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a b s t r a c t

This paper aims to establish explicit relationships between the controllability degree of a network,
that is, the control energy required to move the network between different states, and its graphical
structure and edge weights. As it is extremely challenging to accomplish this task for general networks,
we focus on the case where the network controllability Gramian is a diagonal matrix. The main technical
contributions of the paper are (i) to derive necessary and sufficient graphical conditions for networks to
feature a diagonal controllability Gramian, and (ii) to propose a constructive algorithm to design network
topologies and weights so as to generate stable and controllable networks with pre-specified diagonal
Gramians. The proposed network design algorithm allows for individual assignment of how each node
responds to external stimuli, so as to selectively enforce robustness to external disturbances. While
relying on the simplifying assumption of a diagonal controllability Gramian, our analysis reveals novel
and counterintuitive controllability properties of complex networks. For instance, we identify a class of
continuous-time networks where the control energy is independent of their cardinality and number of
control nodes (thus disproving existing results based on numerical controllability studies), discuss their
stability margin, and show that the energy required to control a node can be made independent of its
graphical distance from the control nodes. These results complement and formally support, or challenge,
a series of conjectures based on numerical studies in the field of complex networks.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Real-world systems, including interconnected power, social,
and cyber–physical systems, can often be represented as complex
networks, and their dynamic behavior depends to a large extent
upon the properties of their interconnection structure. This re-
lationship between the behavior of a complex system and the
properties of its abstract graphical representation has motivated
numerous studies over the last decade across different research
communities, which aim to identify which network features are
mostly responsible for desirable dynamic properties such as effi-
ciency, robustness, and controllability.

In this paper we unveil novel relationships between the struc-
ture of a network and its quantitative controllability properties,
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and we propose an algorithm to construct networks with pre-
specified controllability properties (a previously unsolved network
design problem). Controllability indicates whether the state of a
network can be arbitrarily changed by a suitable choice of exoge-
nous inputs (Chen, Lin, & Shamash, 2004; Kalman, Ho, & Narendra,
1963). While classic results guarantee that network controllability
depends (in a generic sense (Reinschke, 1988)) uniquely on thenet-
work structure and is independent of the networkweights (Aguilar
& Gharesifard, 2015; Chapman & Mesbahi, 2013a; Ji, Lin, & Yu,
2015; Lin, 1974; Liu, Slotine, & Barabási, 2011; Lou & Hong, 2012;
Olshevsky, 2014; Parlangeli & Notarstefano, 2012; Pequito, Ramos,
Kar, Aguiar, & Ramos, 2014; Rahmani, Ji, Mesbahi, & Egerstedt,
2009; Zhang, Cao, & Camlibel, 2014), the degree of controllability,
that is, the energetic effort required to control the state to arbitrary
configurations, is an intricate function of all network parameters
(Bof, Baggio, & Zampieri, 2017; Dhal & Roy, 2016; Kumar, Menolas-
cino, Kafashan, & Ching, 2015; Pasqualetti, Zampieri, Bullo, & met-
rics, 2014; Summers, Cortesi, & Lygeros, 2016; Tzoumas, Rahimian,
Pappas, & Jadbabaie, 2016; Yan, Ren, Lai, Lai, & Li, 2012; Yan,
Tsekenis, Barzel, Slotine, Liu, & Barabási, 2015; Zelazo & Mesbahi,
2011; Zhao & Cortés, 2016). The controllability degree of a net-
work, which is the notion investigated in this paper, has practical
implications for the control of large networks, because several
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networks tend to become difficult to control when their control
energy grows with the network cardinality, e.g., see Pasqualetti
et al. (2014). Further, differently from its binary counterpart, the
controllability degree can also be used as a measure of robustness
and security. For example, if changing the state of a node requires
large energy, then such node is resilient against low-energetic
inputs representing disturbances or attacks.

