
Network Composition for Optimal Disturbance Rejection

Riccardo Santini, Andrea Gasparri, Fabio Pasqualetti, and Stefano Panzieri

Abstract— This paper investigates how the topology of a
dynamical network affects its robustness against exogenous
disturbances. We consider Laplacian-based network dynamics,
and we adopt theH2 system norm to measure the robustness of
the network against disturbances. For networks arising from
the composition of atomic structures, we provide a closed-
form expression of the robustness against disturbances, and
we identify optimal composition rules. Specifically, we show
that networks consisting of multiple atomic structures are less
robust than each isolated part, and that robust structures
arise by interconnecting nodes of the atomic components with
highest degree. Finally, we describe an algorithm for the design
of robust composite networks.

I. INTRODUCTION

Network systems are ubiquitous in engineering, social,
and natural domains, where they enable complex function-
alities by interconnecting diverse components. An important
property of such systems is their robustness to external
disturbances altering individual nodes or interconnection
dynamics: the failure of a single network component may
cascade into the failure of all interconnected parts [1].

Robustness of an interconnected network depends on both
the robustness of the isolated subnetworks, as well as on the
topological properties of the interconnection structure. In
this paper we propose a mathematical framework to char-
acterize the robustness of interconnected network systems
with respect to the interconnection structure. We measure
robustness of a network based on its H2 norm, that is,
based on the effect on the network nodes of a white noise
disturbance. For our metric, we show that interconnected
networks are less robust than the isolated components, and
that certain nodes, the nodes of the atomic components
with highest degree, enable more robust interconnection
of networks. Our results are in accordance and provide a
quantitative study of recent findings; e.g., see [1].
Related work The majority of the existing research on the
robustness of dynamical systems and networks focuses on
single or isolated components. Classic work in the controls
literature defines different measures for the robustness of a
dynamical system to disturbances; e.g., see [2]. In the con-
text of network systems, network re-wiring and re-weighting
schemes are proposed in [3], [4] to improve the robustness of
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a single network to environmental disturbances. In this paper
we improve the results upon these directions by considering
the robustness of interconnected networks with respect to
the interconnection topology.

In the more recent literature on network of networks,
different metrics have been used to analyze the robustness
of interconnected systems. In [5], cascading failures through
interconnected networks are studied via percolation theory.
In [6], robustness against random failures or intentional
attacks is considered, and a block-based model is proposed
to incorporate information of both connectivity and correla-
tions among blocks and links, and infer upon the structure
of robust networks. Multi-layer networks, their dynamical
properties, and their robustness to random failures are
studied, for instance, in [7], [8]. Finally, the importance of
the interconnection topology and its structural properties to
mitigate failures across networks is highlighted in [9]. We
depart from these works by considering a different measure
of network robustness and network dynamics, by providing
a control-theoretic characterization of the robustness of
interconnected networks, and by providing an algorithm for
the design of optimally robust networks of networks.
Paper contributions The contributions of this paper are
threefold. First, we construct a mathematical framework
to analyze the robustness of interconnected network sys-
tems, where network systems evolve according to modified
Laplacian dynamics. We adopt the H2 system norm to
quantify the robustness of a network system to external
disturbances. For the case of two interconnected networks,
we provide a closed-form expression of the H2 system norm
with respect to the individual components. We show, and
quantify, that the H2 system norm always increases upon
interconnection of multiple blocks, so that interconnected
networks are less robust than the isolated parts. Second,
we prove that interconnections among nodes of the atomic
networks with highest degree yield maximum robustness of
the interconnected system. In other words, we provide a
network interconnection rule that maximizes robustness to
disturbances. Third and finally, we describe an interconnec-
tion algorithm for the case of multiple subnetworks, and we
provide bounds on the robustness of the composite network.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

Let S = {s1, . . . , sn} be a set of n atomic dynamical
networks. Every network is described by the connected and
undirected graph Gi = (Vi, Ei), with |Vi| = ni. Let the
dynamics of the network si be described by

