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Abstract—This work presents a distributed method for control
centers to monitor the operating condition of a power network.
Specifically we consider (static) state estimation problems, in
which the state vector consists of the voltage magnitude and
angle at all network buses. We consider the state to be linearly
related to network measurements, which include power flows,
current injections, and voltages phasors at some buses. We
admit the presence of several cooperating control centers, and
we design two distributed methods for them to compute the
minimum variance estimate of the state given the network
measurements. The two distributed methods rely on different
modes of cooperation among control centers: in the first method
an incremental mode of cooperation is assumed, whereas, in the
second method, a diffusive interaction is implemented. These
estimation methods, which are proved to converge in finite time,
are further exploited to develop a distributed algorithm to detect
corrupted data among network measurements.

I. INTRODUCTION

Power systems are operated by system operators from the
area control center. The main goal of the system operator
is to maintain the network in a secure operating condition,
in which all the loads are supplied power by the generators
without violating the operational limits on the transmission
lines. In order to accomplish this goal, the network model and
the phasor voltages at every system bus need to be determined,
and preventive actions have to be taken if the system is in an
insecure state. For the determination of the operating state,
remote terminal units and measuring devices are deployed in
the network to gather measurements. These devices are then
connected via a local area network to a SCADA (Supervisory
Control and Data Acquisition) terminal, which supports the
communication of the collected measurements to a control
center. At the control center, the measurement data is used
for control and optimization functions, such as contingency
analysis, load forecasting, optimal power flow computation,
and reactive power dispatch [1]. Various sources of uncer-
tainties, e.g., measurement and communication noise, lead
to inaccuracies in the received data, which may affect the
performance of the control and optimization algorithms, and,
ultimately, the stability of the power plant. This concern was
first recognized and addressed in [2] by introducing the idea
of (static) state estimation in power systems.
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Power network state estimators are broadly used to obtain an
optimal estimate from redundant noisy measurements, and to
estimate the state of a network branch which, for economical
or computational reasons, is not directly monitored. For the
power systems state estimation problem, several centralized
and parallel solutions have been developed in the last decades,
e.g., see [3]. Being an online function, computational issues,
storage requirements, and numerical robustness of the solution
algorithm need to be taken into account. Within this regard,
distributed algorithms based on network partitioning tech-
niques are to be preferred over centralized ones. In [4], [5] the
idea is explored of using a global control center to coordinate
estimates obtained locally by several local control centers.
In this work, we improve the results along these directions,
by proposing a fully decentralized and distributed estimation
algorithm, which, by only assuming local knowledge of the
network structure by the local control centers, allows them to
obtain in finite-time an optimal estimate of the network state.
Our methods also differ from the algorithms proposed in [6],
[7]. Indeed, the convergence of these latter algorithms is only
asymptotic, and it depends upon the communication topology.
As a matter of fact, for many communication topologies, such
as Cayley graphs and random geometric graphs, the conver-
gence rate is very slow and scales badly with the network
dimension. This aspect is undesirable because a delayed state
estimation could lead the power plant to instability.

Because of the increasing reliance of nowadays power
systems on communication networks, the possibility of cyber-
attacks to networked systems is an actual threat [8], [9]. For
instance, an attacker can compromise a network system by cor-
rupting the measurements directed to the control center, with
the goal of inducing errors in the state estimation mechanism
[10]. This important type of attack is often referred in the
power systems literature to as false data injection attack. The
presence of false data is classically checked by analyzing the
statistical properties of the estimation residual z−Hx̂, where z
is the measurements vector, x̂ is a state estimate, and H is the
state to measurements matrix. For an attack to be successful,
the residual needs to remain within a certain confidence level,
and one approach to circumvent false data injection attacks is
to increase the number of measurements so as to obtain a more
accurate confidence bound. Clearly, by increasing the number
of measurements, the data to be transmitted to the control
center increases, and the dimension of the estimation problem
grows. By means of our estimation method, we address the
above dimensionality problem by distributing the false data
detection problem among several control centers.
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The contributions of this work are twofold. First, we adopt
the static state network estimation model, in which the state
vector is linearly related to the network measurements (see
Section II). We develop a method for a group of connected
control centers to compute an optimal estimate of the sys-
tem state via distributed computation (see Section III-A and
Section III-B). Our estimation method is iterative, and it is
shown to converge in a finite number of steps. Furthermore, it
requires only local information for its implementation, because
each control center uses only the measurements coming from
a local neighborhood of the whole network. Second, we
describe a finite-time algorithm to detect corrupted data in
the network measurements via distributed computation (see
Section III-C). Our detection method is based upon our state
estimation algorithm, and it inherits its convergence properties.
Additionally, we characterize a class of corrupted vectors that
are guaranteed to be detected by our procedure. Finally, we
show the effectiveness of our procedures on the IEEE 118 bus
system (see Section IV).

