
The Observability Radius of Network Systems
Gianluca Bianchin, Paolo Frasca, Andrea Gasparri, and Fabio Pasqualetti

Abstract— This paper introduces the observability radius of
network systems, which measures the robustness of a network
to perturbations of the edges. We consider linear networks,
where the dynamics are described by a weighted adjacency
matrix, and dedicated sensors are positioned at a subset of
nodes. We allow for perturbations of certain edge weights,
with the objective of preventing observability of some modes
of the network dynamics. Our work considers perturbations
with a desired sparsity structure, thus extending the classic
literature on the controllability and observability radius of
linear systems. We propose an optimization framework to
determine a perturbation with smallest Frobenius norm that
renders a desired mode unobservable from a given set of
sensor nodes. We derive optimality conditions and a heuristic
optimization algorithm, which we validate through an example.

I. INTRODUCTION

Network systems are broadly used to model engineering,
social, and natural systems. An important property of such
systems is their robustness to different contingencies, includ-
ing failure of components affecting the flow of information,
external disturbances altering individual node dynamics, and
variations in the network topology and weights. It remains
an outstanding problem to quantify how different topological
features enable robustness, and to engineer complex network
systems that ensure functionality and operability in the face
of arbitrary and perhaps malicious perturbations.

Observability of a network system guarantees the ability
to reconstruct the state of individual nodes from sparse
measurements. While observability is a binary notion [1],
the degree of observability (or controllability) of a network
can be quantified in different ways, including the energy
associated with the measurements [2], [3], the novelty of
the output signal [4], the number of necessary sensor nodes
[5], [6], [7], and the robustness to removal of interconnection
edges [8]. A graded notion of observability is preferable, as
it allows us to compare different networks, select optimal
sensor nodes, and identify features favoring observability.

In this work we measure the robustness of a network
based on the size of the smallest perturbation needed to
prevent observability. Our notion of robustness is motivated
by the fact that network weights are rarely known without
uncertainty, and observability is a generic property [9]. For
these reasons, numerical tests to assess observability may

This material is based upon work supported in part by NSF
awards #BCS-1430279 and #ECCS-1405330. Gianluca Bianchin and
Fabio Pasqualetti are with the Mechanical Engineering Department,
University of California at Riverside, gianluca@engr.ucr.edu,
fabiopas@engr.ucr.edu. Andrea Gasparri is with the Department
of Engineering, Roma Tre University, gasparri@dia.uniroma3.it.
Paolo Frasca is with the Department of Applied Mathematics, University of
Twente, p.frasca@utwente.nl.

be unreliable and in fact fail to recognize unobservable
systems: instead, our notion of observability, that is, the
size of the smallest perturbation preventing observability
or, equivalently, the distance to the nearest unobservable
realization, can be measured more reliably [10]. Among
our contributions, we highlight connections between the
robustness of a network and its structure, and we propose
an algorithmic procedure to construct optimal perturbations.
Our work finds applicability, for instance, in network control
problems where the network weights are time varying, in
security applications where an attacker gains control of some
network edges, and in network science for the classification
of network edges and the design of robust complex networks.
Related work Our notion of robustness is inspired by classic
works on the observability radius of dynamical systems [11],
[12], [13], which is defined as the norm of the smallest per-
turbation yielding unobservability. In particular, for a linear
system with matrices (A,C), the radius of observability is

µ(A,C) = min
∆A,∆C

∥∥∥∥[∆A

∆C

]∥∥∥∥
2

,

s.t. (A+ ∆A, C + ∆C) is unobservable.

As a known result [12], the observability radius satisfies

µ(A,C) = min
s
σn

([
sI −A
C

])
,

where s ∈ R or s ∈ C if complex perturbations are allowed.
The optimal perturbations ∆A and ∆C are typically full
matrices and, to the best of our knowledge, all existing results
and procedures are not applicable to the case where the
perturbations must satisfy a desired sparsity constraint (e.g.,
see [14]). This scenario is in fact the relevant one for network
systems, where the nonzero entries of the network matrices
A and C correspond to existing network edges, and it would
be undesirable or unrealistic for a perturbation to modify the
interaction of disconnected nodes. A notable exception is [8],
where, however, the discussion is limited to edge removal.

