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a b s t r a c t

Thiswork presents a distributedmethod for control centers tomonitor the operating condition of a power
network, i.e., to estimate the network state, and to ultimately determine the occurrence of threatening
situations. State estimation has been recognized to be a fundamental task for network control centers
to operate safely and reliably a power grid. We consider (static) state estimation problems, in which the
state vector consists of the voltage magnitude and angle at all network buses. We consider the state to
be linearly related to network measurements, which include power flows, current injections, and voltage
phasors at some buses. We admit the presence of several cooperating control centers, and we design
two distributed methods for them to compute the minimum variance estimate of the state, given the
network measurements. The two distributed methods rely on different modes of cooperation among
control centers: in the first method an incremental mode of cooperation is used, whereas, in the second
method, a diffusive interaction is implemented. Our procedures, which require each control center to
know only the measurements and the structure of a subpart of the whole network, are computationally
efficient and scalable with respect to the network dimension, provided that the number of control centers
also increases with the network cardinality. Additionally, a finite-memory approximation of our diffusive
algorithm is proposed, and its accuracy is characterized. Finally, our estimation methods are exploited to
develop a distributed algorithm to detect corrupted network measurements.

Published by Elsevier Ltd
1. Introduction

Large-scale complex systems, such as the electrical power
grid and the telecommunication system, are receiving increasing
attention from researchers in different fields. The wide spatial
distribution and the high dimensionality of these systems preclude
the use of centralized solutions to tackle classical estimation,
control, and fault detectionproblems, and they require, instead, the
development of new decentralized techniques. One possibility to
overcome these issues is to geographically deploy some monitors

✩ This material is based in part upon work supported by ICB ARO grant
W911NF-09-D-0001, NSF grant CNS-0834446, NSF grant CPS-1135819, European
Union Seventh Framework Programme [FP7/2007-2013] under grant agreement
no257462 HYCON2 Network of excellence, and in part upon the EC Contract
IST 224428 ‘‘CHAT’’. The material in this paper was partially presented at 2nd
IFAC Workshop on Distributed Estimation and Control in Networked Systems,
September 13–14, 2010, Annecy, France. This paper was recommended for
publication in revised form by Associate Editor James Lam under the direction of
Editor Ian R. Petersen.

E-mail addresses: fabiopas@engineering.ucsb.edu (F. Pasqualetti),
carlirug@dei.unipd.it (R. Carli), bullo@engineering.ucsb.edu (F. Bullo).
1 Tel.: +1 805 259 5979.

0005-1098/$ – see front matter. Published by Elsevier Ltd
doi:10.1016/j.automatica.2012.02.025
in the network, each one responsible for a different subpart of
the whole system. Local estimation and control schemes can
successively be used, together with an information exchange
mechanism to recover the performance of a centralized scheme.

1.1. Control centers, state estimation and cyber security in power
networks

Power systems are operated by system operators from the area
control center. Themain goal of the system operator is to maintain
the network in a secure operating condition, in which all the
loads are supplied power by the generators without violating the
operational limits on the transmission lines. In order to accomplish
this goal, at a given point of time, the network model and the
phasor voltage at every system bus needs to be determined, and
preventive actions have to be taken if the system is found in an
insecure state. For the determination of the operating state, remote
terminal units andmeasuring devices are deployed in the network
to gather measurements. These devices are then connected via
a local area network to a SCADA (Supervisory Control and Data
Acquisition) terminal, which supports the communication of the
collected measurements to a control center. At the control center,
the measured data is used for control and optimization functions,
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Fig. 1. In this figure remote terminal units transmit theirmeasurements to a SCADA
terminal through a local area network. The data is then sent to a control center to
implement estimation, control, and optimization procedures.

such as contingency analysis, automatic generation control, load
forecasting, optimal power flow computation, and reactive power
dispatch (Abur & Exposito, 2004). A diagram representing the
interconnections between remote terminal units and the control
center is reported in Fig. 1.

Various sources of uncertainties, including measurement and
communication noise, lead to inaccuracies in the received data.
These inaccuracies may affect the performance of control and
optimization algorithms and, ultimately, the stability of the power
plant. This concern was recognized and addressed in (Schweppe
& Wildes, 1970a,b,c) by introducing the idea of (static) state
estimation in power systems.

Power network state estimators are broadly used to obtain
an optimal estimate from redundant noisy measurements, and to
estimate the state of a network branch which, for economical or
computational reasons, is not directly monitored. For the power
system state estimation problem, several centralized and parallel
solutions have been developed in the last decades, e.g., see Falcao,
Wu, and Murphy (1995), Monticelli (1999), Shahidehpour and
Wang (2003). Being an online function, computational issues,
storage requirements, and numerical robustness of the estimation
algorithm need to be taken into account. Within this regard,
distributed algorithms based on network partitioning techniques
are to be preferred over centralized ones. Moreover, even in a
decentralized setting, the work (NERC, 2004) on the blackout of
August 2003 suggests that an estimate of the state of the entire
network by every control center is essential to prevent networks
damages. The Refs. (Jiang, Vittal, &Heydt, 2007; Zhao&Abur, 2005)
explore the idea of using a global control center to coordinate
estimates obtained locally by several local control centers. In
this work, we improve upon these prior results by proposing a
fully decentralized and distributed estimation algorithm that only
assumes local knowledge of the network structure by local control
centers, and that allows them to obtain an optimal estimate of the
network state in finite time. Since the computation is distributed
among the control centers, our procedure appears scalable against
the power network dimension, and, furthermore, numerically
reliable and accurate.

A second focus of this paper is false data detection and cyber
attacks in power systems. Because of the increasing reliance
of modern power systems on communication networks, the
possibility of cyber attacks is a real threat (Meserve, 2007).
One possibility for the attacker is to corrupt the data coming
from the measuring units and directed to the control center, in
order to introduce arbitrary errors in the estimated state, and,
consequently, to compromise the performance of control and
optimization algorithms (Liu, Reiter & Ning, 2009). This important
type of attack is often referred in the power systems literature to
as false data injection attack. In Xie, Mo, and Sinopoli (2010) it is
shown that a false data injection attack, in addition to destabilizing
the grid, may also lead to fluctuations in the electricity market,
causing significant economical losses. The presence of false data
is classically checked by analyzing the statistical properties of
the estimation residual z − Hx̂, where z is the measurements
vector, x̂ is a state estimate, and H is the state to measurements
matrix. For an attack to be successful, the residual needs to remain
within a certain confidence level. Accordingly, one approach to
circumvent false data injection attacks is to increase the number of
measurements so as to obtain a more accurate confidence bound.
Clearly, by increasing the number of measurements, the data to
be transmitted to the control center increases, and the dimension
of the estimation problem grows. By means of our estimation
method, we address this dimensionality problem by distributing
the false data detection problem among several control centers.