ẋi = −Qi xi, Qi = α Ii + Li. (1)
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Fig. 1. Example of network composition. In particular, Figure 1-a) and Figure 1-b) show two dynamical networks G1 and G2 along with their network
matrices Q1 and Q2, respectively. Figure 1-c) shows the graph G12 resulting from the interconnection (dashed edge) of two nodes (hubs), and the related
network matrix Q12.

where xi : R≥0 → Rni is the map containing the state
of the i-th network, Li is the Laplacian matrix associated
with Gi [10], and α ∈ N>1 . The network dynamics (1) can
be thought as the composition of two parts: the nominal
dynamics, i.e., I + L, and the network interconnection
dynamics, i.e., (α− 1) I. The parameter α > 1 represents
an upper bound on the number of interconnections that can
be performed through each node of the network. Notice
that, by construction, Qi is positive definite and strictly
diagonally dominant, hence invertible [11].

We adopt the open loop H2 system norm to measure the
ability of a network to reject disturbances [3]. As we are
interested in quantifying the effect on the whole state of
a disturbance affecting all network nodes, the H2 of the
network si is defined as

H2(si) = Trace

(∫ ∞
0

e−2Qit dt

)
=

1

2
Trace(Q−1i ).

In order to interconnect the networks si and sj , we select
two nodes h ∈ Vi and k ∈ Vj for which the constraint α on
the maximum number of interconnection is satisfied,1 and
define the composite network sij as Gij = (Vij , Eij), where
Vij = Vi∪Vj and Eij = Ei∪Ej ∪ (h, k). The dynamics and
the matrix of the composite network are defined as

ẋij = −Qij xij , Qij =

[
Qi −eheTk
−ekeTh Qj

]
. (2)

where xij = [xTi x
T
j ]T, and ei is the i-th canonical vector of

appropriate dimension. Clearly, H2(sij) = Trace(Q−1ij )/2.
By constraining each network to perform at most α− 1 in-
terconnections through each of its nodes, we ensure that the
Qij matrix remains positive definite and strictly diagonally
dominant, and hence invertible.

III. OPTIMAL INTERCONNECTION OF NETWORKS

In this section we characterize how the H2 norm changes
when multiple networks are interconnected. We start with

1Given a matrix Qi and a node h, to check whether an interconnection
can be established through node h we simply check that the h−th row-sum
is greater than one, that is

∑ni
j Qi(h, j) > 1.

two networks, and then generalize our results to the case of
multiple networks

A. Interconnection of Two Networks

We now consider two atomic networks Qi and Qj , and
provide a closed-form expression for the H2 norm of the
interconnected network Qij . To this aim, let Q(h, k) and
Q−1(h, k) denote the entry in the h-th row and k-th column
for the matrix Q and the inverse matrix Q−1, respectively.
In addition, let Q−1(h, :) and Q−1(:, k) denote the h-th row
and the k-th column of the matrix Q−1, respectively.

Theorem 1: (H2 norm of two interconnected networks)
Let Qij be as in (2). Then,

Trace(Q−1ij ) = Trace(Q−1i ) + Trace(Q−1j ) + λhkij + λkhij ,

where

λhk
ij =

‖Q−1
i (:, h)‖2

1/Q−1
j (k, k)−Q−1

i (h, h)
> 0, and

λkh
ij =

‖Q−1
j (:, k)‖2

1/Q−1
i (h, h)−Q−1

j (k, k)
> 0.

