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Role of graph architecture in controlling dynamical
networks with applications to neural systems
Jason Z. Kim1, Jonathan M. So�er1, Ari E. Kahn2,3, Jean M. Vettel1,4,5, Fabio Pasqualetti6

and Danielle S. Bassett1,7*

Networked systems display complex patterns of interactions between components. In physical networks, these interactions
often occur along structural connections that link components in a hard-wired connection topology, supporting a variety
of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important,
they are only a first step towards understanding and harnessing the relationship between network topology and system
behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity
of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to
control networked systems. To illustrate the utility of themathematics, we apply this approach to high-resolution connectomes
recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the
human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations,
and to perform clinically accessible targeted manipulation of the brain’s control performance by removing single edges in the
network. Generally, our results ground the expectation of a control system’s behaviour in its network architecture, and directly
inspire new directions in network analysis and design via distributed control.

Network systems are composed of interconnected units that
interact with each other on diverse temporal and spatial
scales1. The exact patterns of interconnections between these

units can take on many different forms that dictate how the system
functions2. Indeed, specific features of network topology—such
as small worldness3 and modularity4—can improve efficiency and
robustness. Yet, exact mechanisms driving the relationship between
structure and function remain elusive, hampering the analysis,
modification, and control of interconnected complex systems. The
relationship between interconnection architecture and dynamics
is particularly important in biological systems such as the brain5,
where it is thought to support optimal information processing at
cellular6 and regional7,8 levels. Understanding structure–function
relationships in this system could inform personalized therapeutics9
including more targeted treatments for drug-resistant epilepsy to
make the epileptic state energetically unfavourable to maintain10,11,
especially due to the development of multi-site stimulation tools12,13
that allow for exponentially increasing stimulation configurations.

Existing paradigms seeking to explain how a complex network
topology drives observable dynamics have advantages and
disadvantages. Efforts in nonlinear dynamics define basins of
attraction and perturbations driving a system between basins14,15.
Efforts in network science define graph metrics and report
statistical correlations with observed functions such as attention16

and learning17,18. Neither approach offers comprehensive analytical
solutions explaining mechanisms of control. A promising paradigm
that meets these challenges is linear network control theory19,20,
which assumes that the state of a system at a given time is a function
of the previous state, the structural network linking system units,
and injected control energy. From this paradigm, one can identify

driver nodes21,22 capable of influencing the system along diverse
trajectories, and optimal inputs that move the system from one state
to another with minimal cost. This latter formulation has proven
useful in understanding the human brain, where control points
enable diverse cognitive strategies23,24, facilitate efficient intrinsic
activation25, and inform optimal targets for brain stimulation26.

Although practical tools exist, basic intuitions about the network
properties that enhance control have remained elusive. Here, we
address this challenge by formulating a linear control problem on
the bipartite subgraph linking driver nodes to non-driver nodes,
which provides excellent estimates of the control of the full network.
Our results include analytical derivations of expressions relating a
network’s minimum control energy to its connectivity, an intuitive
geometric representation to visualize this relationship, and rules for
modifying edges to alter control energy in a predictable manner.
Although our mathematical contributions are applicable to any
complex network system whose dynamics can be approximated
by a linear model, we illustrate their utility in the context of
networks estimated from mouse27,28, Drosophila29 and human
brains (Fig. 1d–f). Our results offer fundamental insights into
the patterns of connections between brain regions that directly
impact their minimum control energy, providing a link between the
structure and function of neural systems, and informing potential
clinical interventions. An extension of this framework to non-
bipartite graphs with corresponding results can be found in the
Supplementary Methods and results.