We depart from the literature by requiring the perturbation
to be real, with a desired sparsity pattern, and confined to
the network matrix, that is, ∆C = 0. Our approach builds
on the theory of total least squares [15], [16]. With respect
to existing results, our work proposes tailored procedures for
network systems, fundamental bounds, and insights into the
robustness of different network topologies. Although our pre-
sentation focuses on perturbations preventing observability,
the extension to controllability is straightforward.
Contributions The contribution of this paper is twofold.
First, we define a metric of network robustness that cap-
tures the resilience of a network system to structural per-
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turbations (Section II). Our metric evaluates the distance
of a network from the set of unobservable networks with
the same interconnection structure, and it extends existing
works on the controllability and observability radius of linear
systems. Second, we formulate an optimization problem to
determine optimal perturbations (with smallest Frobenius
norm) preventing observability. We show that the problem is
not convex, derive optimality conditions, and show that any
optimal solution solves a (nonlinear) generalized eigenvalue
problem (Section III-A). Based on this analysis, we propose
a numerical procedure based on the power iteration method
to determine (sub)optimal solutions (Section III-B). Finally,
we analytically compute optimal perturbations for three di-
mensional line networks (Section III-C), and we validate the
effectiveness of our numerical procedure to work in practice.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

Consider a directed graph G = (V, E), where V =
{1, . . . , n} and E ⊆ V × V are the vertex and edge sets,
respectively. Let A = [aij ] be the weighted adjacency matrix
of G, where aij ∈ R denotes the weight associated with
the edge (i, j) ∈ E , and aij = 0 whenever (i, j) 6∈ E .
Let ei denote the i-th canonical vector of dimension n. Let
O = {o1, . . . , op} ⊆ V be the set of sensor nodes, and define
the network output matrix as

CO =
[
eo1 · · · eop

]T
.

Let xi(t) ∈ R denote the state of node i at time t, and let
x : N≥0 → Rn be the map describing the evolution over time
of the network state. The network dynamics are described by
the discrete time-invariant linear system model:

x(t+ 1) = Ax(t), y(t) = COx(t), (1)

where y : N≥0 → Rp is the output of the sensor nodes O.
In this work we characterize structured network perturba-

tions that prevent observability from the sensor nodes. To
this aim, let H = (VH, EH) be the constraint graph, and
define the set of matrices compatible with H as

AH = {M : M ∈ R|V|×|V|,Mij = 0 if (i, j) 6∈ EH}.

Recall from the eigenvector observability test that the net-
work (1) is observable if and only if there is no right
eigenvector of A that lies in the kernel of CO, that is,
COx 6= 0 whenever x 6= 0, Ax = λx, and λ ∈ C [21].
We consider and study the following optimization problem:

min ‖∆‖2F,
s.t. (A+ ∆)x = λx, (eigenvalue constraint),

‖x‖2 = 1, (eigenvector constraint),

COx = 0, (unobservability),

∆ ∈ AH, (structural constraint),

(2)

where the minimization is carried out over the network
perturbation ∆ ∈ Rn×n, the eigenvector x ∈ Cn, and the
unobservable eigenvalue λ ∈ C. The cost function ‖∆‖2F
quantifies the total cost in the form of magnitude of edge

perturbation to achieve unobservability, and AH encodes
the desired sparsity pattern of the perturbation. It should
be observed that (i) the minimization problem (2) is not
convex because the variables ∆ and x are multiplied by each
other in the eigenvector constraint (A + ∆)x = λx, (ii) if
A ∈ AH, then the minimization problem is feasible if and
only if there exists a network matrix A + ∆ = Ã ∈ AH
satisfying the eigenvalue constraint, and (iii) if H = G, then
the perturbation modifies the weights of existing edges only.