(3)

Proof: See Appendix B.
Theorem 1 provides a general closed-form expression
for the H2 norm of a composite network. It should
be noticed that the provided relation depends on the
interconnection parameter α, implicitly considered in Qi
and Qj . Theorem 1 also implies that networks arising
from the interconnection of two isolated atomic networks
are less robust than the isolated components. In fact,
Trace(Q−1ij ) > Trace(Q−1i ) + Trace(Q−1j ). Moreover, it
follows that the minimum H2 performance of the composite
network is achieved when the interconnections nodes h and
k are selected to minimize the perturbation λkhij + λhkij . Let
deg(i) denote the degree of node i, and define hub a node
with highest degree [10].We next show that the H2 norm
of a composite network is minimized when h and k are
hubs of the atomic networks.
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Theorem 2: (Connections via hubs) Let Qij be as in (2),
and let h∗ and k∗ satisfy

λh
∗k∗

ij + λk
∗h∗

ij = min
h∈Vi,k∈Vj

λkhij + λhkij ,

where λkhij and λhkij are defined as in (3). Then,

deg(h∗) = max
h∈Vi

deg(h), and deg(k∗) = max
k∈Vj

deg(k).

Proof: See Appendix C.
Theorem 2 implies that, to minimize the H2 norm, two

atomic networks should be connected by creating links
between nodes with highest degree. Notice that the isolated
atomic networks may have multiple hubs, and the choice of
an hub remains, at this stage, a combinatorial problem.

B. Interconnection of Multiple Networks

We now study the robustness of networks arising from
the composition of multiple components, which themselves
may already represent composite networks. We assume that
at each iteration only a pairwise interconnection between
two (composite) dynamical networks may be carried out.

We now introduce the following preliminary result.
Lemma 1: (Trace decomposition) Let Di and Dj diago-

nal entrywise positive (integer) matrices. Let Ai = Di +Li
and Aj = Dj + Lj be symmetric positive definite and
diagonally dominant, and define be

Aij =

[
Ai −eheTk
−ekeTh Aj

]
, (4)

for some canonical vectors eh and ek such that

h = argmaxrAi(r, r), and k = argmaxrAj(r, r). (5)

Then, Aij = Dij + Lij is symmetric positive definite and
diagonally dominant, and

Trace(A−1ij ) ≤ Trace(A−1i ) + Trace(A−1j ) + ∆ij + ∆ji,

where

∆ij =
(1 + γ2

i )2(1 + γj)
2Amax

i

γiA2
i

max (16γiγjAmax
i Amax

j − (1 + γi)2(1 + γj)2
) ,

∆ji =
(1 + γi)

2(1 + γ2
j )2Amax

j

γjA2
j

max (16γiγjAmax
i Amax

j − (1 + γi)2(1 + γj)2
) , (6)

with γk = λmax(Ak)/λmin(Ak),

Amax
k = max

r
Ak(r, r), and A2

k
max

= max
r
A2
k(r, r).

Proof: See Appendix D
Note that, both the the dynamical matrix of the isolated

components Qi in (1) and of the composite network Qij
in (2) have the structure of the matrix Ai in Lemma 1.
We now provide a useful result for a composite network,
which relates the computation of the parameters in (6) to
the isolated components. Intuitively, this will enable the
(recursive) application of Lemma 1 for the derivation of
robustness bounds in che case of composite networks arising
from the interconnection of multiple components.

Lemma 2: (Bounds on composite networks) Let Qi and
Qj be as in (1) or (2) and let their interconnection Qij be
as in (4) with h and k defined in (5). Then,

γij < 2 max{Qmax
i ,Qmax

j },
Qmax
ij = max

{
Qmax
i , Qmax

j

}
,

Q2
ij

max
> max

{
Q2
i

max
, Q2

j
max
}
.

Proof: See Appendix E
Notice that, after pairwise interconnection, the network

matrix reads as in (2). Thus, with respect to the case of
two interconnected networks, the isolated components on
the (block) diagonal are in fact composite networks. We are
now ready to state upper and lower bounds for the H2 norm
of a composite dynamical network.