Network topology and controllability
Weconsider a network represented by the directed graphG= (V ,E),
where V={1, . . . ,n} and E⊆V×V are the sets of network vertices
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Figure 1 | Network control of the drosophila, mouse, and human connectomes. a, A representation of the mouse brain via the Allen Mouse Brain Atlas,
with a superimposed simplified network. Each brain region is represented as a vertex, and the connections between regions are represented as directed
edges. b, Example trajectories of state over time for three brain regions, where the state represents the level of activity in each region. c, A state-space
representation of activity on the mouse connectome over time, where each point on the black line represents the brain state at a point in time.
d–f, Connectomes represented as n×n adjacency matrices where each i, jth element of the adjacency matrix represents the strength of the connection
from node j to node i for Drosophila (d), mouse (e), and human (f). g, The mouse connectome represented as a graph with vertices as brain regions, and
edges coloured by their weight, or the magnitude of the relevant element of the adjacency matrix. h, Simplified graph representation: a bipartite subgraph
containing edges linking driver vertices (red) to non-driver vertices (blue).

and edges, respectively. Let aij∈R be the weight associated with the
edge (i, j)∈E , and let A=[aij] be the weighted adjacency matrix of
G. We associate a real value (state) with each node, collect the nodes’
states into a vector (network state), and define themap x :R≥0→Rn

to describe the evolution (dynamics) of the network state over time
(Fig. 1a–c). We assume that a subset of N nodes, called drivers, is
independently manipulated by external controls and, without loss
of generality, we reorder the network nodes such that the N drivers
come first. Thus, the network dynamics read as[

ẋd
ẋnd

]
=

[
A11 A12
A21 A22

][
xd
xnd

]
+

[
IN
0

]
u (1)

where xd and xnd are the state vectors of the driver and non-driver
nodes, A11 ∈RN×N , M = n−N , A12 ∈RN×M , A21 ∈RM×N , A22 ∈

RM×M , IN is the N -dimensional identity matrix, and u :R≥0→RN

is the control input.
We will use the word controllable to refer to networks that

are point-to-point controllable at time T ∈R≥0 if, for any pair of
states x∗d and x∗nd, there exists a control input u for the dynamics
equation (1) such that xd(T )= x∗d and xnd(T )= x∗nd. For a detailed

discussion and rigorous conditions for the controllability of a system
with linear dynamics, see ref. 30. We define the energy of u as

E(u)=
N∑
i=1

∫ T

0
ui(t)2dt︸ ︷︷ ︸
Ei

where ui is the ith component of u. The energy of ui can be thought
of as a quadratic cost that penalizes large control inputs.

In the context of the brain, we approximate the interactions
between brain regions as linear, time-invariant dynamics, where
a stronger structural connection between two regions represents
a stronger dynamic interaction (for empirical motivation, see
refs 23,31,32). We specifically study the empirical inter-areal
meso-scale connectomes of the mouse (112 brain regions, example
schematic in Fig. 1g,h) from the Allen Brain Institute, the
Drosophila (49 brain regions)29, and a set of human connectomes
(116 brain regions) interconnected by white matter tracts
(for empirical details regarding connectivity estimates, see
Supplementary Results XA).
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Figure 2 | The simplified network representation o�ers a reasonable prediction for the full network’s control energy. a, Graphical representation of a
non-simplified network of N drivers (red) and M non-drivers (blue), with directed connections between all nodes present. b, Graphical representation of a
simplified first-order network containing only first-order connections from drivers→ non-drivers. c,d, As an example, we show the adjacency matrix for
the Drosophila connectome segmented into driver→ driver A11, driver→ non-driver A21, non-driver→ driver A12, and non-driver→ non-driver A22
sections for a non-simplified network as per equation (1), with randomly designated driver and non-driver nodes (c), and the corresponding simplified
network as per equation (2) (d). e–g, Percentage error contour plots of the total control energy for simplified versus non-simplified networks as a function
of the fraction of non-driver nodes and matrix scale given by c=‖λmax‖. For each combination of parameters, the median error magnitude to drive the
networks from initial states xd=0, xnd=0 to 1,000 random final states x∗nd∈ (− 1, 1)M,x∗d ∈ (− 1, 1)N along 1,000 corresponding random selections of
non-drivers is shown. Each contour represents a 5% interval for the Drosophila (e), mouse (f), and human (g) connectome.