1.2. Related work on distributed estimation and projection methods

Starting from the eighties, the problem of distributed estima-
tion has attracted intense attention from the scientific community,
generating along the years a very rich literature. More recently,
because of the advent of highly integrated and low-cost wireless
devices as key components of large autonomous networks, the
interest for this classical topic has been renewed. For a wireless
sensor network, novel applications requiring efficient distributed
estimation procedures include, for instance, environment moni-
toring, surveillance, localization, and target tracking. Considerable
effort has been devoted to the development of distributed and
adaptive filtering schemes, which generalize the notion of adap-
tive estimation to a setup involving networked sensing and pro-
cessing devices (Cattivelli, Lopes, & Sayed, 2008). In this context,
relevantmethods include incremental LeastMean-Square (Lopes &
Sayed, 2007), incremental Recursive Least-Square (Sayed & Lopes,
2007), Diffusive Least Mean-Square (Sayed & Lopes, 2007), and
Diffusive Recursive Least-Square (Cattivelli et al., 2008). Diffusion
Kalman filtering and smoothing algorithms are proposed, for in-
stance, in Carli, Chiuso, Schenato, and Zampieri (2008), Cattivelli
and Sayed (2010), and consensus based techniques in (Schizas,
Ribeiro, & Giannakis, 2007; Schizas, Mateos, & Giannakis, 2009).
We remark that the strategies proposed in the aforementioned
references could be adapted for the solution of the power net-
work static estimation problem. Their performance, however, ap-
pear to be not well suited in our context for the following reasons.
First, the convergence of the above estimation algorithms is only
asymptotic, and it depends upon the communication topology.
As a matter of fact, for many communication topologies, such as
Cayley graphs and random geometric graphs, the convergence rate
is very slow and scales badly with the network dimension. Such
slow convergence rate is clearly undesirable because a delayed
state estimation could lead the power plant to instability. Second,
approaches based onKalman filtering require the knowledge of the
global state and observation model by all the components of the
network, and they violate therefore our assumptions. An excep-
tion is constituted by Stankovic, Stankovic, and Stipanovic (2009),
where an estimation technique based on local Kalman filters and a
consensus strategy is developed. This latter method, however, be-
sides exhibiting asymptotic convergence, does not offer guarantees
on the final estimation error. Third and finally, the application of
these methods to the detection of cyber attacks, which is also our
goal, is not straightforward, especially when detection guarantees
are required.

Our estimation technique belongs to the family of Kaczmarz
(row-projection) methods for the solution of a linear system
of equations. See Censor (1981), Gordon, Bender, and Herman
(1970), Kaczmarz (1937), Tanabe (1971) for a detailed discussion.
Differently from the existing row-action methods, our algorithms
exhibit finite time convergence, and they can be used to compute
the weighted least squares solution to a system of linear equations
with arbitrary weights.
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1.3. Our contributions

The contributions of this work are threefold. First, we adopt the
static state network estimation model, in which the state vector
is linearly related to the network measurements. We develop two
methods for a group of interconnected control centers to compute
an optimal estimate of the system state via distributed computa-
tion. Our first estimation algorithm assumes an incremental mode
of cooperation among the control centers, while our second esti-
mation algorithm is based upon a diffusive strategy. Both methods
are shown to converge in a finite number of iterations, and to re-
quire only local information for their implementation. Differently
from Rakpenthai, Premrudeepreechacharn, Uatrongjit, and Wat-
son (2005), our estimation procedures assume neither the mea-
surement error covariance nor the measurements matrix to be
diagonal. Furthermore, our algorithms are advantageous from a
communication perspective, since they reduce the distance be-
tween remote terminal units and the associated control center, and
from a computational perspective, since they distribute the mea-
surements to be processed among the control centers. Second, as
a minor contribution, we describe a finite-time algorithm to de-
tect via distributed computation if the measurements have been
corrupted by a malignant agent. Our detection method is based
upon our state estimation technique, and it inherits its conver-
gence properties. Notice that, since we assume the measurements
to be corrupted by noise, the possibility exists for an attacker to
compromise the network measurements while remaining unde-
tected (by injecting for instance a vectorwith the samenoise statis-
tics). With respect to this limitation, we characterize the class of
corrupted vectors that are guaranteed to be detected by our pro-
cedure, and we show optimality with respect to a centralized de-
tection algorithm. Third, we study the scalability of ourmethods in
networks of increasing dimension, and we derive a finite-memory
approximation of our diffusive estimation strategy. For this
approximation procedure we show that, under a reasonable set of
assumptions and independently of the network dimension, each
control center is able to recover a good approximation of the state
of a certain subnetwork through little computation. Moreover, we
provide bounds on the approximation error for each subnetwork.
Finally, we illustrate the effectiveness of our procedures on the
IEEE 118 bus system.

The rest of the paper is organized as follows. In Section 2
we introduce the problem under consideration, and we describe
the mathematical setup. Section 3 contains our results on state
estimation and false data detection, and it presents our algorithms.
Section 4 describes our approximated state estimation algorithm.
In Section 5 we study the IEEE 118 bus system, and we present
some simulation results. Finally, Section 6 contains our conclusion.

2. Problem setup and preliminary notions

For a power network, an example of which is reported in
Fig. 2, the state at a certain instant of time consists of the voltage
angles and magnitudes at all the system buses. The (static) state
estimation problem introduced in the seminal work by Schweppe
andWildes (1970a) refers to the procedure of estimating the state
of a power network given a set of measurements of the network
variables, such as voltages, currents, and power flows along the
transmission lines. To be more precise, let x ∈ Rn and z ∈ Rp

be, respectively, the state and measurements vectors. Then, the
vectors x and z are related by the relation

z = h(x) + η, (1)

where h(·) is a nonlinear measurement function, and where η,
which is traditionally assumed to be a zero mean random vector
satisfying E[ηηT

] = Ση = ΣT
η > 0, is the measurements
noise. An optimal estimate of the network state coincides with the
most likely vector x̂ that solves Eq. (1). It should be observed that,
instead of by solving the above estimation problem, the network
state could be obtained by measuring directly the voltage phasors
by means of phasor measurement devices.2 Such an approach,
however, would be economically expensive, since it requires a
phasor measurement device at each network bus, and it would
be very vulnerable to communication failures (Abur & Exposito,
2004). In this work, we adopt the approximated estimation model
presented in Schweppe and Wildes (1970b), which follows from
the linearization around an operating point of Eq. (1). Specifically,
we have

z = Hx + v, (2)

whereH ∈ Rp×n andwhere v, themeasurements noise, is such that
E[v] = 0 and E[vvT

] = Σ = ΣT > 0. Observe that, because of the
interconnection structure of a power network, the measurement
matrix H is usually sparse. Let Ker(H) denote the null space of H ,
and assume Ker(H) = {0}. Recall from Luenberger (1969) that the
vector

xwls = (HTΣ−1H)−1HTΣ−1z (3)

minimizes the weighted variance of the estimation error, i.e.,
xwls = argminx̂(z − Hx̂)TΣ−1(z − Hx̂).

The centralized computation of xwls assumes the complete
knowledge of thematricesH andΣ , and it requires the inversion of
thematrixHTΣ−1H . For a large power network, such computation
imposes a limitation on the dimension of the matrix H , and hence
on the number of measurements that can be efficiently processed
to obtain a real-time state estimate. Since the performance of
network control and optimization algorithms depend upon the
precision of the state estimate, a limitation on the number
of network measurements constitutes a bottleneck toward the
development of a more efficient power grid. A possible solution to
address this complexity problem is to distribute the computation
of xwls among geographically deployed control centers (monitors),
in away that eachmonitor is responsible for a subpart of thewhole
network. To be more precise, let the matrices H and Σ , and the
vector z be partitioned as3

H =


H1
H2
...

Hm

 , Σ =


Σ1
Σ2
...