Theorem 3: (H2 norm of composite networks) Let Q
be a matrix resulting from the pairwise interconnection of
Q1, . . . ,Qn. Then, Q is positive definite and diagonally
dominant, and

Trace(Q−1) ≤
n∑

i=1

Trace(Q−1
i ) + (n− 1)∆̄max,

Trace(Q−1) ≥
n∑

i=1

Trace(Q−1
i ),

where ∆̄max = maxi,j={1,...,n}{∆̄ij + ∆̄ji}, with ∆̄ij

defined as

∆̄ij =
(1+(Qmax

i )2)
2
(1+Qmax

j )2Qmax
i

γiQ2
i

max
(
16(Qmax

i )
2
(Qmax

j )
2−(1+Qmax

i )
2
(1+Qmax

j )2
)

(7)
Proof: See Appendix F

C. Numerical Results

In this section, we provide numerical results to validate
our theoretical findings. In particular, motivated by the fact
that the optimal interconnection between two dynamical
networks is achieved via nodes with the highest degree,
we propose an algorithm that, at each iteration, minimizes
the perturbation due to the interconnection of hubs.1 To
evaluate the effectiveness of our algorithm, we provide a
comparison against a randomized algorithm that, at each
iteration, interconnects two randomly selected networks
through a pair of randomly selected nodes.

We first consider a set S = {s1, . . . , sn} of n atomic
dynamical networks, n ranging from 2 to 7 with step 1,
with ni ∈ [10, 20] and α = 3. For this case, we compare
our algorithm against the randomized one, and against the
optimal solution computed through a brute force approach.
Then, we consider a set S = {s1, . . . , sn} of n atomic
dynamical networks, n ranging from 10 to 50 with step 10.
Due to the dimension of the problem, in this second case
we compare our algorithm against the randomized one only.
In both cases, for each n, we generate 100 set of networks.

Figure 2 shows the outcome for the first set of simula-
tions, where the x-axis represents the number of networks

1For a composite network nodes are labeled as hubs according to their
role in the atomic network they originally belong to.
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involved and the y-axis represents the normalized ratio
between the H2 norm of the composite network and the
H2 norm of the optimal solution, i.e., Hopt

2 . In particular,
both the mean value and the standard deviation over the
100 run were computed for both our algorithm and the
randomized one. According to the numerical results, our
algorithm always provides a smaller gap with respected to
the the optimal solution compared to the randomized one.

Figure 3 shows the outcome for the second set of simu-
lations, where the x-axis represents the number of networks
involved and the y-axis represents the normalized ratio
between the H2 norm of the composite network and the H2

norm of the lower bound computed according to Theorem 3,
i.e., HLB2 . Also for this numerical evaluation, both the mean
value and the standard deviation over the 100 run were
computed for both our algorithm and the randomized one.
According to the numerical results, also in this case our
algorithm always provides a smaller gap with respected to
the lower bound compared to the randomized one.

For the second set of simulations, Table I also provides the
value of the upper bound computed according to Theorem 3.
It can be noticed that the upper bound UB is not tight. This
can be explained by the looseness of the bound given in
Lemma 2 for the terms γij .

IV. CONCLUSION

In this paper we characterize the robustness of intercon-
nected networks as a function of the interconnection topol-
ogy. We consider networks with Laplacian-based dynamics

TABLE I
UPPER BOUND FOR THE SECOND SET OF SIMULATIONS

Networks 10 20 30 40 50
Upp. Bound 1.464 1.492 1.498 1.506 1.509

Random 1.0058 1.0060 1.0062 1.0065 1.0067
Our 1.0017 1.0017 1.0019 1.0020 1.0021

and quantify that interconnected networks are always less
robust than the isolated components. Further, for the inter-
connection of two networks and for the multiple networks
problem under pairwise connection scheme, we show that
interconnections among nodes of the atomic components
with highest degree yield maximum robustness. Finally, we
propose an interconnection rule for the design of robust
composite networks, and validate its effectiveness through
simulations. Several directions are left for future work,
including the extension to general network dynamics where
different nodes feature different interconnection capabilities.