We make the following assumption, which implies that ∆
must be nonzero to satisfy the constraints in (2):

(A1) The pair (A,CO) is observable.
The minimization problem (2) can be solved by two

subsequent steps. First, we fix the eigenvalue λ, and compute
an optimal perturbation that solves the minimization problem
for the fixed eigenvalue. This computation is the topic of
the next section. Second, we search the complex plane
for the optimal eigenvalue λ yielding the perturbation with
minimum cost. We observe that (i) the exhaustive search of
the optimal eigenvalue λ is an inherent feature of this class
of problems, as also highlighted in prior work [13]; (ii) in
some cases and for certain network topologies the optimal
λ can be found analytically; and (iii) in several practical
applications, the choice of λ is guided by the structure of
the problem or it is a given constraint in the optimization.

III. OPTIMALITY CONDITIONS AND ALGORITHMS FOR
THE NETWORK OBSERVABILITY RADIUS

We now consider problem (2) with a fixed choice for λ. Let
∆∗ be an optimal solution to (2). Then, we refer to ‖∆∗‖2F
as to the observability radius of the network A with sensor
nodes O, constraint graphH, and unobservable eigenvalue λ.

A. Optimal network perturbation
In this section we manipulate the minimization prob-

lem (2) to facilitate its solution. Without affecting generality,
relabel the network nodes such that the sensor nodes satisfy

O = {1, . . . , p}, so that CO =
[
Ip 0

]
. (3)

Accordingly,

A =

[
A11 A12

A21 A22

]
, and ∆ =

[
∆11 ∆12

∆21 ∆22

]
, (4)

where A11 ∈ Rp×p, A12 ∈ Rp×n−p, A21 ∈ Rn−p×p,
and A22 ∈ Rn−p×n−p. Let V = [vij ] be the unweighted
adjacency matrix of H, where vij = 1 if (i, j) ∈ EH, and
vij = 0 otherwise. Following the partitioning of A in (4), let

V =

[
V11 V12

V21 V22

]
.

We perform the following three simplifying steps.
(1 – Rewriting the structural constraints) Let B = A + ∆,
and notice that ‖∆‖2F =

∑n
i=1

∑n
j=1 (bij − aij)

2. Then,
the minimization problem (2) can equivalently be rewritten
restating the constraint ∆ ∈ AH, as in the following equality:

‖∆‖2F = ‖B −A‖2F =

n∑
i=1

n∑
j=1

(bij − aij)2v−1
ij .
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Notice that ‖∆‖2F = ∞ whenever ∆ does not satisfy the
structural constraint, that is, when vij = 0 and bij 6= aij .
(2 – Minimization with real variables) Let λ = λ< + iλ=,
where i denotes the imaginary unit. Let

x< =

[
x1
<
x2
<

]
, and x= =

[
x1
=
x2
=

]
,

denote the real and imaginary parts of the eigenvector x,
with x1

< ∈ Rp, x1
= ∈ Rp, x2

< ∈ Rn−p, and x2
= ∈ Rn−p. We

now prove that the minimization problem (2) can be restated
and solved over real variables only.

Lemma 3.1: (Minimization with real eigenvector con-
straint) The constraint (A + ∆)x = λx can equivalently
be written as

(A+ ∆− λ<I)x< = −λ=x=,
(A+ ∆− λ<I)x= = λ=x<.

(5)

Proof: By considering separately the real and imaginary
part of the eigenvalue constraint, we have (A+∆)x = λ<x+
iλ=x and (A + ∆)x̄ = λ<x − iλ=x̄, where x̄ denotes the
complex conjugate of x. Notice that

(A+ ∆)(x+ x̄)︸ ︷︷ ︸
(A+∆)2x<

= (λ< + iλ=)x+ (λ< − iλ=)x̄︸ ︷︷ ︸
2λ<x<−2λ=x=

,

and, analogously,

(A+ ∆)(x− x̄)︸ ︷︷ ︸
(A+∆)2ix=

= (λ< + iλ=)x− (λ< − iλ=)x̄︸ ︷︷ ︸
2iλ<x=+2iλ=x<

,

which concludes the proof.
(3 – Reduction of dimensionality) The constraint COx = 0
and equation (3) imply that x1

< = x1
= = 0. Thus, in the

minimization problem (4) we set ∆11 = 0, ∆21 = 0, and
consider only the minimization variables x2

<, x2
=, ∆12, and

∆22. These simplifications lead to the following result.
Lemma 3.2: (Equivalent minimization problem) Let

Ā =

[
A12

A22

]
, ∆̄ =

[
∆12

∆22

]
, M̄ =

[
0p×n−p
λ=In−p

]
,

N̄ =

[
0p×n−p
λ<In−p

]
, V̄ =

[
V12

V22

]
, and B̄ = Ā+ ∆̄.