II. PROBLEM DEFINITION AND PRELIMINARY NOTIONS

The state of a power network at a certain time instant
consists of the voltage angles and magnitudes at all system
buses. The (static) state estimation problem introduced in
the seminal work by Schweppe [2] refers to the procedure
of estimating the state of a power network given a set of
measurements of the network variables, such as, for instance,
voltages, currents, and power flows along the transmission
lines. To be more precise, let x ∈ Rn and z ∈ Rp be,
respectively, the state and measurements vector. Then we have

z = h(x) + η, (1)

where h(·) is a nonlinear measurement function, and η is a
zero mean random vector satisfying E[ηηT] = Ση = ΣT

η > 0.
An optimal estimate of the network state coincides with the
most likely vector x̂ that solves equation (1). It should be ob-
served that the network state could be obtained by measuring
directly the voltage phasors by means of phasor measurement
devices.1 Such an approach, however, would be economically
expensive, and it would be very vulnerable to communica-
tion failures [1]. In this work, we adopt the approximated
estimation model presented in [11], which follows from the
linearization around the origin of equation (1). In particular,
letting H ∈ Rp×n, E[v] = 0, and E[vvT] = Σ = ΣT > 0, the
state estimation problem becomes

z = Hx+ v. (2)

Observe that, because of the interconnection structure of a
power network, the measurement matrix H is sparse. Let
Ker(H) denote the null space defined by the matrix H . Let
Ker(H) = {0}, and recall from [12] that the vector

xwls = (HTΣ−1H)−1HTΣ−1z (3)

1Phasor measurement units are devices that synchronize by using GPS
signals, and that allow for a direct measurement of voltage and current phasors.

is such that it minimizes the weighted variance of the estima-
tion error, i.e., xwls = arg minx̂(z −Hx̂)TΣ−1(z −Hx̂).

The centralized computation of the minimum variance esti-
mate (3) assumes the complete knowledge of the matrices H
and Σ, and it requires the inversion of the matrix HTΣ−1H .
For a large power network, such computation imposes a
limitation on the dimension of the matrix H , and hence on the
number of measurements that can be efficiently processed to
obtain a real-time state estimate. A possible solution to address
this complexity problem is to distribute the computation of xwls
among geographically deployed control centers (monitors), in
a way that each monitor is responsible for a subpart of the
whole network. To be more precise, let the matrices H and
Σ, and the vector z be partitioned as

H =


H1

H2

...
Hm

 , Σ =


Σ1

Σ2

...
Σm

 , z =


z1
z2
...
zm

 , (4)

where, for i ∈ {1, . . . ,m}, mi ∈ N, Hi ∈ Rmi×n, Σi ∈
Rmi×n, zi ∈ Rmi , and

∑m
i=1mi = p. Let G = (V, E) be a

connected graph in which each vertex i ∈ V = {1, . . . ,m}
denotes a monitor. Assume that each monitor i knows the
matrices Hi, Σi, and the vector zi, and that two neighboring
monitors are allowed to cooperate by exchanging information.
Notice that, if the full matrices H and Σ are nowhere available,
and if they cannot be used for the computation of xwls, then,
with no cooperation among the monitors, the vector xwls
cannot be computed by any of the monitor. Hence we consider
the following problem.

Problem 1 (Distributed state estimation) Design an algo-
rithm for the monitors to compute the minimum variance
estimate of the network state via distributed computation.

Given the distributed nature of a power system and the
increasing reliance on local area networks to transmit data to
a control center, there exists the possibility for an attacker to
compromise the network functionality by corrupting the mea-
surements vector. When a malignant agent corrupts some of
the measurements, the state to measurements relation becomes

z = Hx+ v + w,

where the vector w ∈ Rp is chosen by the attacker, and, hence,
it is unknown and unmeasurable by any of the monitoring
stations. We refer to the vector w to as false data. From the
above equation, it should be observed that there exist vectors
w that cannot be detected through the measurements z. For
instance, if the bad data vector is intentionally chosen such
that w ∈ Im(H), then the attack cannot be detected through
the measurements z. Indeed, denoting with † the pseudoinverse
operation, the vector x+H†w is a valid network state.