Predicting control energy
We seek an accurate, tractable relationship between the energy
required to drive a network to a specific state and its connectivity.
We begin with the original, non-simplified network (Fig. 2a)
involving edges between all nodes, and consider dynamics along
the simplified network (Fig. 2b) involving only edges from the
driver to the non-driver nodes (for a conceptual schematic of
the full and simplified Drosophila connectome, see Fig. 2c,d). We
then derive an approximation of the minimum control energy
(Supplementary Lemma X.2–X.4) by assuming that xd(0) = 0,
xnd(0)= 0 (Assumption 1), and A11 = 0, A12 = 0, and A22 = 0
(Assumption 2) in equation (1), which reads as

E(u)=12
(
x∗nd−

1
2
A21x∗d

)T(
A21AT

21

)−1(x∗nd− 1
2
A21x∗d

)
+x∗Td x∗d (2)

We make Assumption 1 because we are interested in the change
in brain state through control, and consider initial conditions
xd(0)=0, xnd(0)=0 to be a neutral baseline. Because equation (2)
involves only edges from driver to non-driver nodes, we call
equation (2) a first-order approximation to the minimum control
energy of the non-simplified network equation (1). Importantly,
this approximation requires at least as many driver nodes as non-
driver nodes for A21AT

21 to be invertible (that is, N ≥M). To assess
the accuracy of our expression, we look to classic results in the
mathematical theory of systems and control30, where the spectral
properties of the reachability GramianWR(0,T )=

∫ T
0 eAtBBTeAT tdt

quantify the minimum amount of energy (Supplementary Section
XI A 2) to control the non-simplified network equation (1).

In these brain networks, we observe that the first-order energy
approximation is accurate across a range of parameters, which are
the magnitude of the adjacency matrix (given by the magnitude of

the largest eigenvalue, c=‖λmax‖, after multiplying A by a constant
scalar), and the fraction d of nodes selected as non-driver nodes
(Fig. 2e–g). The error remains below approximately 5% for scaling
c < 1.5 and non-driver fraction d < 0.4 (Fig. 2e–g). In this paper,
we will use these connectomes scaled such that c = ‖λmax‖ = 1,
and non-driver fraction d ≤ 0.4, to ensure generalizability of our
findings to the non-simplified versions of these same networks.

Determinant of the driver-to-non-driver network
After deriving a closed-form approximation for the minimal energy
to control a network, we seek a physical interpretation of the
mathematical features that predict the control energy. We let
Q=A21AT

21, and write equation (2) as

E(u)=12
vT1 adj(Q)v1
det(Q)

+vT2 v2 (3)

where v1=x∗nd− (1/2)A21x∗d and v2=x∗d , and adj(Q) is the adjugate
matrix of Q. We notice that the determinant of Q acts as a scaling
factor for the total energy. This insight is useful because of the
geometric interpretation of aGrammatrix determinant. Specifically,
let ai ∈R1×N be the ith row of A21 (which we will call the weight
vector), representingweights from allN drivers to the ith non-driver
node (Fig. 3a). Then, the determinant of the GrammatrixQ is equal
to the squared volume of the parallelotope formed by all ai.

To gain an intuition for these results, we show a simple
system with three drivers and two non-drivers with varying
network topologies in Fig. 3b–d, and their corresponding geometric
parallelotopes in Fig. 3e–g with weight vector a1 in grey and a2 in
tan. We also compute the distribution of control energy required
to drive each network from initial states xd= 0, xnd= 0 to 10,000
random final states x∗nd∈ (−1, 1)