(6)

The following minimization problem is equivalent to (2):

‖∆̄∗‖2F = min
B̄,x2
<,x

2
=

∑n
i=1

∑n
p+1(b̄ij − āij)2v−1

ij ,

s.t.
[
B̄ − N̄ M̄
−M̄ B̄ − N̄

] [
x2
<
x2
=

]
= 0,∥∥∥∥[x2

<
x2
=

]∥∥∥∥
2

= 1.

(7)

The minimization problem (7) belongs to the class of
(structured) total least squares problems, which arise in sev-
eral estimation and identification problems in control theory
and signal processing. Our approach is inspired by [16],
with the difference that we focus on real perturbations ∆
and complex eigenvalue λ: this choice leads to different
optimality conditions and algorithms. Let A⊗B denote the
Kronecker product between A and B, and diag(d1, . . . , dn)

the diagonal matrix with entries d1, . . . , dn. We now derive
the optimality conditions for the minimization problem (7).

Theorem 3.3: (Optimality conditions) Let x∗<, and x∗= be
a solution to the minimization problem (7). Then,[

Ā− N̄ M̄
−M̄ Ā− N̄

]
︸ ︷︷ ︸

Ã

[
x∗<
x∗=

]
︸ ︷︷ ︸
x∗

= σ

[
Sx Tx
Tx Qx

]
︸ ︷︷ ︸

Dx

[
y1

y2

]
︸︷︷︸
y∗

,

[
Ā− N̄ M̄
−M̄ Ā− N̄

]T
︸ ︷︷ ︸

ÃT

[
y1

y2

]
︸︷︷︸
y∗

= σ

[
Sy Ty
Ty Qy

]
︸ ︷︷ ︸

Dy

[
x∗<
x∗=

]
︸ ︷︷ ︸
x∗

,

(8)

for some σ > 0 and y∗ ∈ R2n with ‖y∗‖ = 1, and where

D1 = diag(v11, . . . , v1n, v21, . . . , v2n, . . . , vn1, . . . , vnn),

D2 = diag(v11, . . . , vn1, v12, . . . , vn2, . . . , v1n, . . . , vnn),

Sx = (I ⊗ x∗<)TD1(I ⊗ x∗<), Tx = (I ⊗ x∗<)TD1(I ⊗ x∗=),

Qx = (I ⊗ x∗=)TD1(I ⊗ x∗=), Sy = (I ⊗ y1)TD2(I ⊗ y1),

Ty = (I ⊗ y1)TD2(I ⊗ y2), Qy = (I ⊗ y2)TD2(I ⊗ y2).
(9)

Proof: We adopt the method of Lagrange multipliers
to derive the optimality conditions for the minimization
problem (7). The Lagrangian is

L(B̄, x2
<, x

2
=, `1, `2, ρ) =

∑
i

∑
j

(b̄ij − āij)2v−1
ij

+ `T1 ((B̄ − N̄)x2
< + M̄x2

=) + `T2 ((B̄ − N̄)x2
= − M̄x2

<)

+ ρ(1− x2T
< x

2
< − x2T

= x
2
=), (10)

where `1 ∈ Rn, `2 ∈ Rn, and ρ ∈ R are Lagrange
multipliers. By equating the partial derivatives of L to zero
we obtain

∂L
∂bij

= 0⇒ −2(āij − b̄ij)v−1
ij + `1ix

2
<j + `2ix

2
=j = 0,

(11)
∂L
∂x2
<

= 0⇒ `T1 (B̄ − N̄)− `T2 M̄ − 2ρx2T
< = 0, (12)