APPENDIX

A. Proof Preliminaries

In this section some fundamental results required for the
development of the proofs are given.

Lemma 3: (Positive definite matrices) Let A ∈ Rn×n be
a positive definite matrix and let A−1 be its inverse. Then
A(i, i)A−1(i, i) ≥ 1,∀ i ∈ V . Furthermore, let λ1 be the
least, λn the largest eigenvalue of A, γ = λn/λ1. Then
γ1/2 + γ−1/2 ≥ 2 maxi=1,...,n

(
A(i, i)A−1(i, i)

)1/2
.

In addition, the following result on M-matrix hold [12]
and [13]:

Lemma 4: (M-Matrix properties) Let A be an irre-
ducible, symmetric, and strictly diagonally dominant M-
matrix, then A−1 is a symmetric entrywise positive matrix
and A−1(i, i) > A−1(i, j), ∀ i, j ∈ V : i 6= j.

Finally, the following result concerning the inversion of
the sum of two matrices holds:

Lemma 5: (Sherman–Morrison formula) Suppose A is
an invertible square matrix and u, v are vectors. Suppose
furthermore that 1 + vTA−1u 6= 0. Then

(A+ uvT )−1 = A−1 − A
−1uvTA−1

1 + vTA−1u
,

where uvT is the outer product of two vectors u and v.

B. Proof of Theorem 1

In order to prove the Theorem, let Q−1ij be the inverse of
Qij defined in (2). The main diagonal of Q−1ij reads as

Q−1
ij =

[ (
Qi − eheTkQ−1

j eke
T
h

)−1
?

?
(
Qj − ekeThQ−1

i ehe
T
k

)−1

]
,

(8)
where the block off-diagonal can be neglected as they do
not affect the computation of the Trace and h ∈ Vi, k ∈ Vj
are the node selected for the interconnections.

Let us now consider the first block on the main diagonal
of the inverse matrix Q−1ij . In particular, let us recall that
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the interconnection is obtained by connecting the h-th node
of the system s1 with the k-th node of the system s2. Then
we have

(
Qi − eheTkQ

−1
j eke

T
h

)−1
= Q−1i + Phkij , where

Lemma 5 has been used and Phkij =
Q−1

i (:,h)Q−1
i (h,:)

1/Q−1
j (k,k)−Q−1

i (h,h)
.

By following a similar reasoning for the second block on
the main diagonal of the inverse matrix Q−1ij we obtain(

Qj − ekeThQ−1i ehe
T
k

)−1
= Q−1j + Pkhij .

Since the objective is to compute the trace of the
block-diagonal matrix Q−1ij given in (8), let us now
investigate the structure of the eigenvalues of the two
perturbations Phkij and Pkhij . In particular, by noticing
that these perturbations are by construction rank-1
matrices we have that spec(Phkij ) = {λhkij , 0, . . . , 0} and
spec(Pkhij ) = {λkhij , 0, . . . , 0}. In addition, the eigenvalue
λhkij is by construction defined as in (3). Therefore,
from the linearity of the Trace operator it follows
Trace(Q−1ij ) = Trace(Q−1i ) + Trace(Q−1j ) + λkhij + λhkij .

At this point in order to prove that λhkij > 0
and λhkij > 0 it is sufficient to show that by
construction 1/Q−1j (k, k)−Q−1i (h, h) > 0 and
1/Q−1i (h, h)−Q−1j (k, k) > 0. In this regard, note
that Qi and Qj are symmetric strictly diagonally dominant
M-matrices which, by construction, are irreducible being
the graphs G1 and G2 associated to them (strongly)
connected by definition. Then from Lemma 4 it follows
that Q−1i and Q−1j are symmetric entrywise positive
matrix. Furthermore, by construction we also know
that (Qr(i, i)−

∑
|Qr(i, j)|) > 1, ∀ i ∈ 1, . . . , nr, with

r ∈ {i, j}. Thus from [14] it follows that
∑nr

j=1Q−1r (i, j) ≤
1, ∀ i ∈ 1, . . . , n, with r ∈ {i, j}, which in turn implies
Q−1i (h, h) < 1;Q−1j (k, k) < 1 ∀ h ∈ V1,∀ k ∈ V2
thus the result follows.