Problem 2 (Distributed detection) Design an algorithm for
the monitors to detect the presence of (detectable) false data
in the network measurements via distributed computation.
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Algorithm 1: Incremental minimum norm solution (i-th
monitor)

Input : Hi,zi;
Require : [zT

1 . . . zT
m]T ∈ Im([HT

1 . . . HT
m]T);

if i = 1 then x̂0 := 0, K0 := In;1

else receive x̂i and Ki−1 from monitor i− 1;2

x̂i := x̂i−1 +Ki−1(HiKi−1)†(zi −Hix̂i−1);3

Ki := Basis(Ki−1 Ker(HiKi−1));4

if i < m then transmit x̂i and Ki−1 to monitor i+ 1;5

else return x̂m;6

We remark that, although we focus on power networks, the
methods described in the following sections are general and
have applicability beyond the considered scenario.

III. OPTIMAL STATE ESTIMATION AND FALSE DATA
DETECTION VIA DISTRIBUTED COMPUTATION

The objective of this section is the design of distributed
methods to compute an optimal state estimate from mea-
surements. With respect to a centralized method, in which a
powerful central processor is in charge of processing all the
data, our procedures require the computing units to have access
to only a subset of the measurements and are shown to reduce
significantly the computational burden.

For a distributed method to be implemented, the interaction
structure among the computing units needs to be defined.
Here we consider two modes of cooperations among the
computing units, and, precisely, the incremental and the dif-
fusive interaction. In an incremental mode of cooperation,
information flows in a sequential manner from one node to
the adjacent one. This setting, which usually requires the least
amount of communications [13], induces a cyclic interaction
graph among the processors. In an diffusive strategy, instead,
each node exchange information with all (or a subset of) its
neighbors as defined by an interaction graph. In this case,
the amount of communication and computation is higher than
in the incremental case, but each node possesses a good
estimate before the termination of the algorithm, since it
improves its estimate at each communication round. This
section is divided into three parts. In Section III-A, we develop
a distributed incremental method to solve a minimum variance
estimation problem. In Section III-B we derive a diffusive
strategy which is amenable to asynchronous implementation.
Finally, in Section III-C we propose a distributed algorithm
for the detection of false data among the measurements.

A. Incremental state estimation via distributed computation

We start by introducing a distributed incremental procedure
to compute the minimum norm solution to a set of liner
equations. This procedure constitutes the key ingredient of the
incremental method we later propose to solve the minimum
variance estimation problem.

Let H ∈ Rp×m, and let z ∈ Im(H), where Im(H)
denotes the range space spanned by the matrix H . Consider

the system of linear equations z = Hx, and recall that the
unique minimum norm solution to z = Hx coincides with
the vector x̂ such that z = Hx̂ and ‖x̂‖2 is minimum. It can
be shown that ‖x̂‖2 being minimum corresponds to x̂ being
orthogonal to the null space Ker(H) of H [12]. Let H and
z be partitioned in m blocks as in (4), and let G = (V, E)
be a directed graph such that V = {1, . . . ,m} corresponds to
the set of monitors, and, denoting with (i, j) the directed edge
from j to i, E = {(i+1, i) : i = 1, . . . ,m−1}∪{(1,m)}. Our
incremental procedure to compute the minimum norm solution
to z = Hx̂ is in Algorithm 1, where, given a subspace V , we
write Basis(V) to denote any full rank matrix whose columns
span the subspace V .

The next theorem states the convergence properties of the
Incremental minimum norm solution algorithm.

Theorem III.1 (Convergence of Algorithm 1) Let z = Hx,
where H and z are partitioned in m row-blocks as in (4). In
Algorithm 1, the m-th monitor returns the vector x̂ such that
z = Hx̂ and x̂ ⊥ Ker(H).2

We now focus on the computation of the weighted least
squares solution to a set of linear equations. Let v be an
unknown and unmeasurable random vector, with E(v) = 0
and E(vvT) = Σ = ΣT > 0. Consider the system of equations

z = Hx+ v, (5)

and assume Ker(H) = 0. Notice that, because of the noise
vector v, Algorithm 1 cannot be directly employed to compute
the vector xwls defined in (3). It is possible, however, to
recast the weighted least squares estimation problem to be
solvable with Algorithm 1. Note that, because the matrix Σ is
symmetric and positive definite, there exists3 a full row rank
matrix B such that Σ = BBT. Then, equation (5) can be
rewritten as

z =
[
H εB

] [x
v̄

]
, (6)

where ε > 0, E[v̄] = 0 and E[v̄v̄T] = ε−2I . Observe that, be-
cause B has full row rank, the system (6) is underdetermined,
i.e., z ∈ Im([H εB]) and Ker([H εB]) 6= 0. Let[

x̂(ε)
ˆ̄v

]
=
[
H εB

]†
z. (7)

The following theorem characterizes the relation between the
minimum variance estimation xwls and x̂(ε).

