi
]) has

no invariant zeros for every attack set Ri 6= Ki with
|Ri| ≤ |Ki|,
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then
(i) ri(t) 6= 0 at some time t ∈ R≥0, and

(ii) either rj(t) = 0 for all j ∈ Ni at all times t ∈ R≥0,
or rj(t) 6= 0 for all j ∈ Ni at some times t ∈ R≥0.

Proof: The estimation computed by a control center is
correct if its area is not under attack (see paragraph (S1:
local state estimation)). In other words, since Kj = ∅
for all j ∈ Ni, it follows Bb

i z = Bb
i x̂ in (7). Because

(Ai, [B
b
iFiBKi

], Ci, [DKi
DRi

]) has no invariant zeros,
the set Ki is locally identifiable via local measurements
and transmitted estimates, and statement (i) follows; see
also Theorem 2.1 and [4]. To show the second statement,
observe that only two cases are possible: either x̂i = zi, or
x̂i 6= zi, where x̂i is defined in (6), and zi is the estimate
of x̂i computed by the i-th control center. For instance, if
Im(BKi) ⊆ Im(Bb

i ), that is, the attack set Ki lies on the
boundary of the i-th area, then x̂i(t) = zi(t).

In the first case, x̂i = zi, all residuals rj , j ∈ Ni, are
identically zero. In fact, since K` = ∅ for all ` ∈ N 2

i , it
follows that x̂p = zp for all p ∈ Nj and j ∈ Ni, so that
the residual rj in (7) is identically zero, as it is insensitive
to the unknown inputs Bb

p. Consider now the second case:
x̂i 6= zi. Notice that Bb

jFjfj + Bb
j (x̂− z) ∈ Im(Bb

j ). Since
(Aj , B

b
j , Cj) has no invariant zeros, every residual rj , with

j ∈ Ni, cannot be identically zero.
We are now ready to prove Theorem 3.3.

Proof: Consider the i-th region, and let Ki 6= ∅. Due
to conditions (i) and (ii) in Theorem 3.3, assumptions (A4)
and (A5), and Lemma 6.2 we conclude that:
(C1) the residual ri is not identically zero, and
(C2) either rj(t) = 0 for all j ∈ Ni at all times t ∈ R≥0,

or rj(t) 6= 0 for all j ∈ Ni at some times t ∈ R≥0.
Consider the region p ∈ N 2

i \Ni. Due to assumption (A5)
and Lemma 6.1 we conclude that:
(C3) rp is identically zero.

Consider the region j ∈ Ni. Due assumption (A4) and the
facts (C1) and (C3), we conclude that:
(C4) there exists j1, j2 ∈ Nj such that rj1 is identically

zero, while rj2 is not identically zero (take j1 = p and
j2 = i.).

Corrupted regions are uniquely identified as the regions
satisfying (C1) and (C2). See Figure 4 for an example. Due
to condition (ii) in Theorem 3.3 each set Ki is locally iden-
tifiable (see also Theorem 2.1), and the statement follows.
Note that (A4) is necessary. To see this, in Fig. 4 assume that
region 7 is corrupted, and that the residual computed by the
8-th control center is nonzero. Since the residual computed
by the 7-th control center is also nonzero, the 8-th control
center cannot determine if region 7 or 8 is corrupted.
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