Σm

 , z =


z1
z2
...
zm

 , (4)

where, for i ∈ {1, . . . ,m}, mi ∈ N, Hi ∈ Rmi×n, Σi ∈ Rmi×p,
zi ∈ Rmi , and

m
i=1 mi = p. Let G = (V , E) be the connected

graph in which each vertex i ∈ V = {1, . . . ,m} denotes a monitor,
and E ∈ V × V denotes the set of monitors interconnections.
For i ∈ {1, . . . ,m}, assume that monitor i knows the matrices
Hi, Σi, and the vector zi, and that two neighboring monitors are
allowed to cooperate by exchanging information. Notice that, if the
full matrices H and Σ are nowhere available, and if they cannot be
used for the computation of xwls, then, with no cooperation among
the monitors, the vector xwls cannot be computed by any of the
monitor. Hence we consider the following problem.

Problem 1 (Distributed State Estimation). Design an algorithm for
the monitors to compute the minimum variance estimate of the
network state via distributed computation.

2 Phasor measurement units are devices that synchronize by using GPS signals,
and that allow for a direct measurement of voltage and current phasors.
3 In most application the error covariance matrix is assumed to be diagonal, so

that each submatrix Σi is very sparse. However, we do not impose any particular
structure on the error covariance matrix.
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Fig. 2. This figure shows the diagram of the IEEE 118 bus system (courtesy of the IIT Power Group). The network has 118 buses, 186 branches, 99 loads, and 54 generators.
We now introduce the second problem addressed in this work.
Given the distributed nature of a power system and the increasing
reliance on local area networks to transmit data to control centers,
there exists the possibility for an attacker to compromise the
network functionalities by corrupting the measurements vector.
When a malignant agent corrupts some of the measurements, the
state to measurements relation becomes

z = Hx + v + w,

where the vector w ∈ Rp is chosen by the attacker, and,
consequently, it is unknown and unmeasurable by any of the
monitoring stations. We refer to the vector w to as false data. From
the above equation, it should be observed that there exist vectorsw
that cannot be detected through themeasurements z. For instance,
if the false data vector is intentionally chosen such thatw ∈ Im(H),
then the attack cannot be detected through the measurements z.
Indeed, denoting with Ď the pseudoinverse operation, the vector
x + HĎw is a valid network state. We assume that the vector
w is detectable from the measurements z, and we consider the
following problem.

Problem 2 (Distributed Detection). Design an algorithm for the
monitors to detect the presence of false data in the measurements
via distributed computation.

As it will be clear in the sequel, the complexity of our methods
depends upon the dimension of the state, as well as the number
of monitors. In particular, few monitors should be used in the
absence of severe computation and communication constraints,
while many monitors are preferred otherwise. We believe that
a suitable choice of the number of monitors depends upon the
specific scenario, and it is not further discussed in this work.

Remark 1 (Generality of Our Methods). In this paper we focus on
the state estimation and the false data detection problems for
power systems. The methods described in the following sections,
however, are general, and they have applicability beyond the
power network scenario. For instance, our procedures can be used
for state estimation and false data detection in dynamical system,
as described in Pasqualetti, Carli, Bicchi, and Bullo (2010) for the
case of sensors networks.

3. Optimal state estimation and false data detection via
distributed computation

The objective of this section is the design of distributedmethods
to compute an optimal state estimate from measurements. With
respect to a centralized method, in which a powerful central
processor is in charge of processing all the data, our procedures
require the computing units to have access to only a subset of
the measurements, and are shown to reduce significantly the
computational burden. In addition to being convenient for the
implementation, our methods are also optimal, in the sense that
they maintain the same estimation accuracy of a centralized
method.

For a distributed method to be implemented, the interaction
structure among the computing units needs to be defined. Here
we consider two modes of cooperations among the computing
units, and, namely, the incremental and the diffusive interactions.
In an incremental mode of cooperation, information flows in a
sequential manner from one node to the adjacent one. This setting,
which usually requires the least amount of communications
(Rabbat & Nowak, 2005), induces a cyclic interaction graph
among the processors. In a diffusive strategy, instead, each node
exchanges information with all (or a subset of) its neighbors
as defined by an interaction graph. In this case, the amount of
communication and computation is higher than in the incremental
case, but each node possesses a good estimate before the
termination of the algorithm, since it improves its estimate at each
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Algorithm 1 Incremental minimum norm solution (i-th monitor)
Input: Hi, zi;
Require: [zT1 . . . zTm]

T
∈ Im([HT

1 . . . HT
m]

T);
if i = 1 then

x̂0 := 0, K0 := In;
else

receive x̂i−1 and Ki−1 from monitor i − 1;
end if
x̂i := x̂i−1 + Ki−1(HiKi−1)

Ď(zi − Hix̂i−1);
Ki := Basis(Ki−1Ker(HiKi−1));
if i < m then

transmit x̂i and Ki to monitor i + 1;
else

return x̂m;
end if

communication round. This section is divided into three parts. In
Section 3.2, we first develop a distributed incremental method to
compute the minimum norm solution to a set of linear equations,
and then exploit such method to solve a minimum variance
estimation problem. In Section 3.3 we derive a diffusive strategy
which is amenable to asynchronous implementation. Finally, in
Section 3.4 we propose a distributed algorithm for the detection
of false data among the measurements. Our detection procedure
requires the computation of theminimum variance state estimate,
for which either the incremental or the diffusive strategy can be
used.

3.1. Incremental solution to a set of linear equations

We start by introducing a distributed incremental procedure to
compute the minimum norm solution to a set of linear equations.
This procedure constitutes the key ingredient of the incremental
method we later propose to solve a minimum variance estimation
problem. Let H ∈ Rp×m and let z ∈ Im(H), where Im(H) denotes
the range space spanned by the matrix H . Consider the system
of linear equations z = Hx, and recall that the unique minimum
norm solution to z = Hx coincides with the vector x̂ such that
z = Hx̂ and ∥x̂∥2 is minimum. It can be shown that ∥x̂∥2 being
minimum corresponds to x̂ being orthogonal to the null space
Ker(H) (Luenberger, 1969). Let H and z be partitioned in m blocks
as in (4), and let G = (V , E) be a directed graph such that V =

{1, . . . ,m} corresponds to the set of monitors, and, denoting with
(i, j) the directed edge from j to i, E = {(i + 1, i): i = 1, . . . ,m −

1}∪{(1,m)}. Our incremental procedure to compute theminimum
norm solution to z = Hx̂ is in Algorithm 1, where, given a subspace
V , wewrite Basis(V) to denote any full rankmatrixwhose columns
span the subspace V . We now proceed with the analysis of the
convergence properties of the Incremental minimum norm solution
algorithm.

Theorem 3.1 (Convergence of Algorithm 1). Let z = Hx, where H
and z are partitioned in m row-blocks as in (4). In Algorithm 1, the
m-th monitor returns the vector x̂ such that z = Hx̂ and x̂ ⊥ Ker(H).

Proof. See Appendix A.1. �

It should be observed that the dimension of Ki decreases,
in general, when the index i increases. In particular, Km =

{0} and K1 = Ker(H1). To reduce the communication burden
of the algorithm, monitor i could transmit the smallest among
Basis(Ki−1Ker(HiKi−1)) and Basis(Ki−1Ker(HiKi−1)

⊥), togetherwith
a packet containing the type of the transmitted basis.
Table 1
Computational complexity of Algorithm 1.