The objectives of this paper are to derive analytical relation-
ships between the controllability degree of a network and its
graphical structure, and to design networks with pre-specified
controllability degrees. Such analytical relations are particularly
important because the numerical investigation of network control-
lability often leads to ill-conditioned problems (see also Remark 1).
Although recent studies have connected the controllability degree
of a network to its centrality (Bof et al., 2017), weights distri-
bution (Pasqualetti & Zampieri, 2014), and geometry (Pasqualetti
et al., 2014; Yan et al., 2015), precise graphical interpretations of
the network controllability degree are still critically lacking and
difficult to obtain in the general case. To overcome these difficulties
and achieve our objectives, we restrict our analysis to networks
featuring a diagonal controllability Gramian (Kailath, 1980), where
the energy required to control each individual nodes is simply
given by the diagonal entries of the Gramian. Our choice is not only
convenient for the analysis and design of networks, but it also leads
to important results. First, systems featuring diagonal Gramian
matrices have been studied in the context of diagonal stability
(Geromel, 1985; Hershkowitz, 1992; Kaszkurewicz & Bhaya, 2000;
Kaszkurewicz & Hsu, 1984). We extend these results by solving
the case where the right-hand side of the Lyapunov equation is
only negative semi-definite (number of inputs smaller than the
number of states as in a practical network system), and by deriving
graphical conditions instead of only algebraic relations. Second, as
we further articulate in Remark 1 below, our analysis leads to novel
results in the context of control of complex networks with general
topologies, thus justifying the use of a simplified setting. Third
and finally, our method allows us to derive a first solution (to the
best of our knowledge) to the problem of designing sparse systems
with prescribed controllability properties. Relevant works include
(Chapman & Mesbahi, 2013b; Chapman, Schoof, & Mesbahi, 2013;
Gasparri, Pasqualetti, Santini, & Panzieri, 2016;Wan, Roy, & Saberi,
2007)where, however, the considered cost function is theH2 norm
of the network system, rather than the network controllability
degree or the H2 norm at the individual nodes, as we do.

The main technical contributions of this paper are as follows.
First, we derive necessary and sufficient conditions for a network
to feature a diagonal controllability Gramian (Theorem 3.1). In
particular we show that, for the controllability Gramian to be
diagonal, the network must be sign-skew-symmetric, that is, the
weights of the two directional edges (i, j) and (j, i) between any
two nodes i and j must have opposite sign, and uniformly input-
connected, that is, for every node i and control node j, all paths
from j to i must have the same weight ratio product. Second, we
characterize stability and controllability of the set of networks
with diagonal controllability Gramian (Theorem 4.2). Specifically
we show that, for every positive definite diagonalmatrixW and set
of control nodes S , there exists a dense set of stable networks that
are controllable from S and have Gramian W . Third, we propose
an algorithm to construct networkswith desired diagonal Gramian
(Algorithm 1). Because the Gramian determines the H2 norm of a
system (Skogestad & Postlethwaite, 2005), our algorithm can be
used not only to construct networks with desired controllability
properties, but also to individually assign the robustness and secu-
rity of each node against exogenous disturbances.

In addition to their technical contributions, the results pre-
sented in this paper have important implications beyond the con-
sidered scenario. For instance, by extending the results in

Pasqualetti and Zampieri (2014), Pasqualetti et al. (2014) and
Bianchin, Pasqualetti, and Zampieri (2015), we show that (i) there
exists a class of networks whose control energy is independent of
the cardinality of the network and the number of control nodes.
This is a counterexample for the (numerical) conclusion inYan et al.
(2015) that the control energy of dynamical networks increases
with its cardinality. (ii) The energy required to change the state of
a node may be independent of its graphical distance to the control
nodes. Nodes that are located close to the control nodes may
require high control energy while nodes that are far away from
the control nodes may require low control energy. (iii) The con-
trollability matrix and controllability Gramian are usually treated
as two equivalent tools to assess controllability. Yet, we show via
examples that the twomatricesmay give extremely different, even
opposite, quantitative measures of the controllability degree of a
network. Finally, (iv) the controllability degree of a network, which
depends on both structure and weights, can be used as a design
criteria for security applications. Other implications of our results
are discussed in Remark 1.

The rest of the paper is organized as follows. Section 2 contains
our problemsetup andpreliminary notions. Our conditions for a di-
agonal network controllability Gramian are described in Section 3.
Section 4 contains our results for the stability and controllability
of the set of networks with diagonal controllability Gramian. Our
network design algorithm and numerical examples are reported in
Sections 5 and 6, respectively. Section 7 concludes the paper.

2. Problem statement and preliminary notions

Consider a network with n nodes and represented by the di-
rected graph G = (V, E), where V = {1, . . . , n} and E ⊆ V × V are
the vertex and edge sets, respectively. Let Vc = {k1, . . . , knc } ⊆ V
be the set of control nodes, which receive nc independent external
control inputs. Following a large body of literature for the study
of complex network dynamics, e.g., see Liu et al. (2011), Yan et al.
(2012) and Allesina, Pascual, structure, andmodules (2008), we let
the network evolve with linear time-invariant dynamics

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn contains the states of the
nodes at time t ∈ R≥0, and u(t) ∈ Rnc is the input vector. The
matrix A = [aij] is the weighted adjacency matrix of the graph G,
where aij ̸= 0 when there is a directed edge from node j to node
i. Two nodes are adjacent if either aij ̸= 0 or aji ̸= 0. Let In be the
n × n identity matrix, and let ei denote its ith column. Then, the
input matrix B reads as

B = [ek1 , ek2 , . . . , eknc ] ∈ Rn×nc . (2)

The input matrix B indicates the number and locations of the
control nodes. In particular, Eq. (2) implies that BBT is a diagonal
matrix, where the ith diagonal entry equals 1 if i ∈ Vc and 0
otherwise.1 In this paper we assume that B is given, and find
conditions on the adjacency matrix A so that the network (1) is
stable and controllable with diagonal and pre-specified Gramian.