∂L
∂x2
=

= 0⇒ `T1 M̄ + `T2 (B̄ − N̄)− 2ρx2T
= = 0, (13)

∂L
∂`1

= 0⇒ (B̄ − N̄)x2
< + M̄x2

= = 0, (14)

∂L
∂`2

= 0⇒ (B̄ − N̄)x2
= − M̄x2

< = 0, (15)

∂L
∂ρ

= 0⇒ x2T
< x

2
< + x2T

= x
2
= = 1. (16)

Let L1 = diag(`1), L2 = diag(`2), X< = diag(x2
<),

X= = diag(x2
=). After including the factor 2 into the

multipliers, equation (11) can be written in matrix form as

Ā− B̄ = −∆ = L1V̄ X< + L2V̄ X=. (17)

Analogously, equations (12) and (13) can be written as[
`T1 `T2

] [B̄ − N̄ M̄
−M̄ B̄ − N̄

]
− 2ρ

[
x2T
< x2T

=
]

= 0. (18)

187



From equation (18) we have[
`T1 `T2

] [B̄ − N̄ M̄
−M̄ B̄ − N̄

] [
x2
<
x2
=

]
︸ ︷︷ ︸

=0 due to (14) and (15)

−2ρ = 0,

from which we conclude that ρ = 0. By combining (14) and
(17) (respectively, (15) and (17)) we obtain

(Ā− N̄)x2
< + M̄x2

= =
(
L1V̄ X< + L2V̄ X=

)
x2
<,

(Ā− N̄)x2
= − M̄x2

< =
(
L1V̄ X< + L2V̄ X=

)
x2
=.

Analogously, by combining (12) and (17) (respectively, (13)
and (17)) we obtain

`T1 (Ā− N̄)− `T2 M̄ = `T1
(
L1V̄ X< + L2V̄ X=

)
,

`T2 (Ā− N̄) + `T1 M̄ = `T2
(
L1V̄ X< + L2V̄ X=

)
.

Let σ =
√
`T1 `1 + `T2 `2, and observe that σ cannot be zero.

Indeed, due to Assumption (A1), the optimal perturbation can
not be zero; thus, the first constraint in (7) must be active
and the corresponding multiplier must be nonzero. Then, we
define y1 = `1/σ and y2 = `2/σ, and verify that(

L1V̄ X< + L2V̄ X=
)
x2
< = σ (Sxy1 + Txy2) ,(

L1V̄ X< + L2V̄ X=
)
x2
= = σ (Txy1 +Qxy2) ,

and

σ
(
yT1 (Ā− N̄)− yT2 M̄

)
= `T1

(
L1V̄ X< + L2V̄ X=

)
= σ2

(
Syx

2
< + Tyx

2
=
)T
,

σ
(
yT2 (Ā− N̄) + yT1 M̄

)
= `T2

(
L1V̄ X< + L2V̄ X=

)
= σ2

(
Tyx

2
< +Qyx

2
=
)T
,

which conclude the proof.
Note that equations (8) may admit multiple solutions, and
that every solution to (8) yields a network perturbation that
satisfies the constraints in the minimization problem (7). We
now state a result to compute of feasible perturbations.

Corollary 3.4: (Minimum norm perturbation) Let ∆∗ be
a solution to (2). Then, ∆∗ = [0n×p ∆̄∗], where

∆̄∗ = −σ
(
diag(y1)V̄ diag(x∗<)− diag(y2)V̄ diag(x∗=)

)
,

and x∗<, x∗=, y1, y2, σ satisfy the equations (8). Moreover,

‖∆‖2F = σ2x∗TDyx
∗ = σx∗TÃTy∗ ≤ σ‖Ã‖F.