C. Proof of Theorem 2

In order to prove the Theorem it is sufficient to
show that λkhij + λhkij > λk

∗h∗

ij + λh
∗k∗

ij , for all h ∈
V1 and k ∈ V2 such that deg(h) < deg(h∗) and
deg(k) < deg(k∗), where deg(h∗) = maxh∈Vi deg(h) and
deg(k∗) = maxk∈Vj deg(k). In particular, it should be no-
ticed that by construction the quantity λkhij + λhkij is mini-
mized when the terms Q−1i (h, h) and Q−1j (k, k) are min-
imized at the denominator and the terms ‖Q−1i (:, h)‖2
and ‖Q−1j (:, k)‖2 are minimized at the numerator. There-
fore, the problem can be equivalently stated as prov-
ing that for all h ∈ V1 and k ∈ V2 such that
deg(h) < deg(h∗) and deg(k) < deg(k∗), then for
the system si we have: Q−1i (h, h) > Q−1i (h∗, h∗) and
‖Q−1i (:, h)‖2>‖Q−1i (:, h∗)‖2, and a similar expression
holds for the system sj . Let us now focus on the first
inequality for the system si as a similar reasoning will
hold for the system sj . In particular, by recalling that
QiQ−1i = I, for any two vertices h and h∗ we have

ni∑
r=1

Qi(h
∗, r)Q−1

i (r, h∗) =

ni∑
r=1

Qi(h, r)Q−1
i (r, h) = 1. (9)

At this point, by recalling that Qi(h, h) < Qi(h
∗, h∗) we

have that

Q−1
i (h∗, h∗) =

Qi(h, h)

Qi(h∗, h∗)
Q−1

i (h, h)

+

n1∑
r=2

Qi(h
∗, r)

Qi(h∗, h∗)
Q−1

i (r, h∗)−
n1∑
r=2

Qi(h, r)

Qi(h∗, h∗)
Q−1

i (r, h),

Thus it follows that Q−1i (h∗, h∗) < Q−1i (h, h) if and only if∑n1

r=2Qi(h∗, r)Q
−1
i (r, h∗) −

∑n1

r=2Qi(h, r)Q
−1
i (r, h) <

(Qi(h∗, h∗)−Qi(h, h))Q−1i (h, h), At this point by
recalling the equality (9), the previous equation
can be expressed solely in terms of the elements
Qi(h, h), Q−1i (h, h) and Qi(h∗, h∗), Q−1i (h∗, h∗) as
follows Qi(h∗, h∗)Q−1i (h∗, h∗) − Qi(h, h)Q−1i (h, h) <
(Qi(h∗, h∗)−Qi(h, h))Q−1i (h, h). By further simplifying
we have Qi(h∗, h∗)Q−1i (h∗, h∗) < Qi(h∗, h∗)Q−1i (h, h)
and thus the first inequality for the system si follows.

Let us now focus on the second inequality for the system
si as again a similar reasoning will hold for the system
sj . Notice that ‖Q−1i (:, h)‖2 represents the entry (h, h) of
the matrix

(
Q−1i

)2
. Therefore, the result we are seeking

can be obtained by following the same reasoning as be-
fore, if Q2

i

(
Q−1i

)2
= I and for all h ∈ V1 such that

deg(h) < deg(h∗) we have Q2
i (h, h) < Q2

i (h
∗, h∗) ⇐⇒

Qi(h, h) < Qi(h∗, h∗). The first property follows directly
from the fact that Q1 Q−11 = I; while, remembering that Qi
is symmetric, the second property can be shown noticing that
by construction the (i, i) entry of the matrix Q2

1 is defined
as Q2

1(h, h) =
∑n1

r=1Q1(h, r) Q1(r, h) = ‖Qi(:, h)‖2 ,

D. Proof of Lemma 1

In order to prove the Lemma we must characterize an
upper bound for λkhij and λhkij as defined in Theorem 1.
In particular, it should be noticed that this problem can be
equivalently expressed in terms of characterizing an upper
bound for the terms A−1i (h, h), ‖A−1i (:, h)‖2, A−1j (k, k),
and ‖A−1j (:, k)‖2.