Theorem III.2 (Convergence with ε) Consider the system of
linear equations z = Hx + v. Let E(v) = 0 and E(vvT) =
Σ = BBT > 0, for a full row rank matrix B. Let

C = ε(I −HH†)B,
E = I − C†C,
D = εE[I + ε2EBT(HHT)†BE]−1BT(HHT)†(I − εBC†).

2A proof of the results contained in this paper can be found at
http://arxiv.org/abs/1103.0579.

3Choose for instance B = WΛ1/2, where W is a basis of eigenvectors of
Σ and Λ is the corresponding diagonal matrix of the eigenvalues.
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Then

xwls = lim
ε→0+

x̂(ε)

where x(ε) =
(
H† − εH†B(C† +D)

)
z. Moreover, for a

fixed value of ε, we have

xwls − x̂(ε) = εH†BDz.

For the system of equations (5), the estimate x̂(ε)
can be computed by means of Algorithm 1 with input
[H1 εBi], . . . , [Hm εBm] and z1, . . . , zm, where, being BBT

is the noise covariance matrix, we have

H =


H1

H2

...
Hm

 , B =


B1

B2

...
Bm

 , z =


z1
z2
...
zm

 , (8)

and, for i ∈ {1, . . . ,m}, mi ∈ N, Hi ∈ Rmi×n, Bi ∈ Rmi×n,
zi ∈ Rmi , and ε > 0.

To conclude this section, we characterize the estimation
residual z −Hx̂. This quantity will play a important role for
the synthesis of a distributed bad data detection algorithm.

Corollary III.1 (Estimation residual) Consider the system
z = Hx+ v, and let E[vvT] = Σ = ΣT > 0. Then4

lim
ε→0+

‖z −Hx̂(ε)‖ ≤ ‖(I −HW )‖‖v‖,

where W = (HTΣ−1H)−1HTΣ−1.

B. Diffusive state estimation via distributed computation

The implementation of the incremental state estimation
algorithm described in Section III-A requires a certain degree
of coordination among the control centers. For instance, an
ordering of the monitors is necessary, such that the i-th
monitor transmits its estimate to the (i + 1)-th monitor. This
requirement imposes a constraint on the monitors interconnec-
tion structure, which may be undesirable, and, potentially, less
robust to link failures. In this section, we overcome this limi-
tation by presenting a diffusive implementation of Algorithm
1, which only requires the monitors interconnection structure
to be connected.5 To be more precise, let V = {1, . . . ,m}
be the set of monitors, and let G = (V,E) be the undirected
graph describing the monitors interconnection structure, where
E ⊆ V × V , and (i, j) ∈ E if and only if the monitors i and
j are connected. The neighbor set of node i is defined as
Ni = {j ∈ V : (i, j) ∈ E}. We assume that G is connected,
and we let the distance between two vertices be the minimum
number of edges in a path connecting them. Finally, the
diameter of a graph G, in short diam(G), equals the greatest
distance between any pair of vertices. Our diffusive procedure
is described in Algorithm 2, where the matrices Hi and εBi

4Given a vector v and a matrix H , we denote by ‖v‖ any vector norm,
and by ‖H‖ the corresponding induced matrix norm.

5An undirected graph is said to be connected if there exists a path between
any two vertices [14].

Algorithm 2: Diffusive state estimation (i-th monitor)
Input : Hi, εBi, zi;
x̂i := [Hi εBi]†zi;1

Ki := Basis(Ker([Hi εBi]));2

while Ki 6= 0 do3

for j ∈ Ni do4

receive x̂j and Kj ;5

x̂i := x̂i + [Ki 0][−Ki Kj ]†(x̂i − x̂j);6

Ki := Basis(Im(Ki) ∩ Im(Kj));7

transmit x̂i and Ki;8

are as defined in equation (8). During the h-th iteration of
the algorithm, monitor i, with i ∈ {1, . . . , N}, performs the
following three actions in order:

(i) transmits its current estimates x̂i and Ki to all its
neighbors;

(ii) receives the estimates x̂j from neighbors Ni; and
(iii) updates x̂i and Ki as in the for loop of Algorithm 2.