Block size i-th complexity Total complexity

k ≤ n O(k2n) O(mkn)
k > n O(kn2) O(mn2)

Remark 2 (Computational Complexity of Algorithm 1). In Algo-
rithm 1, the main operation to be performed by the i-th agent is a
singular value decomposition (SVD).4 Indeed, since the range space
and the null space of a matrix can be obtained through its SVD,
both the matrices (HiKi−1)

Ď and Basis(Ki−1Ker(HiKi−1)) can be re-
covered from the SVD of HiKi−1. Let H ∈ Rm×n, m > n, and as-
sume the presence of ⌈m/k⌉ monitors, 1 ≤ k ≤ m. Recall that,
for a matrix M ∈ Rk×p, the singular value decomposition can be
performed with complexity O(min{kp2, k2p}) (Golub & van Loan,
1989). Hence, the computational complexity of computing a mini-
mum norm solution to the system z = Hx is O(mn2). In Table 1 we
report the computational complexity of Algorithm 1 as a function
of the block size k.

The following observations are in order. First, if k ≤ n, then the
computational complexity sustained by the i-th monitor is much
smaller than the complexity of a centralized implementation,
i.e., O(k2n) ≪ O(mn2). Second, the complexity of the entire
algorithm is optimal, since, in the worst case, it maintains the
computational complexity of a centralized solution, i.e., O(mkn) ≤

O(mn2). Third and finally, a compromise exists between the blocks
size k and the number of communications needed to terminate
Algorithm 1. In particular, if k = m, then no communication is
needed, while, if k = 1, then m − 1 communication rounds are
necessary to terminate the estimation algorithm.5

3.2. Incremental estimation via distributed computation

Wenow focus on the computation of theweighted least squares
solution to a set of linear equations. Let v be an unknown and
unmeasurable random vector, with E(v) = 0 and E(vvT) = Σ =

ΣT > 0. Consider the system of equations
z = Hx + v, (5)
and assume Ker(H) = 0. Notice that, because of the noise vector
v, we generally have z ∉ Im(H), so that Algorithm 1 cannot be
directly employed to compute the vector xwls defined in (3). It
is possible, however, to recast the above weighted least squares
estimation problem to be solvable with Algorithm 1. Note that,
because the matrix Σ is symmetric and positive definite, there
exists6 a full row rank matrix B such that Σ = BBT. Then, Eq. (5)
can be rewritten as

z =

H εB

 
x
v̄


, (6)

where ε ∈ R>0, E[v̄] = 0 and E[v̄v̄T
] = ε−2I . Observe that,

because B has full row rank, the system (6) is underdetermined,
i.e., z ∈ Im([H εB]) and Ker([H εB]) ≠ 0. Let
x̂(ε)
ˆ̄v


=


H εB

Ď z. (7)

4 ThematrixH is usually very sparse, since it reflects the network interconnection
structure. If the matrices HiKi−1 are also sparse, then efficient SVD algorithms
for very large sparse matrices can be employed (cf. SVDPACK ). In general, if the
dimension of HiKi−1 is too large for an SVD algorithm to be numerically reliable,
then additional monitors should be used to reduce the dimension of HiKi−1 .
5 Additional m − 1 communication rounds are needed to transmit the estimate

to all monitors.
6 Choose for instance B = WΛ1/2 , where W is a basis of eigenvectors of Σ and

Λ is the corresponding diagonal matrix of the eigenvalues.
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The following theorem characterizes the relation between the
minimum variance estimate xwls and x̂(ε).

Theorem 3.2 (Convergence with ε). Consider the system of linear
equations z = Hx + v. Let E(v) = 0 and E(vvT) = Σ = BBT > 0
for a full row rank matrix B. Let

C = ε(I − HHĎ)B, E= I − CĎC,

D = εE[I + ε2EBT(HHT)ĎBE]
−1BT(HHT)Ď(I − εBCĎ).

Then
H εB

Ď
=


HĎ

− εHĎB(CĎ
+ D)

CĎ
+ D


;

and

lim
ε→0+

HĎ
− εHĎB(CĎ

+ D) = (HTΣ−1H)−1HTΣ−1.

Proof. See Appendix A.2. �

Throughout the paper, let x̂(ε) be the vector defined in (7), and
notice that Theorem 3.2 implies that
xwls = lim

ε→0+
x̂(ε).

Remark 3 (Incremental State Estimation). For the system of equa-
tions z = Hx + v, let BBT be the covariance matrix of the noise
vector v, and let

H =


H1
H2
...

Hm

 , B =


B1
B2
...
Bm

 , z =


z1
z2
...
zm

 , (8)

wheremi ∈ N, Hi ∈ Rmi×n, Bi ∈ Rmi×p, and zi ∈ Rmi . For ε > 0, the
estimate x̂(ε) of the weighted least squares solution to z = Hx+ v
can be computed by means of Algorithm 1 with input [Hi εBi] and
zi.

Observe now that the estimate x̂(ε) coincides with x̂wls only in
the limit for ε → 0+. When the parameter ε is fixed, the estimate
x̂(ε) differs from the minimum variance estimate x̂wls. We next
characterize the approximation error xwls − x̂(ε).

Corollary 3.1 (Approximation Error). Consider the system z = Hx +

v, and let E[vvT
] = BBT for a full row rank matrix B. Then

xwls − x̂(ε) = εHĎBDz,

where D is as in Theorem 3.2.
Proof. With the same notation as in the proof of Theorem 3.2, for
every value of ε > 0, the difference xwls − x̂(ε) equals
(HTΣ−1H)−1HTΣ−1

− HĎ
+ εHĎB(CĎ

+ D)

z.

Since (HTΣ−1H)−1HTΣ−1
− HĎ

+ εHĎBCĎ
= 0 for every ε > 0, it

follows xwls − x̂(ε) = εHĎBDz. �

Therefore, for the solution of system (5) by means of
Algorithm 1, the parameter ε is chosen according to Corollary 3.1
to meet a desired estimation accuracy. It should be observed
that, even if the entire matrix H needs to be known for the
computation of the exact parameter ε, the advantages of our
estimation technique are preserved. Indeed, if the matrix H is
unknown and an upper bound for ∥HĎBDz∥ is known, then a value
for ε can still be computed that guarantees the desired estimation
accuracy. On the other hand, if H is entirely known, it may be
inefficient to use H to perform a centralized state estimation over
time. Instead, a suitable parameter ε needs to be computed only
once. To conclude this section we characterize the estimation
residual z − Hx̂. This quantity plays an important role for the
synthesis of a distributed false data detection algorithm.
Corollary 3.2 (Estimation Residual). Consider the system z = Hx+v,
and let E[vvT

] = Σ = ΣT > 0. Then7

lim
ε→0+

∥z − Hx̂(ε)∥ ≤ ∥(I − HW )∥ ∥v∥,

where W = (HTΣ−1H)−1HTΣ−1.

Proof. By virtue of Theorem 3.2 we have

lim
ε→0+

x̂(ε) = xwls = (HTΣ−1H)−1HTΣ−1z = Wz.