M , x∗d ∈ (−1, 1)
N in Fig. 3h. As the
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Figure 3 | Geometric interpretation of simplified, first-order networks with corresponding control energies and trajectories. a, Graph representation of a
simplified first-order network containing connections from N driver nodes in red to M non-driver nodes in blue. The edges connecting all driver nodes to the
ith non-driver corresponding to the ith row of A21 are shown in di�erent colours. b–d, Graph representations of a network with driver nodes in red,
non-driver nodes in blue, weight distribution into non-driver 1 in grey, and weight distribution into non-driver 2 in tan, for dissimilarly distributed weights
(b), for somewhat similarly distributed weights (c), and for very similarly distributed weights (d). e–g, Geometric representations of the parallelotope
formed by the two vectors of weight distributions into non-drivers 1 and 2, with the volume shaded in beige for dissimilarly distributed weights (e), for
somewhat similarly distributed weights (f), and for very similarly distributed weights (g). h, Base-10 log distribution of control energy required to bring
each graph to 10,000 random final states x∗nd∈ (− 1, 1)M,x∗d ∈ (− 1, 1)N.

non-drivers xnd1, xnd2 become more similarly connected, the total
area of the parallelotope (and corresponding Gram determinant)
decreases (Fig. 3e–g), and the control energy increases (Fig. 3h).
We note that this determinant relationship persists for any number
of nodes where N >M . We conclude that the similarity between
weight vectors generally scales the control energy through det(Q),
allowing us to analyse andmodify the connectivity of a networkwith
respect to its control energy.

Identifying energetically favourable control nodes
Here, we further explore the idea of ‘similarity’ between connections
ai, to quantify the impact of each individual non-driver on the
control energy.

Topological contributors to control energy. Our analysis is rooted
in the intuition that the edge weights ai that maximize the
parallelotope volume, thereby facilitating network control, are large
in magnitude and orthogonal to each other. Let λi and ei be the
eigenvalues and eigenvectors of the matrix Q in equation (3). We
derive in Supplementary Lemma X.6 the equivalent, alternative
control energy expression

E(u)=12

(∑M
i=1wic2i∑M
i=1wi

)(
M∑
k=1

1
‖ak‖2 sin(θk)2

)
+vT2 v2 (4)

where wi=
∏M

j6=i λj, ci= eTi v1, and θk is the angle formed between
ak and the parallelotope formed by aj 6=k. We also derive in
Supplementary Lemma X.7 the average control energy to reach
all random final states drawn uniformly from −1 to 1, x∗nd ∈
(−1, 1)M ,x∗d ∈ (−1, 1)

N , as

E[E(u)]=
1
3
N+M+4

(
M∑
k=1

1
‖ak‖2 sin(θk)2

)
(5)

For N drivers and M non-drivers, we can visualize the M weight
vectors ak as forming a parallelotope in an N -dimensional space.
The variable θk then represents the angle formed between ak and
the paralellotope formed by the remaining M− 1 vectors aj6=k. An
example with N = 3,M= 2 is shown in Fig. 3e–g, where θ1= θ2 is
the angle between the tan and grey vectors.

Here, we have segregated the control energy into
a task-based

(∑M
i=1wic2i /

∑M
i=1wi

)
and topology-based(∑M

k=1 (1/‖ak‖
2 sin(θk)2)

)
term (equation (4)), where the average

minimum control energy depends linearly on the topology-based
term (equation (5)). This segregation allows us to analyse the
topology separate from the specific control task, and shows that
each non-driver additively contributes to the total control energy
minimally when ‖ai‖ and sin(θi) are large.

Energetically favourable driver–non-driver sets. To support this
discussion, we used the expression in equation (4) to find the
selections of M non-drivers that minimized and maximized this
topology term (see Supplementary Results X B), which we define as
the energetically most favourable and energetically least favourable
selections, respectively. We show example distributions of each
weight vector’s magnitude ‖ak‖ times angle sin(θk) (Fig. 4a–c)
between these selections in Drosophila, mouse, and human for non-
driver fraction 0.2.We observe that the energetically least favourable
selections have significantly weaker magnitudes and angles than the
most favourable selections.