Let us now focus on the two terms A−1i (h, h)
and ‖A−1i (h, :)‖2 as a similar reasoning will hold for
the other two terms. In particular, from Lemma 3

we know that A−1i (h, h) ≤
(
γ
1/2
i +γ

−1/2
i

)2

4Amax
i

. where
γi = λmax(Ai)/λmin(Ai) and since h = argmaxrAi(r, r)
then Amax

i = Ai(h, h). At this point, by recalling that by
construction ‖A−1i (:, h)‖2 represents the entry (h, h) of the
matrix

(
A−1i

)2
, and the eigenvalues of a squared matrix are

the squared eigenvalues of the matrix itself, the following

upper bound is obtained
∥∥A−1i (:, h)

∥∥2 ≤ (γi+γ−1
i )

2

4A2
i

max , where
A2
i

max
= maxrA2

i (r, r) and similarly to the previous case
since h = argmaxrAi(r, r) then by definition it follows
that A2

i
max

= A2
i (h, h). At this point, by following the

same reasoning, similar bounds can be found for the two
terms A−1j (k, k) and ‖A−1j (:, k)‖2. Finally, by substituting
these bounds in λkhij (λhkij ) and by doing simply algebraic
manipulations the bounds ∆ij and ∆ji given in (6) follow.
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E. Proof of Lemma 2

In order to prove the lemma, we notice that
from the Gershgorin circle theorem by construction
the matrix Qij has the following spectrum
spec (Qij) ⊆

[
1, α+ 2 maxh∈Vi,k∈Vj{deg(h), deg(k)}+ 1

]
.

In particular, by noticing that

α+ max
h∈Vi,k∈Vj

{deg(h), deg(k)}> max
h∈Vi,k∈Vj

{deg(h), deg(k)}+1,

and by recalling thatQmax
r = α+ maxp∈Vr{deg(p)}, r ∈ i, j

the spectrum of the matrix Qij can be also written
as spec (Qij) ⊆

[
1, 2 max{Qmax

i ,Qmax
j }

]
, At this

stage, by recalling that γij = λmax(Qij)/λmin(Qij), it
follows that γij < 2 max{Qmax

i ,Qmax
j }. Furthermore,

since the matrix Qij in (2) is a block matrix, by
construction we have Qmax

ij = max
{
Qmax
i , Qmax

j

}
and

Q2
ij

max
= max

{
Q2
i

max
,Q2

j
max}

+ 1.
It should be noticed that the block matrices on the main

diagonal of Q2
ij are given exactly by Q2

i + diag(eh) and
Q2
j + diag(ek) with diag(ek) a diagonal matrix with all

zeros but the entry in the k-row and k-th column equal to
1. This follows directly from the fact that when computing
Q2
ij by construction we have (ehe

T
k )(eke

T
h) = diag(eh) and

(eke
T
h)(ehe

T
k ) = diag(ek).

F. Proof of Theorem 3

In order to prove the first inequality of the Theorem, let
us consider for the sake of clarity a set S = {1, 2, 3} of 3
dynamical networks and assume with no lack of generality
that interconnections are performed sequentially, that is first
the matrix Q1 is interconnected with the matrix Q2 and
then the resulting network matrix Q12 is connected with
the matrix Q3.