Observe that HWH = H , and recall that z = Hx+v. For anymatrix
norm, we have

∥z − Hxwls∥ = ∥z − HWz∥ = ∥(I − HW )(Hx + v)∥

= ∥Hx − Hx + (I − HW )v∥

≤ ∥(I − HW )∥ ∥v∥,

and the theorem follows. �

3.3. Diffusive estimation via distributed computation

The implementation of the incremental state estimation
algorithm described in Section 3.2 requires a certain degree of
coordination among the control centers. For instance, an ordering
of the monitors is necessary, such that the i-th monitor transmits
its estimate to the (i + 1)-th monitor. This requirement imposes a
constraint on the monitors interconnection structure, which may
be undesirable, and, potentially, less robust to link failures. In
this section, we overcome this limitation by presenting a diffusive
implementation of Algorithm 1, which only requires the monitors
interconnection structure to be connected.8 To be more precise,
let V = {1, . . . ,m} be the set of monitors, and let G = (V , E)

be the undirected graph describing the monitors interconnection
structure, where E ⊆ V × V , and (i, j) ∈ E if and only if the
monitors i and j are connected. The neighbor set of node i is defined
as Ni = {j ∈ V : (i, j) ∈ E}. We assume that G is connected, and we
let the distance between two vertices be the minimum number of
edges in a path connecting them. Finally, the diameter of a graph G,
in short diam(G), equals the greatest distance between any pair of
vertices. Our diffusive procedure is described inAlgorithm2,where
the matrices Hi and εBi are as defined in Eq. (8). During the h-th
iteration of the algorithm, monitor i, with i ∈ {1, . . . ,N}, performs
the following three actions in order:

(i) transmits its current estimates x̂i and Ki to all its neighbors;
(ii) receives the estimates x̂j from neighbors Ni; and
(iii) updates x̂i and Ki as in the for loop of Algorithm 2.

We now show the convergence properties of Algorithm 2.

Theorem 3.3 (Convergence of Algorithm 2). Consider the system of
linear equations z = Hx + v, where E[v] = 0 and E[vvT

] = BBT.
Let H, B and z be partitioned as in (8), and let ε > 0. Let the monitors
communication graph be connected, let d be its diameter, and let the
monitors execute the Diffusive state estimation algorithm. Then, each
monitor computes the estimate x̂(ε) of x in d steps.

Proof. Let x̂i be the estimate of the monitor i, and let Ki be such
that [xT vT

]
T

− x̂i ∈ Im(Ki), where x denotes the network state,
v is the measurements noise vector, and x̂i ⊥ Im(Ki). Notice that
zi = [Hi εBi]x̂i, where zi it the i-th measurements vector. Let i and j
be two neighboringmonitors. Notice that there exist vectors vi and
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Algorithm 2 Diffusive state estimation (i-th monitor)
Input: Hi, εBi, zi;
x̂i := [Hi εBi]

Ďzi;
Ki := Basis(Ker([Hi εBi]));
while Ki ≠ 0 do

for j ∈ Ni do
receive x̂j and Kj;
x̂i := x̂i + [Ki 0][−Ki Kj]

Ď(x̂i − x̂j);
Ki := Basis(Im(Ki) ∩ Im(Kj));

end for
transmit x̂i and Ki;

end while

vj such that x̂i +Kivi = x̂j +Kjvj. In particular, those vectors can be
chosen as
vi
vj


= [−Ki Kj]

Ď(x̂i − x̂j).

It follows that the vector

x̂+

i = x̂i + [Ki 0][−Ki Kj]
Ď(x̂i − x̂j)

is such that zi = [Hi εBi]x̂+

i and zj = [Hj εBj]x̂+

i . Moreover we have
x̂+

i ⊥ (Im(Ki) ∩ Im(Kj)). Indeed, notice that
vi
vj


⊥ Ker


−Ki Kj


⊇


wi
wj


: Kiwi = Kjwj


.

We now show that Kivi ⊥ Im(Kj). By contradiction, if Kivi ⊥̸

Im(Kj), then vi = ṽi + v̄i, with Kiṽi ⊥ Im(Kj) and Kiv̄i ∈ Im(Kj). Let
v̄j = K Ď

j Kiv̄i, and ṽj = vj − v̄j. Then, [v̄T
i v̄T

j ]
T

∈ Ker([−Ki Kj]), and
hence [vT

i vT
j ]

T
⊥̸ Ker([−Ki Kj]), which contradicts the hypothesis.

We conclude that [Ki 0][−Ki Kj]
Ď(x̂i − x̂j) ⊥ Im(Kj), and, since

x̂i ⊥ Im(Ki), it follows x̂+

i ⊥ (Im(Ki)∩Im(Kj)). The theorem follows
from the fact that after a number of steps equal to the diameter of
the monitors communication graph, each vector x̂i verifies all the
measurements, and x̂i ⊥ Im(K1) ∩ · · · ∩ Im(Km). �

As a consequence of Theorem 3.2, in the limit for ε to zero,
Algorithm 2 returns the minimum variance estimate of the state
vector, being therefore the diffusive counterpart of Algorithm 1. A
detailed comparison between incremental and diffusive methods
is beyond the purpose of this work, and we refer the interested
reader to Lopes and Sayed (2007, 2008) and the references
therein for a thorough discussion. Here we only underline some
key differences. While Algorithm 1 requires less operations,
being therefore computationally more efficient, Algorithm 2 does
not constraint the monitors communication graph. Additionally,
Algorithm 2 can be implemented adopting general asynchronous
communication protocols. For instance, consider the Asynchronous
(diffusive) state estimation algorithm, where, at any given instant of
time, at most one monitor, say j, sends its current estimates to its
neighbors, and where, for i ∈ Nj, monitor i performs the following
operations:

(i) x̂i := x̂i + [Ki 0][−Ki Kj]
Ď(x̂i − x̂j),

(ii) Ki := Basis(Im(Ki) ∩ Im(Kj)).

Corollary 3.3 (Asynchronous Estimation). Consider the system of
linear equations z = Hx+ v, where E[v] = 0 and E[vvT

] = BBT. Let
H, B and z be partitioned as in (8), and let ε > 0. Let the monitors

7 Given a vector v and amatrixH , we denote by ∥v∥ any vector norm, and by ∥H∥

the corresponding induced matrix norm.
8 An undirected graph is said to be connected if there exists a path between any

two vertices (Godsil & Royle, 2001).
Algorithm 3 False data detection (i-th monitor)
Input: Hi, εBi, Γ ;
while True do

collect measurements zi(t);
estimate network state x̂(t) via Algorithm 1 or 2;
if ∥zi(t) − Hix̂(t)∥∞ > Γ then

return false data detected;
end if

end while

communication graph be connected, let d be its diameter, and let
the monitors execute the Asynchronous (diffusive) state estimation
algorithm. Assume that there exists a duration T ∈ R such that, within
each time interval of duration T , each monitor transmits its current
estimates to its neighbors. Then, each monitor computes the estimate
x̂(ε) of x within time dT .

Proof. The proof follows from the following two facts. First, the
intersection of subspaces is a commutative operation. Second,
since each monitor performs a data transmission within any time
interval of length T , it follows that, at time dT , the information
related to one monitor has propagated through the network to all
monitors. �

3.4. Detection of false data via distributed computation

In the previous sections we have shown how to compute
an optimal state estimate via distributed computation. A rather
straightforward application of the proposed state estimation
technique is the detection of false data among the measurements.
When themeasurements are corrupted, the state tomeasurements
relation becomes

z = Hx + v + w,

wherew is the false data vector. As a consequence of Corollary 3.2,
the vector w is detectable if it affects significantly the estimation
residual, i.e., if limε→0 ∥z − Hx̂(ε)∥ > Γ , where the threshold Γ

depends upon the magnitude of the noise v. Notice that, because
false data can be injected at any time by a malignant agent, the
detection algorithm needs to be executed over time by the control
centers. Let z(t) = Hx(t) + v(t) + w(t) be the measurements
vector at a given time instant t . Based on these considerations,
our distributed detection procedure is in Algorithm 3, where the
matrices Hi and εBi are as defined in Eq. (8), and Γ is a predefined
threshold.