Next, we demonstrate the utility and robustness of these
topological features for control by computing the minimum control
energy along the non-simplified networks using the driver and non-
driver designations from the simplified networks in equation (4) for
a range of non-driver fractions. For each non-driver fraction and
species, we computed the control energy to bring the energetically
most and least favourable non-driver selections, and 2,000 random
non-driver selections to a corresponding set of 2,000 random
final states x∗nd ∈ (−1, 1)

M , x∗d ∈ (−1, 1)
N (Fig. 4d–f). Across

all three species, the most favourable selections require around
0.5–1 orders of magnitude less control energy than the random
selections, and 2.5–4 orders of magnitude less control energy
than the least favourable selections. This difference indicates an
energetic advantage for some configurations of drivers and non-
drivers over others.

Complex brain networks are energetically favourable
Given the relationship between a network’s connectivity and
minimum control energy in equation (4), we seek to understand
if brain networks are organized along energetically favourable
principles. Fundamentally, we ask how well a network’s specific
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Figure 4 | Topological characteristics and energetic performance of networks with energetically favourable and unfavourable topologies. a–c, Box plots
of each non-driver weight vector’s magnitude and angle product (‖ak‖sin(θk)) between the energetically most and least favourable networks in the
Drosophila (a), mouse (b), and human (c) connectomes, for a non-driver fraction of 0.2 and p-values from a two-sample t-test. d–f, Mean and standard
deviations of the base-10 log of the minimum control energies required to bring the system to 2,000 random final states x∗nd∈ (− 1, 1)M,x∗d ∈ (− 1, 1)N for
each of a range of non-driver fractions for the energetically most favourable, least favourable, and random networks for the Drosophila (d), mouse (e),
and human (f).

set of connectivity features ‖ak‖ and sin(θk) combine to minimize
the topology-dependent energy term

∑M
k=1 (1/‖ak‖

2 sin(θk)2). In
networks that are not designed along these energetic principles, we
expect to see no particular relationship between ‖ak‖ and sin(θk).
In networks that minimize the topology-dependent energy term, we
expect a compensatory effect, where non-drivers with small angles
have large magnitudes, and vice versa.

To explore the relationship between ‖ak‖ and sin(θk) in brain
networks, we selected 10,000 random permutations of non-drivers
in each of the Drosophila, mouse, and 10 human connectomes, at
non-driver fraction d . For each permutation, we calculated‖ak‖ and
sin(θk) for every non-driver. Then, we averaged ‖ak‖ and sin(θk)
for each non-driver across all permutations, giving us an averaged
magnitude ‖ak‖ and sin(θk) for each brain region in each network.
Finally, we plotted the averaged sin(θk) versus ‖ak‖ for all brain
regions in each network for d= 0.2 (Fig. 5a–c). We find little re-
lationship between the averaged ‖ak‖ and sin(θk) in the Drosophila
(Spearman ρ=−0.25, p= 0.0748), a moderate negative relation-
ship in the mouse (ρ=−0.36, p=0.000125), and a strong negative
relationship in the human (ρ=−0.73, p≈0). This ordering holds
for a wide range of non-driver fractions (Fig. 5d). We graphically
demonstrate how this negative sin(θk) versus ‖ak‖ relation might
arise in networks, using a simple five-node network with two com-
munities of three and two strongly interconnected sets of nodes
(Fig. 5e–g), which has a strong negative relationship (Fig. 5h).

Network manipulation to facilitate control
Here, we consider network modifications that lead to lower control
energies. We focus on the effects of edge deletion since it is often
useful in the study of biological systems such as brain33, metabolic34,
and gene regulatory35 networks. Specifically, we quantify the effect of
modifying each edge weight on the determinant in Supplementary
Lemma X.5 as

∂

∂A21
det(Q)=2det(Q)(Q−1A21) (6)

and compute the decrease in control energy as a result of deleting
edges that maximally increase the determinant.