We next show the convergence of Algorithm 2 to the
minimum variance estimate.

Theorem III.3 (Convergence of Algorithm 2) Consider
the system of linear equations z = Hx + v, where E[v] = 0
and E[vvT] = BBT. Let H , B and z be partitioned as in
(8), and let ε > 0. Let the monitors communication graph be
connected, let d be its diameter, and let the monitors execute
the Diffusive state estimation algorithm. Then, each monitor
computes the estimate x̂(ε) of x in at most d steps.

As a consequence of Theorem III.2, in the limit for ε to
zero, Algorithm 2 returns the minimum variance estimate of
the state vector, being therefore the diffusive counterpart of
Algorithm 1. A detailed comparison between incremental and
diffusive methods is beyond the purpose of this work, and we
refer the interested reader to [6], [7] and the references therein
for a thorough discussion.

C. Detection of false data via distributed computation

In the previous sections we have shown how to compute
an optimal estimate of the system state via distributed com-
putation. We focus now on the problem of detecting the
presence of false data among the measurements in a distributed
manner. When the measurements are corrupted, the state to
measurements relation becomes

z = Hx+ v + w,

where w is the false data vector. Following Corollary III.1, the
vector w is detectable if it affects significantly the estimation
residual, i.e., if

lim
ε→0
‖z −Hx̂(ε)‖ > Γ,

where threshold Γ depends upon the magnitude of the noise
v. Notice that, because the false data can be injected at any
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Algorithm 3: False data detection (i-th monitor)
Input : Hi, εBi, Γ;
while True do1

collect measurements zi(t);2

estimate network state x̂(t) via Algorithm 1 or 2;3

if ‖zi(t)−Hix̂(t)‖∞ > Γ then4

False data detected;5

time by a malignant agent, the detection algorithm needs to
be executed over time by the control centers. Let z(t) be
the measurements vector at a given time instant t, and let
E[z(t1)zT(t2)] = 0 for all t1 6= t2. Based on this consider-
ations, our distributed detection procedure is in Algorithm 3,
where the matrices Hi and εBi are as defined in equation (8),
and Γ is a predefined threshold. It should be noticed that, since
our estimation algorithms recover the precision of a centralized
method, our detection algorithm is optimal in the sense that it
has the same performance of a centralized detection method.

In Algorithm 3, the value of the threshold Γ determines
the false alarm and the misdetection rate. Clearly, if Γ ≥
‖(I −HW )‖‖v(t)‖ and ε is sufficiently small, then no false
alarm is triggered, at the expenses of the misdetection rate. By
decreasing the value of Γ the sensitivity to failures increases
together with the false alarm rate. Notice that, if the magnitude
of the noise signals is bounded by γ, then a reasonable choice
of the threshold is Γ = γ‖(I − HW )‖∞, where the use of
the infinity norm in Algorithm 3 is also convenient for the
implementation. Indeed, once the estimation x̂(t) has been
computed, the condition ‖zi(t) − Hix̂(t)‖∞ > Γ can be
checked by each leader without any further communication.
A related example is presented in the next section.

IV. AN ILLUSTRATIVE EXAMPLE

The IEEE 118 bus system represents a portion of the
American Electric Power System as of December, 1962. This
test case system is composed of 118 buses, 186 branches, 54
generators, and 99 loads. Following [11], the voltage angles
θbus and the power injections Pbus at the network buses are
related through the linear relation

Pbus = Hbusθbus,

where the matrix Hbus depends upon the network intercon-
nection structure and the network admittance matrix. Let
z = Pbus − v be the measurements vector, where E[v] = 0
and E[vvT] = σ2I , σ ∈ R. Then, following the notation in
Theorem III.2, the minimum variance estimate of θbus can be
recovered as

lim
ε→0+

[Hbus εσI]†z.

In Fig. 1 we show that, as ε decreases, the estimation vector
computed according to Theorem III.2 converges to the mini-
mum variance estimate of θbus.