In Algorithm 3, the value of the threshold Γ determines the
false alarm and the missed detection rates. Clearly, if Γ ≥ ∥(I −

HW )∥ ∥v(t)∥ at all times t , and ε is sufficiently small, then no false
alarm is triggered, at the expenses of the missed detection rate.
By decreasing the value of Γ the sensitivity to failures increases
together with the false alarm rate. Notice that, if the magnitude of
the noise signals is upper boundedbyγ , then a reasonable choice of
the threshold is Γ = γ ∥(I −HW )∥∞, where the use of the infinity
norm in Algorithm 3 is also convenient for the implementation.
Indeed, since the condition ∥z(t) − Hx̂(t)∥∞ > Γ is equivalent
to ∥zi(t) − Hix̂(t)∥∞ > Γ for some monitor i, the presence of
false data can be independently checked by each monitor without
further computation. Notice that an eventual alarmmessage needs
to be propagated to all control centers.

Remark 4 (Statistical Detection). A different strategy for the de-
tection of false data relies on statistical techniques, e.g., see
Abur and Exposito (2004). In the interest of brevity, we do not
consider thesemethods, andwe only remark that, once the estima-
tion residual has been computed by each monitor, the implemen-
tation of a (distributed) statistical procedure, such as, for instance,
the (distributed) χ2-Test, is a straightforward task.
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4. A finite-memory estimation technique

The procedure described in Algorithm 1 allows each agent to
compute an optimal estimate of the whole network state in finite
time. In this section, we allow each agent to handle only local and
of small dimension vectors, andwe develop a procedure to recover
an estimate of only a certain subnetwork. We envision that the
knowledge of only a subnetwork may be sufficient to implement
distributed estimation and control strategies.

We start by introducing the necessary notation. Let the mea-
surements matrix H be partitioned into m2 blocks, being m the
number of monitors in the network, as

H =

H11 · · · H1m
...

...
Hm1 · · · Hmm

 , (9)

where Hij ∈ Rmi×ni for all i, j ∈ {1, . . . ,m}. The above partitioning
reflects a division of the whole network into competence regions:
we let each monitor be responsible for the correct functionality of
the subnetwork defined by its blocks. Additionally, we assume that
the union of the different regions covers the whole network, and
that different competence regions may overlap. Observe that, in
most of the practical situations, the matrix H has a sparse struc-
ture, so that many blocks Hij have only zero entries. We associate
an undirected graph Gh with the matrix H , in a way that Gh reflects
the interconnection structure of the blocks Hij. To be more precise,
we let Gh = (Vh, Eh), where Vh = {1, . . . ,m} denotes the set of
monitors, and where, denoting by (i, j) the undirected edge from
j to i, it holds (i, j) ∈ Eh if and only if ∥Hij∥ ≠ 0 or ∥Hji∥ ≠ 0.
Noticed that the structure of the graph Gh, besides reflecting the
sparsity pattern of the measurement matrix, describes also the
monitors interconnections. By using the samepartitioning as in (9),
the Moore–Penrose pseudoinverse of H can be written as

HĎ
= H̃ =

H̃11 · · · H̃1m
...

...

H̃m1 · · · H̃mm

 , (10)

where H̃ij ∈ Rni×mi . Assume that H has full row rank,9 and observe
that HĎ

= HT(HHT)−1. Consider the equation z = Hx, and let
HĎz = x̂ = [x̂T1 · · · x̂Tm]

T, where, for all i ∈ {1, . . . ,m}, x̂i ∈ Rni . We
employ Algorithm 2 for the computation of the vector x̂, andwe let

x̂(i,h)
=

x̂(i,h)
1
...

x̂(i,h)
m


be the estimate vector of the i-th monitor after h iterations of
Algorithm2, i.e., after h executions of thewhile loop in Algorithm2.
In what follows, we will show that, for a sufficiently sparse matrix
H , the error ∥x̂i− x̂(i,h)

i ∥ has an exponential decaywhen h increases,
so that it becomes negligible before the termination of Algorithm2,
i.e., when h < diam(Gh). The main result of this section is next
stated.

Theorem 4.1 (Local Estimation). Let the full-row rank matrix H be
partitioned as in (9). Let [a, b], with a < b, be the smallest interval
containing the spectrum of HHT. Then, for i ∈ {1, . . . ,m} and h ∈ N,
there exist C ∈ R>0 and q ∈ (0, 1) such that

∥x̂i − x̂(i,h)
i ∥ ≤ Cq

h
2 +1.

9 The case of a full-column rank matrix is treated analogously.
For the readers convenience, before proving the above result,
we recall the following definitions and results. Given an invertible
matrix M of dimension n, let us define the support sets

Sh(M) =

h
k=0


(i, j):Mk(i, j) ≠ 0


,

being Mk(i, j) the (i, j)-th entry of Mk, and the decay sets

Dh(M) = ({1, . . . , n} × {1, . . . , n}) \ Sh(M).

Theorem 4.2 (Decay Rate Demko, Moss, & Smith, 1984). Let M be
of full row rank, and let [a, b], with a < b, be the smallest interval
containing the spectrum of M. There exist C ∈ R>0 and q ∈ (0, 1)
such that

sup

|MĎ(i, j)|: (i, j) ∈ Dh(MMT)


≤ Cqh+1.

For a graph Gh and two nodes i and j, let dist(i, j) denote the
smallest number of edges in a path from j to i in Gh. The following
result will be used to prove Theorem 4.1. Recall that, for a matrix
M , we have ∥M∥max = max{|M(i, j)|}.

Lemma 4.1 (Decay Sets and Local Neighborhood). Let the matrix H
be partitioned as in (9), and let Gh be the graph associated with H. For
i, j ∈ {1, . . . ,m}, if dist(i, j) = h, then

∥HĎ
ij∥max ≤ Cq

h
2 +1.

Proof. A proof of this result follows from simple inspection and it
is omitted here. �

Lemma 4.1 establishes a relationship between the decay sets of
an invertiblematrix and the distance among the vertices of a graph
associated with the same matrix. By using this result, we are now
ready to prove Theorem 4.1.

Proof of Theorem 4.1. Notice that, after h iterations of Algo-
rithm 2, the i-th monitor has received data from the monitors
within distance h from i, i.e., from the monitors T such that, for
each j ∈ T , there exists a path of length up to h from j to i in the
graph associated with H . Reorder the rows of H such that the i-th
block come first and the T -th blocks second. Let H = [HT

1 HT
2 HT

3 ]
T

be the resulting matrix. Accordingly, let z = [zT1 zT2 zT3 ]
T, and let

x = [xT1 xT2 xT3]
T, where z = Hx.

Because H has full row rank, we haveH1
H2
H3

 P11 P12 P13
P21 P22 P23
P31 P32 P33


=

I1 0 0
0 I2 0
0 0 I3


,

where I1, I2, and I3 are identity matrices of appropriate dimension,
and

HĎ
=

P11 P12 P13
P21 P22 P23
P31 P32 P33


.

For a matrixM , let col(M) denote the number of columns ofM . Let
T1 = {1, . . . , col(P11)}, T2 = {1 + col(P11), . . . , col([P11P12])}, and

T3 = {1 + col ([P11 P12]) , . . . , col ([P11 P12 P13])} .

Let T1, T2, and T3, be, respectively, the indices of the columns of P11,
P12, and P13. Notice that, by construction, if i ∈ T1 and j ∈ T3, then
dist(i, j) > h. Then, by virtue of Lemma 4.1 and Theorem 4.2, the
magnitude of each entry of P13 is bounded by C̄ q̄⌊

h
2 ⌋+1, for C̄, q̄ ∈ R.