Proof: The expression for the perturbation ∆∗ comes
from Lemma 3.2 and (17), and the fact that L1 = σ diag(y1),
L2 = σ diag(y2). To show the second part, notice that

‖∆‖2F = ‖A−B‖2F = ‖L1V̄ X< + L2V̄ X=‖2F
= σ2

∑
i

∑
j

(
y2

1ix
2
<j + y2

2ix
2
=j
)
vij

= σ2x∗TDyx
∗ = σx∗TÃTy∗,

where the last equalities follow from (8). Finally, the theorem
follows from ‖x∗‖2 = ‖x∗‖F = ‖y∗‖2 = ‖y∗‖F = 1.

To compute a triple (σ, x∗, y∗) satisfying the condition in
Theorem 3.3, observe that equations (8) can be written in
matrix form as[

0 ÃT

Ã 0

]
︸ ︷︷ ︸

H

[
x
y

]
︸︷︷︸
z

= σ̄

[
Dy 0
0 Dx

]
︸ ︷︷ ︸

D

[
x
y

]
︸︷︷︸
z

. (19)

Lemma 3.5: (Equivalence between Theorem 3.3 and
(19)) Let (σ, x, y), with x 6= 0, solve (19). Then, σ 6= 0
and y 6= 0, and the triple ((αβ)−1σ, αx, βy), with α =
sgn(σ)‖x‖−1 and β = ‖y‖−1, satisfies the conditions in
Theorem 3.3.

Proof: Because x 6= 0 and Ã has full column rank
due to Assumption (A1), it follows that σ 6= 0 and y 6= 0.
Let Dx and Dy be as in (8). Notice that Dαx = α2Dx and
Dβy = β2Dy . Notice that (αβ)−1σ > 0. We obtain that

Ãαx =
σ

αβ
α2Dxβy = ασDxy,

ÃTβy =
σ

αβ
β2Dyαx = βσDyx,

which concludes the proof.
Lemma 3.5 shows that a (sub)optimal network perturba-

tion can in fact be constructed by solving equations (19). It
should be observed that, if the matrices Sx, Tx, Qx, Sy , Ty ,
and Qy were constant, then (19) would describe a general-
ized eigenvalue problem, and a solution (σ̄, z) would be a
pair of generalized eigenvalue and eigenvector. These facts
will be exploited in the next section to develop a heuristic
algorithm to compute a (sub)optimal network perturbation.

B. A heuristic procedure to compute structural perturbations

In this section we propose an algorithm to find a solution
to the set of nonlinear equations (19), and therefore to find a
(sub)optimal solution to the minimization problem (2). Our
procedure is motivated by (19) and Corollary 3.4: at each
iteration, we fix a vector z, compute the corresponding matrix
D, and approximate an eigenvector associated with the
smallest generalized eigenvalue of the pair (H,D). Because
the size of the perturbation is bounded by the generalized
eigenvalue σ as motivated in Corollary 3.4, we adopt an
iterative procedure based on the inverse iteration method for
the computation of the smallest eigenvalue of a matrix [22].
We remark that our procedure is heuristic, because (19) is in
fact a nonlinear generalized eigenvalue problem due to the
dependency of the matrix D on the eigenvector z.

We start by characterizing certain properties of H and D,
which will be used to derive our algorithm. Let

spec(H,D) = {λ ∈ C : det(H − λD) = 0},
and recall that the pencil (H,D) is regular if the determinant
det(H−λD) does not vanish for all values of λ [23]. Notice
that, if (H,D) is not regular, then spec(H,D) = C.

Lemma 3.6: (Generalized eigenvalues of (H,D)) Given
a vector z ∈ R2n+2p, define the matrices H and D as in (19).
Then,

(i) 0 ∈ spec(H,D);
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(ii) if λ ∈ spec(H,D), then −λ ∈ spec(H,D); and
(iii) if (H,D) is regular, then spec(H,D) ⊂ R.

Proof: Notice that statement (i) is equivalent to Ãx = 0
and ÃTy = 0, for some vectors x and y. Because ÃT ∈
R(2n−2p)×2n with p ≥ 1, the matrix ÃT features a nontrivial
null space. Thus, the two equations are satisfied with x = 0
and y ∈ Ker(ÃT), and the claimed statement follows.