At this point, by recursively applying Lemma 1, the
following holds for the trace of the composite network Q123

Trace(Q−1
123) ≤ Trace(Q−1

12 ) + Trace(Q−1
3 ) + ∆12,3 + ∆3,12

≤ Trace(Q−1
1 ) + Trace(Q−1

2 ) + ∆1,2 + ∆2,1

+ Trace(Q−1
3 ) + ∆12,3 + ∆3,12.

In particular, by recalling the definition of the terms ∆ij

and ∆ji as in (6) and by exploiting Lemma 2, the fol-
lowing bound for the terms ∆12,3 + ∆3,12 is obtained
with respect to the atomic parts, namely Q1, Q2 and Q3

∆12,3 + ∆3,12 ≤ max{(∆̄1,3 + ∆̄3,1), (∆̄2,3 + ∆̄3,2)},
where ∆̄i,j given in (7) differs from ∆i,j as the γi and
γj are replaced with their upper bound 2Qmax

i and 2Qmax
j ,

respectively. Note that by using Qmax
i and Q2

ij
max in ∆̄i,j ,

we intrinsically exploit the equality and the lower bound
given in the second and third equations of Lemma (2),
respectively. Therefore we obtain

Trace(Q−1
123) ≤ Trace(Q−1

1 ) + Trace(Q−1
2 ) + Trace(Q−1

3 )

+ (∆1,2 + ∆2,1)

+ max{(∆̄1,3 + ∆̄3,1), (∆̄2,3 + ∆̄3,2)}.

At this point, by iterating the same reasoning for a given set
S = {s1, s2, . . . , sn} of n dynamical networks and by still

assuming interconnections to be performed sequentially, the
following bound on the trace of the composite system holds

Trace(Q−1) ≤
n∑

i=1

(
Trace(Q−1

i ) + max
j=1,...,i−1

{∆̄ij + ∆̄ji}
)

≤
n∑

i=1

Trace(Q−1
i ) + (n− 1) ∆̄max,

where the second inequality follows from the fact that
∆̄max = maxi,j={1,...,n}{∆̄ij + ∆̄ji} with ∆̄ij ≥ ∆ij

for all i, j ∈ {1, . . . , n} by construction. The same up-
per bound holds regardless of the particular sequence of
interconnections and ordering of the dynamical networks.
This can be explained by the fact that, by exploiting both
Lemma 1 and Lemma 2, the perturbation introduced by
the interconnection of any pair of (intermediate) composite
networks can always be bounded from above by the max
of a set of “elementary” upper bounds of the perturbation
arising from network compositions involving only atomic
dynamical networks, i.e., ∆̄ij with i, j ∈ {1, . . . , n}, and
for which the inequality stated above still holds true.

To prove the second inequality of the Theorem, it is
sufficient to notice that by construction the perturbation
terms introduced by the interconnections contribute with a
positive term to the computation of the H2 norm of the
composite network. Thus, a straightforward lower bound is
given solely by the sum of the trace of the atomic parts.

REFERENCES

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Nature,
vol. 464, no. 7291, pp. 1025–1028, 2010.

[2] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control
Analysis and Design, 2nd ed. John Wiley & Sons, 2005.

[3] A. Chapman, E. Schoof, and M. Mesbahi, “Distributed online topol-
ogy design for network-level disturbance rejection,” in Decision and
Control (CDC), 2013 IEEE 52nd Annual Conference on.

[4] A. Chapman and M. Mesbahi, “Semi-autonomous consensus: net-
work measures and adaptive trees,” IEEE Transactions on Automatic
Control, vol. 58, no. 1, pp. 19–31, 2013.

[5] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Robustness of
a network of networks,” Phys. Rev. Lett., vol. 107, no. 19, 2011.

[6] T. Peixoto and S. Bornholdt, “Evolution of robust network topologies:
Emergence of central backbones,” Phys. Rev. Lett., vol. 109, no. 11,
2012.

[7] S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C. J. Perez-Vicente,
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