First, for each species and each of a range of non-driver fractions,
we randomly selected 2,000 permutations of non-drivers. For

each permutation, we extracted the block matrix A21, calculated
2det(Q)(Q−1)A21, and found the element aij 6=0 yielding the largest
increase in det(Q) based on equation (6). We then simulated an
edge deletion by setting aij= 0, and repeated the process to obtain
networks of 1, 2, 3, and 4 deleted edges. Finally, we computed the
percentage change in control energy required to bring the non-
simplified network from initial states xnd(0)=0, xd(0)=0, to final
states x∗nd ∈ (−1, 1)

M , x∗d ∈ (−1, 1)
N before and after edge deletion

(Fig. 6a–d).
As can be seen in Fig. 6a, the removal of one edge can sometimes

lead to more than a 10% average reduction in control energy,
while the removal of four edges (Fig. 6d) can sometimes lead to
more than a 30% reduction. Across most non-driver fractions,
the Drosophila experienced greater energy reduction than the
mouse, which also experienced greater energy reduction than the
human. This corresponds to the previous finding where, because
brain networks of these increasingly complex species are already
energetically favourably wired, they may not experience as much
improvement after modification.

Contribution and future directions
The control of networked systems is a critical frontier in science,
mathematics, and engineering, as it requires a fundamental
understanding of the mechanisms that drive network dynamics
and subsequently offers the knowledge necessary to intervene
in real-world systems to better their outcomes36. Although some
theoretical predictions exist in nonlinear network systems15, the
majority of recent advances have been made in the context of
linear control21,22. Nevertheless, basic intuitions regarding how
edge weights impact control have remained elusive. Although
spectral analysis of a network’s controllability Gramian30 yields
theoretically useful information about the overall behaviour of the
network under control37, it is not obvious how specific patterns of
connectivity or selections of driver and non-driver nodes contribute
to this behaviour. Understanding this relationship is crucial when
analysing empirical biological networks such as the brain, where
nodes and edges often have known functions38 that may modulate
or influence one other.

A distinct advantage of our approach is the focus on a physi-
cally meaningful topological understanding of the principles gov-
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Figure 5 | Energetically favourable organization of topological features in networks. a–c, Average sin (θk) versus normalized ‖ak‖ for each brain region
across 10,000 random non-driver selections for a non-driver fraction of 0.2, along with best fit line (red) and corresponding Spearman correlation
coe�cient in the Drosophila (a), mouse (b), and human (c). d, Spearman correlation coe�cients in the Drosophila, mouse, and human over 2,000 random
non-driver selections for each of a range of non-driver fractions. e, Example toy network of five nodes with three strongly interconnected nodes at the top,
and two strongly interconnected nodes at the bottom. f, Representation of similarity in driver→ non-driver connections between Non-Driver 1 (light blue,
member of three strongly connected nodes) and all possible selections of Non-Driver 2 (blue). Across all four configurations, Non-Driver 1 has an average
of 1.5 strong connections, and 2/4 similarly connected (small angle) configurations. g, Similarity in driver→ non-driver connections between Non-Driver 1
(light blue, member of two strongly connected nodes) and all selections of Non-Driver 2 (blue). Across all four configurations, Non-Driver 1 has an average
of 0.75 strong connections, and 1/4 similarly connected configurations. h, Plot of average magnitude versus sin (θ) for the toy network, with Spearman rank
correlation coe�cient.
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Figure 6 | Modifying the Drosophila, mouse and human connectomes to decrease the minimum energy required for control. a–d, Means and standard
errors of percentage change in control energy before and after deleting edges that maximally increase the determinant based on equation (6) over 2,000
control tasks, with initial states xnd(0)=0, xd(0)=0, and random final states x∗nd∈ (− 1, 1)M,x∗d ∈ (− 1, 1)N. Non-drivers were randomly selected for a
range of non-driver fractions in the Drosophila, mouse, and human connectomes for 1 deletion (a) 2 deletions (3), 3 deletions (c) and 4 deletions (d).
Standard errors were computed as SE= (s/