To prove statement (ii) notice that, due to the block
structure of H and D, if the triple (λ, x̄, ȳ) satisfies the
generalized eigenvalue equations ÃTȳ = λDyx̄ and Ãx̄ =
λDxȳ, so does the triple (−λ, x̄,−ȳ).

To show statement (iii), let Rank(D) = k ≤ n, and notice
that the regularity of the pencil (H,D) implies Hz̄ 6= 0
whenever Dz̄ = 0 and z̄ 6= 0. Notice that (H,D) has n− k
infinite eigenvalues [23] because Hz̄ = λDz̄ = λ · 0 for
every nontrivial z̄ ∈ Ker(D). Because D is symmetric, it
admits an orthonormal basis of eigenvectors. Let V1 ∈ Rn×k
contain the orthonormal eigenvectors of D associated with its
nonzero eigenvalues, let ΛD be the corresponding diagonal
matrix of the eigenvalues, and let T1 = V1Λ

−1/2
D . Then,

TT
1 DT1 = I . Let H̃ = TT

1 HT1, and notice that H̃ is
symmetric. Let T2 ∈ Rk×k be an orthonormal matrix of
the eigenvectors of H̃ . Let T = T1T2 and note that

TTHT = Λ, and TTDT = I,

where Λ is a diagonal matrix. To conclude, consider the
generalized eigenvalue problem Hz̄ = λDz̄. Let z̄ = T z̃.
Because T has full column rank k, we have

TTHTz̃ = Λz̃ = λTTDTz̃ = λz̃,

which implies that (H,D) has k real eigenvalues.
Lemma 3.6 implies that the inverse iteration method is

not directly applicable to (19). In fact, the zero eigenvalue
of (H,D) leads the inverse iteration to instability, while the
presence of eigenvalues of (H,D) with equal magnitude may
induce non-decaying oscillations in the solution vector. To
overcome these issues, we employ a shifting mechanism as
detailed in Algorithm 1, where the eigenvector z is iteratively
updated by solving the equation (H − µD)zk+1 = Dzk
until a convergence criteria is met. Notice that (i) the
eigenvalues of (H − µD,D) are shifted with respect to the
eigenvalues of (H,D), that is, if σ ∈ spec(H,D), then
σ + µ ∈ spec(H − µD,D), (ii) the pairs (H − µD,D)
and (H,D) share the same eigenvectors, and (iii) by se-
lecting µ = ψ · min{σ ∈ spec(H,D) : σ > 0}, the
pair (H − µD,D) has nonzero eigenvalues with distinct
magnitude. Thus, Algorithm 1 estimates the eigenvector z
associated with the smallest nonzero eigenvalue σ of (H,D),
and converges when z and σ also satisfy equations (19). The
parameter ψ determines a compromise between numerical
stability and convergence speed; larger values of ψ improve
the convergence speed.

When convergent, Algorithm 1 finds a solution to (19) and,
consequently, it allows to compute a (sub)optimal network
perturbation preventing observability of a desired eigenvalue.
All information about the network matrix, the sensor nodes,
the constraint graph, and the unobservable eigenvalue is

Algorithm 1: Heuristic solution to (19)
Input: Matrix H; max iterations maxiter; ψ ∈ (0.5, 1).
Output: σ and z satisfying (19), or fail.
repeat

z ← (H − µD)−1Dz;
σ ← ‖z‖;
z ← z/σ;
µ = ψ ·min{σ ∈ spec(H,D) : σ > 0};
update D according to (9);
i← i+ 1

until convergence or i > maxiter;
return (σ + µ, z) or fail if i = maxiter;

encoded in the matrix H according to the definitions (6), (8)
and (19). Although convergence of Algorithm 1 is not
guaranteed, numerical studies show that it performs well in
practice; see Fig. 1 for a numerical validation.

C. Optimal perturbations and algorithm validation

In this section validate Algorithm 1 on a three nodes line
network. We first provide the following analytical result on
optimal perturbations of three dimensional line networks.