In order to demonstrate the advantage of our decentralized
estimation algorithm, we assume the presence of 5 control
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Fig. 1. The normalized Euclidean norm of the error vector θbus(ε)− θbus,wls
is plotted as a function of the parameter ε, where θbus(ε) is the estimation
vector computed according to Theorem III.2, and θbus,wls is the minimum
variance estimate of θbus. As ε decreases, the vector θbus(ε) converges to the
minimum variance estimate θbus,wls.
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Fig. 2. The IEEE 118 bus system has been divided into 5 areas. Each area
is monitored and operated by a control center. The control centers cooperate
to estimate the state and to assess the functionality of the whole network.

centers in the IEEE 118 network, each one responsible for a
subpart of the entire network. The situation is depicted in Fig.
2. Assume that each control center measures the real power
injected at the buses in its area, and let zi = Pbus,i − vi,
with E[vi] = 0 and E[vivT

i ] = σ2
i I , be the measurements

vector of the i-th area. Finally, assume that the i-th control
center knows the matrix Hbus,i such that zi = Hbus,iθbus + vi.
Then, as discussed in Section III, the control center can
compute an optimal estimate of θbus by means of Algorithm
1 or 2. Let ni be the number of measurements of the i-th
area, and let N =

∑5
i=1 ni. Notice that, with respect to a

centralized computation of the minimum variance estimate of
the state vector, our estimation procedure obtains the same
estimation accuracy while requiring a smaller computation
burden and memory requirement. Indeed, the i-th monitor
uses ni measurements instead of N . Let N̄ be the maximum
number of measurements that, due to hardware or numerical
constraints, a control center can efficiently handle for the state
estimation problem. In Fig. 3, we increase the number of
measurements taken by a control center, so that ni ≤ N̄ , and
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Fig. 3. For a fixed value of ε, the plot shows the norm of the error
with respect to the true state vector of the estimate obtained by means of
Algorithm 1 (solid) and of the centralized minimum variance estimation with
N̄ measurements (dashed). The x axis denotes the number of measurements
used for the distributed estimation. Because of the presence of several control
centers, the distributed algorithm is more accurate while maintaining the same
(or smaller) computational complexity of the centralized estimation.

we show how the accuracy of the state estimate increases with
respect to a single control center with N̄ measurements.

To conclude this section, we consider a security appli-
cation. Assume that each control center measures the real
power injection as well the current magnitude at some of
the buses of its area. By doing so, a sufficient redundancy
in the measurements is obtained for the detection to be
feasible [1]. Suppose that the measurements of the power
injection at the first bus of the first area is corrupted by a
malignant agent. To be more precise, let the measurements
vector of the first area be z̄i = zi + e1wi, where e1 is
the first canonical vector, and wi is a random variable. For
the simulation we choose wi to be uniformly distributed in
the interval [0, wmax], where wmax corresponds approximately
to the 10% of the nominal real injection value. In order to
detect the presence of false data among the measurements,
the control centers implement Algorithm 3, where, being
Hbus the measurements matrix, and σ, Σ the noise standard
deviation and covariance matrix, the threshold value Γ is
chosen as 2σ‖I − Hbus(HT

busΣ
−1Hbus)−1HT

busΣ
−1‖∞.6 The

residual functions ‖zi−Hix̂‖∞ are reported in Fig. 4. Observe
that, since the first residual is greater than the threshold Γ, the
control centers successfully detect the false data. Regarding the
identification of the corrupted measurements, we remark that
a regional identification may be possible by simply analyzing
the residual functions. In this example, for instance, since
the residuals {2, . . . , 5} are below the threshold value, the
corrupted data is likely to be among the measurements of the
first area. This important aspect is left, however, as the subject
of future research.

V. CONCLUSION

Two algorithms have been presented to solve the static state
estimation problem in a power network via distributed com-
putation. Our first algorithm is incremental, and it converges
in a number of steps equal to the number of units involved in
the computation. Our second algorithm is diffuse: it requires

6For a Gaussian distribution with mean µ and variance σ2, about 95% of
the realizations are contained in the interval [µ− 2σ, µ+ 2σ].
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Fig. 4. Residual functions computed by the 5 control centers. Since the
first residual is greater than the threshold value, the presence of false data is
correctly detected by the first control center. A form of regional identification
is possible by simple identifying the residuals above the security threshold.

a larger number of operations compared to our first algorithm,
but (i) it allows for an asynchronous update of the estimate by
the computing units, and (ii) it does not impose any particular
interconnection structure among the computing units. Based on
these estimation procedures, a distributed algorithm to detect
false data among the network measurements is also proposed.
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