Because H has full row rank, from Theorem 3.1 we have that

x̂ = HĎz = ˆ̄x + K1(H3K1)
Ď(z3 − H3x̂1), (11)
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Fig. 3. In this figure the normalized euclidean norm of the error vector θbus(ε) −

θbus,wls is plotted as a function of the parameter ε, where θbus(ε) is the estimation
vector computed according to Theorem 3.2, and θbus,wls is the minimum variance
estimate of θbus . As ε decreases, the vector θbus(ε) converges to the minimum
variance estimate θbus,wls .

where

ˆ̄x =

HT

1 HT
2

TĎ 
zT1 zT2

T and K1 = Basis

Ker


HT

1 HT
2

T
.

With the same partitioning as before, let x̂ = [x̂T1 x̂
T
2 x̂

T
3]

T. In order
to prove the theorem, we need to show that there exists C ∈ R>0
and q ∈ (0, 1) such that

∥x̂1 − ˆ̄x1∥ ≤ Cq⌊
h
2 ⌋+1.

Notice that, for (11) to hold, the matrix K1 can be any basis of
Ker([HT

1 HT
2 ]

T). Hence, let K1 = [PT
13 PT

23 PT
33]. Because every entry

of P13 decays exponentially, the theorem follows. �

In Section 5.2 we provide an example to clarify the exponential
decay described in Theorem 4.1.
5. An illustrative example

The effectiveness of the methods developed in the previous
sections is now shown through some examples.

5.1. Estimation and detection for the IEEE 118 system

The IEEE 118 bus system represents a portion of the American
Electric Power System as of December, 1962. This test case system,
whose diagram is reported in Fig. 2, is composed of 118 buses, 186
branches, 54 generators, and 99 loads. The voltage angles θbus and
the power injections Pbus at the network buses are assumed to be
related through the linear relation

Pbus = Hbusθbus,

where the matrix Hbus depends upon the network interconnection
structure and the network admittance matrix. For the network
in Fig. 2, let z = Pbus − v be the measurements vector, where
E[v] = 0 and E[vvT

] = σ 2I , σ ∈ R. Then, following the notation
in Theorem 3.2, the minimum variance estimate of θbus can be
recovered as

lim
ε→0+

[Hbus εσ I]Ďz.

In Fig. 3 we show that, as ε decreases, the estimation vector
computed according to Theorem 3.2 converges to the minimum
variance estimate of θbus.

In order to demonstrate the advantage of our decentralized
estimation algorithm, we assume the presence of 5 control centers
in the network of Fig. 2, each one responsible for a subpart of the
entire network. The situation is depicted in Fig. 4. Assume that each
control center measures the real power injected at the buses in its
area, and let zi = Pbus,i − vi, with E[vi] = 0 and E[viv

T
i ] = σ 2

i I , be
Fig. 4. In this figure the IEEE 118 bus systemhas been divided into 5 areas. Each area ismonitored and operated by a control center. The control centers cooperate to estimate
the state and to assess the functionality of the whole network.
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Fig. 5. For a fixed value of ε, Fig. 5 shows the average (over 100 tests) of the norm
of the error (with respect to the network state) of the estimate obtained by means
of Algorithm 1. The estimation error decreases with the number of measurements.
Because of the presence of several control centers, our algorithm processes more
measurements (up to 5N̄) while maintaining the same (or smaller) computational
complexity of a centralized estimation with N̄ measurements.

themeasurements vector of the i-th area. Finally, assume that the i-
th control center knows thematrixHbus,i such that zi = Hbus,iθbus+
vi. Then, as discussed in Section 3, the control centers can compute
an optimal estimate of θbus bymeans of Algorithm1 or Algorithm2.
Let ni be the number of measurements of the i-th area, and let N =5

i=1 ni. Notice that, with respect to a centralized computation of
the minimum variance estimate of the state vector, our estimation
procedure obtains the same estimation accuracy while requiring a
smaller computational burden and memory requirement. Indeed,
the i-th monitor uses ni measurements instead of N . Let N̄ be
the maximum number of measurements that, due to hardware or
numerical constraints, a control center can efficiently handle for
the state estimation problem. In Fig. 5, we increase the number of
measurements taken by a control center, so that ni ≤ N̄ , and we
showhow the accuracy of the state estimate increaseswith respect
to a single control center with N̄ measurements.

To conclude this section, we consider a security application,
in which the control centers aim at detecting the presence of
false data among the network measurements via distributed
computation. For this example, we assume that each control center
measures the real power injection aswell the currentmagnitude at
some of the buses of its area. By doing so, a sufficient redundancy
in the measurements is obtained for the detection to be feasible
(Abur & Exposito, 2004). Suppose that the measurements of the
power injection at the first bus of the first area is corrupted by
a malignant agent. To be more precise, let the measurements
vector of the first area be z̄i = zi + e1wi, where e1 is the first
canonical vector, and wi is a random variable. For the simulation
we choose wi to be uniformly distributed in the interval [0, wmax],
where wmax corresponds approximately to the 10% of the nominal
real injection value. In order to detect the presence of false
data among the measurements, the control centers implement
Algorithm 3, where, being H the measurements matrix, and σ , Σ
the noise standard deviation and covariance matrix, the threshold
value Γ is chosen as 2σ∥I − H(HTΣ−1H)−1HTΣ−1

∥∞.10 The
residual functions ∥zi − Hx̂∥∞ are reported in Fig. 6. Observe
that, since the first residual is greater than the threshold Γ , the
control centers successfully detect the false data. Regarding the
identification of the corrupted measurements, we remark that a
regional identification may be possible by simply analyzing the
residual functions. In this example, for instance, since the residuals
2–5 are below the threshold value, the corrupted data is likely to be
among the measurements of the first area. This important aspect
is left as the subject of future research.

10 For a Gaussian distribution with mean µ and variance σ 2 , about 95% of the
realizations are contained in [µ − 2σ , µ + 2σ ].
Fig. 6. Fig. 6 shows the residual functions computed by the 5 control centers. Since
the first residual is greater than the threshold value, the presence of false data is
correctly detected by the first control center. A form of regional identification is
possible by simple identifying the residuals above the security threshold.

Fig. 7. In Fig. 7, a two dimensional power gridwith 400 buses. The network is oper-
ated by 16 control centers, each one responsible for a different subnetwork. Control
centers cooperate through the red communication graph. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

5.2. Scalability property of our finite-memory estimation technique

Consider an electrical network with (ab)2 buses, where a, b ∈

N. Let the buses interconnection structure be a two dimensional
lattice, and let G be the graph whose vertices are the (ab)2 buses,
and whose edges are the network branches. Let G be partitioned
into b2 identical blocks containing a2 vertices each, and assume the
presence of b2 control centers, each one responsible for a different
network part. We assume the control centers to be interconnected
through an undirected graph. In particular, being Vi the set of buses
assigned to the control center Ci, we let the control centers Ci and
Cj be connected if there exists a network branch linking a bus in Vi
to a bus in Vj. An example with b = 4 and a = 5 is in Fig. 7. In
order to show the effectiveness of our approximation procedure,
suppose that each control center Ci aims at estimating the vector
of the voltage angles at the buses in its region.We assume also that
the control centers cooperate, and that each of them receives the
measurements of the real power injected at only the buses in its
region. Algorithm 2 is implemented by the control centers to solve
the estimation problem. In Fig. 8 we report the estimation error
during the iterations of the algorithm. Notice that, as predicted by
Theorem 4.1, each leader has a good estimate of the state of its
region before the termination of the algorithm.