Theorem 3.7: (Optimal perturbations of 3-dimensional
line networks with fixed λ ∈ C) Consider a network with
graph G = (V, E), where |V| = 3, weighted adjacency matrix

A =

a11 a12 0
a21 a22 a23

0 a32 a33

 ,
and sensor node O = {1}. Let B = [bij ] = A+ ∆∗, where
∆∗ solves the minimization problem (2) with H = G and
λ = λ< + iλ= ∈ C with λ= 6= 0. Then:

b11 = a11, b21 = a21, b12 = 0,

and b22, b23, b32, b33, satisfy:

(b22 − a22)− (b33 − a33) +
b33 − b22

b32
(b23 − a23) = 0,

(b32 − a32)− b23

b32
(b23 − a23) = 0,

2λ< + b22 + b33 = 0,

b22b33 − b23b32 − λ2
< + λ2

= = 0.
(20)

Proof: Let x satisfy Bx = λx and notice that, because
λ is unobservable, COx = [1 0 0]x = 0. Then, x =
[x1 x2 x3]T, x1 = 0, b11 = a11, and b21 = a21.

We now show that x2 6= 0. By contradiction and let x2 =
0. Notice that the relation Bx = λx implies b33 = λ, which
contradicts the assumption that λ= 6= 0 and b33 ∈ R.

Because x2 6= 0, the relation Bx = λx and x1 = 0 imply
b12 = 0. Additionally, λ is an eigenvalue of

B2 =

[
b22 b23

b32 b33

]
.

The characteristic polynomial of B2 is

PB2(s) = s2 − (b22 + b33)s+ b22b33 − b23b32.
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Fig. 1. This figure validates effectiveness of Algorithm 1 in computing
optimal perturbations for the line network in Section III-C. The plot shows
mean and standard deviation over 100 networks of the difference between
∆∗, obtained via optimality conditions (20), and ∆(i), computed at the
i-th iteration of Algorithm 1. The unobservable eigenvalue is λ = i and the
values aij are chosen independently and uniformly distributed in [0, 1].

Then, for λ to be an eigenvalue of B2, we must have

−b22 − b33 − 2λ< = 0, and

b22b33 − b23b32 − λ2
< + λ2

= = 0.
(21)

The Lagrange function of the minimization problem with
cost function ‖∆∗‖2F =

∑3
i=2

∑3
j=2(bij − aij)

2 and con-
straints (21) reads as

L(b22, b23, b32, b33, p1, p2) = d2
22 + d2

23 + d2
32 + d2

33

+ p1(2λ< + b22 + b33)

+ p2(b22b33 − b23b32 − (λ2
< + λ2

=)),

where p1 ∈ R and p2 ∈ R are Lagrange multipliers, and
dij = bij − aij . By equating the partial derivatives of L to
zero we obtain

∂L
∂b22

= 0⇒ 2d22 + p1 + p2b33 = 0, (22)

∂L
∂b33

= 0⇒ 2d33 + p1 + p2b22 = 0, (23)

∂L
∂b23

= 0⇒ 2d23 − p2b32 = 0, (24)

∂L
∂b32

= 0⇒ 2d32 − p2b23 = 0, (25)

together with (21). The statement follows by substitutions of
the Lagrange multipliers p1 and p2 into (22) and (25).

To validate Algorithm 1, we compute optimal perturba-
tions for 3-dimensional line networks based on Theorem 3.7,
and we compare it with the perturbation obtained at different
iterations of Algorithm 1. As shown in Fig. 1, Algorithm 1
determines a network perturbation with minimum norm.

IV. CONCLUSION

In this work we introduce the notion of observability
radius for network systems, which measures the ability
to maintain observability of the network modes against
perturbations of the edge weights. The paper contains two
sets of results. On the one hand, we perform a rigorous
analysis to characterize network perturbations preventing
observability and describe a heuristic algorithm to compute
perturbations with minimum Frobenius norm. On the other

hand, we explicitly characterize the observability radius
of three dimensional line networks, and we validate our
heuristic algorithm. Several aspects are left as the subject
of future investigation, including a characterization of the
observability radius of random networks, the computation of
eigenvalues requiring perturbations with minimum norm, and
a study of the relation between the topology of a network
and its observability robustness to structured perturbations.
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