√
n), where s is the sample standard deviation over the 2,000 tasks, and n=2, 000.

erning network control. We map control behaviour to network
topology through a simplified network only involving connections
from driver to non-driver nodes. This simplification hard-codes
the fact that energy can be transmitted directly from drivers to
non-drivers along walks of length unity, and is motivated by recent
work demonstrating that relatively sparse network representations
of complex biological systems39,40 can contain much of the informa-
tion needed to understand the system’s structure and dynamics41,42.
Our results inform our understanding of how much first-order
connections contribute to the overall dynamics of our network con-
trol systems. Moreover, they inform the development of analytical
constraints on the accessible state space of a networked system,
particularly informing the set of states within which one might
seek to push the brain using stimulation paradigms common in
the treatment of neurological disorders and psychiatric disease43,44.
Although many initial studies have examined unconstrained state

spaces23,25,26, understanding viable states and state trajectories is
critical for the translation of these ideas into the clinic45. Further, by
formally quantifying the contribution of the network connectivity
to the control energy, we lay the groundwork for the optimization
of stimulation sites in neural systems, a problem that has received
very little theoretical treatment, and is considered one of the current
critical challenges in neuroengineering46.

Finally, we make strategic, task-agnostic edge deletions that
maximally increase the determinant and observe that, even in an
overdetermined, unsimplified system (N >M), a single edge dele-
tion could produce a profound improvement in the general con-
trollability of a network. This sensitivity suggests that dynamical
networks such as the brain can produce fairly drastic changes in
dynamical behaviour given minute changes in physiological topol-
ogy, consistent with observations of critical dynamics in human and
animal neurophysiology47,48. Moreover, these results also suggest
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that minor, targeted structural changes through concussive injury
can lead to drastic changes in overall brain function49,50, via altering
the controllability landscape of the brain24. We further observed
that these topological modifications were task-agnostic edge dele-
tions, signifying that even in a linear regime, the presence of an
unfavourable edge can have a profoundly negative impact on the
controllability of a network. We note that it is natural to perform
a similar analysis that takes into account the specific tasks v1, v2 by
taking the derivative of the full energy term Etotal with respect toA21,
which would optimize the network topology for a specific task, as
studied in more detail in ref. 25.

To achieve the most meaningful comparison between species, we
analysed only weighted meso-scale whole brain networks. As such,
we did not include binary neuronal connectomes (for example, C.
elegans), and binary or partial connectomes (for example,macaque).
As more connectomes become available, we hope to further explore
the role of species complexity in network controllability. Until then,
we consider the comparison of energetically favourable connectivity
between species to be a preliminary excursion into a nuanced evolu-
tionary phenomena. As demonstrated in the significant percentage
change in energy after edge deletion, we emphasize that uncer-
tainty in network connectivity has the potential to yield substantial
changes in average control energy. Finally, we note that although
methodological limitations prevent us from resolving excitatory ver-
sus inhibitory connectivity, all results are directly applicable to net-
works with signed elements. Further important theoretical consid-
erations and methodological limitations pertinent to our approach,
linear model of dynamics, optimality of control trajectories, and
empirical data sets are discussed in the Supplementary Information.

In closing, we note that the natural direction in which to take this
work will be to use higher-order approximations of this framework
found in the supplement to gain intuition for the role of complex
network topologies (for example, self-loops, cycles) in controlling
networks. Moreover, it would be interesting to apply this reduced
framework to random graphs and other well-known benchmarks—
both from a mathematical perspective51 and also in the context of
neural systems52,53—to better understand the phenotypes present in
those graph ensembles. Third and finally, informing the design of
new networks with these tools may be particularly useful in neuro-
morphic computing54, materials science55, and other contexts where
optimal control of physical systems is of paramount importance.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author on request.
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