6. Conclusion

Two distributed algorithms for network control centers to
compute the minimum variance estimate of the network state
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Fig. 8. Fig. 8 shows the norm of the estimation error of the local subnetwork as a
function of the number of iterations of Algorithm 2. The considered monitors are
C1 ,C6 , C11 , and C15 . As predicted by Theorem 4.1, the local estimation error becomes
negligible before the termination of the algorithm.

given noisy measurements have been proposed. The two methods
differ in the mode of cooperation of the control centers: the first
method implements an incremental mode of cooperation, while
the second uses a diffusive interaction. Both methods converge
in finite time, which we characterize, and they require only
local measurements and model knowledge to be implemented.
Additionally, an asynchronous and scalable implementation of our
diffusive estimation method has been described, and its efficiency
has been shown through a rigorous analysis and through a practical
example. Based on these estimation methods, an algorithm to
detect cyber-attacks against the network measurements has
also been developed, and its detection performance has been
characterized.

Appendix

A.1. Proof of Theorem 3.1

Proof. Let H i
= [HT

1 · · · HT
i ]

T, z i = [zT1 · · · zTi ]
T. We show by

induction that z i = H ix̂i, Ki = Basis(Ker(H i)), and x̂i ⊥ Ker(H i).
Note that the statements are trivially verified for i = 1. Suppose
that they are verified up to i, then we need to show that Ki+1 =

Basis(Ker(H i+1)), x̂i+1 ⊥ Ker(H i+1), and z i+1
= H i+1x̂i+1.

We start by proving that Ki+1 = Basis(Ker(H i+1)). Observe that
Ker(Ki) = 0 for all i, and that

Ker(Hi+1Ki) = {v: Kiv ∈ Ker(Hi+1)}. (A.1)

Hence,

Im(Ki+1) = Im(KiKer(Hi+1Ki))

= Im(Ki) ∩ Ker(Hi+1)

= Ker(H i) ∩ Ker(Hi+1) = Ker(H i+1).

We now show that xi+1 ⊥ Ker(H i+1), which is equivalent to
x̂i + Ki(Hi+1Ki)

Ď(zi+1 − Hi+1x̂i)


∈ Ker(H i+1)⊥.

Note that

Ker(H i+1) ⊆ Ker(H i) ⇔ Ker(H i+1)⊥ ⊇ Ker(H i)⊥.

By the induction hypothesis we have x̂i ∈ Ker(H i)⊥, and hence
x̂i ∈ Ker(H i+1)⊥. Therefore, we need to show that

Ki(Hi+1Ki)
Ď(zi+1 − Hi+1x̂i) ∈ Ker(H i+1)⊥.

Letw = (Hi+1Ki)
Ď(zi+1−Hi+1x̂i), and notice thatw ∈ Ker(Hi+1Ki)

⊥

due to the properties of the pseudoinverse operation. Suppose that
Kiw ∉ Ker(Hi+1)

⊥. Since Ker(Ki) = {0}, the vector w can be
written as w = w1 + w2, where Kiw1 ∈ Ker(Hi+1)

⊥ and Kiw2 =

Kiw − Kiw1 ≠ 0, Kiw2 ∈ Ker(Hi+1). Then, it holds Hi+1Kiw2 = 0,
and hence w2 ∈ Ker(Hi+1Ki), which contradicts the hypothesis
w ∈ Ker(Hi+1Ki)

⊥. Finally Kiw ∈ Ker(Hi+1)
⊥

⊆ Ker(H i+1)⊥.
We now show that z i+1

= H i+1x̂i+1. Because of the consistency
of the system of linear equations, and because z i = H ix̂i by the
induction hypothesis, there exists a vector vi ∈ Ker(H i) = Im(Ki)
such that z i+1

= H i+1(x̂i + vi), and hence that zi+1 = Hi+1(x̂i + vi).
We conclude that (zi+1 − Hi+1x̂i) ∈ Im(Hi+1Ki), and finally that
z i+1

= H i+1x̂i+1. �

A.2. Proof of Theorem 3.2

Before proceeding with the proof of the above theorem, we
recall the following fact in linear algebra.

Lemma A.1. Let H ∈ Rn×m. Then Ker((HĎ)T) = Ker(H).

Proof. We first show that Ker((HĎ)T) ⊆ Ker(H). Recall from
Bernstein (2009) that H = HHT(HĎ)T. Let x be such that (HĎ)Tx =

0, then Hx = HHT(HĎ)Tx = 0, so that Ker((HĎ)T) ⊆ Ker(H). We
now show that Ker(H) ⊆ Ker((HĎ)T). Recall that (HĎ)T = (HT)Ď =

(HHT)ĎH . Let x be such that Hx = 0, then (HĎ)Tx = (HHT)ĎHx = 0,
so that Ker(H) ⊆ Ker((HĎ)T), which concludes the proof. �

We are now ready to prove Theorem 3.2.

Proof. The first property follows directly from Bernstein (2009)
(cfr. p. 427). To show the second property, observe that CĎ

=
1
ε
((I − HHĎ)B)Ď, so that

lim
ε→0+

εD = 0.

For the theorem to hold, we need to verify that

HĎ
− HĎB((I − HHĎ)B)Ď = (HTΣ−1H)−1HTΣ−1,

or, equivalently, that
HĎ

− HĎB((I − HHĎ)B)Ď

HHĎ

= (HTΣ−1H)−1HTΣ−1HHĎ, (A.2)

and
HĎ

− HĎB((I − HHĎ)B)Ď

(I − HHĎ)

= (HTΣ−1H)−1HTΣ−1(I − HHĎ). (A.3)

Consider Eq. (A.2). After simple manipulation, we have

HĎ
− HĎB((I − HHĎ)B)ĎHHĎ

= HĎ,

so that we need to show only that

HĎB((I − HHĎ)B)ĎHHĎ
= 0.

Recall that for a matrix W it holds W Ď
= (W TW )ĎW T. Then the

term ((I − HHĎ)B)ĎHHĎ equals
((I − HHĎ)B)T((I − HHĎ)B)

Ď BT(I − HHĎ)HHĎ
= 0,

because (I − HHĎ)HHĎ
= 0. We conclude that Eq. (A.2) holds.

Consider now Eq. (A.3). Observe that HHĎ(I − HHĎ) = 0. Because
B has full row rank, and Σ = BBT, simple manipulation yields

−HT(BBT)−1HHĎB

(I − HHĎ)B

Ď
(I − HHĎ)B

= HT(BBT)−1(I − HHĎ)B,

and hence

HT(BBT)−1

I + HHĎB


(I − HHĎ)B

Ď
(I − HHĎ)B = 0.

Since HHĎ
= I − (I − HHĎ), we obtain

HT(BBT)−1B

(I − HHĎ)B

Ď
(I − HHĎ)B = 0.



758 F. Pasqualetti et al. / Automatica 48 (2012) 747–758
A sufficient condition for the above equation to be true is
(I − HHĎ)B

ĎT
BT(BBT)−1H = 0.

From Lemma A.1 we have.

Ker


(I − AAĎ)B
ĎT


= Ker((I − AAĎ)B).

Since

(I − HHĎ)BBT(BBT)−1H = (I − HHĎ)H = 0,

we have that

HT(BBT)−1B

(I − HHĎ)B

Ď
(I − HHĎ)B = 0,

and that Eq. (A.3) holds. This concludes the proof. �
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