The system (1) or, equivalently, the pair (A, B) is controllable if
and only if the controllability matrix

K := [B, AB, A2B, . . . , An−1B] ∈ Rn×(nnc ) (3)

has full row rank (Kalman et al., 1963). Controllability of (A, B) can
also be assessed via the controllability Gramian, defined as

Wtf :=

∫ tf

0
eAtBBTeA

Ttdt, tf > 0. (4)

1 The results extend directly to the case where the nonzero entries of B are
different from 1. However, the case of non-dedicated control inputs, i.e., when the
columns of B have multiple nonzero entries, requires additional investigation.
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The controllability Gramian is an n × n positive semi-definite
matrix, and it becomes positive definite if and only if the system
is controllable (Chen et al., 2004, Theorem 3.4.1).

The Gramian can be used to calculate the minimum energy
required to control the state between two arbitrary values. In
particular, let xf be the desired final state of the system. The control
input u(t) = BTe−AT(t−tf )W−1

tf xf achieves the state transfer x(tf ) =

xf from x(0) = 0, with minimum energy (Chen et al., 2004)∫ tf

0
uT(t)u(t)dt = xTf W

−1
tf xf . (5)

A larger tf leads to less control energy for the same xf , because
Wt ′f

> Wtf for t
′

f > tf . When tf = ∞, we have

W := W∞ =

∫
∞

0
eAtBBTeA

Ttdt. (6)

For unstable systems, (5) may diverge and W is ill-defined. For
stable systems, W is well-defined and equals the unique solution
to the Lyapunov equation (Chen et al., 2004)

AW + WAT
= −BBT. (7)

The minimum energy to control the network from the origin to
some state xf is xTf W

−1xf . By setting xf = ei, with i ∈ {1, . . . , n},
we define the ith nodal energy as

εi := eTi W
−1ei = [W−1

]ii,

where [W−1
]ii denotes the ith diagonal entry of W−1. Intuitively,

the ith nodal energy measures the energy needed to change the
state of the ith node from 0 to 1, while keeping the final state
of the remaining nodes at 0. Compared to the classic notion of
eigen energy (Yan et al., 2015), where the final state xf is aligned
with the eigenvectors of the Gramian, our notion of nodal energy
provides a more direct measure of the energy needed to control
the state of the individual nodes of the network. Clearly, when
W is diagonal with entries {λ1, . . . , λn}, nodal- and eigen-energies
coincide, and εi = λ−1

i . Finally, our notion of nodal energy can also
be used to measure the robustness of each node against external
disturbances. To see this, let G(s) be the transfer function of the
system (A, B, eTi ). TheH2 norm of the system satisfies (Skogestad &
Postlethwaite, 2005, Section 4.10.1)

∥G∥
2
2 =

1
2π

tr
∫

∞

−∞

G(jω)G∗(jω)dω

= tr(eTi Wei) = [W ]ii = [W−1
]
−1
ii = ε−1

i , (8)

where the last equality holds when W is diagonal. Recall that the
H2 norm of a system equals the expected root mean square of the
output in response to white noise excitation or, equivalently, the
energy of the output response to unit impulsive inputs (Skogestad
& Postlethwaite, 2005). We conclude that a larger nodal energy
implies stronger robustness of the node against input disturbances.

3. Graphical conditions for diagonally admissible networks

In this section we derive necessary and sufficient conditions for
a network to feature a diagonal Gramian. Since the Gramian of a
stable network is the solution to the Lyapunov equation (7), we
characterize under what condition such equation admits diagonal
positive-definite solutions. We start with the following definition.

Definition 1 (Diagonally Admissible Network). Let W be positive
definite and diagonal, and let B be as in (2). A network with adja-
cency matrix A is diagonally admissible forW and B if AW +WAT

=

−BBT. Further, let D(W , B) := {A : AW + WAT
= −BBT

} be the set
of all diagonally admissible networks forW and B. □

Fig. 1. The network is sign-skew-symmetric and its Gramian is diagonal. For node
3, there are three paths from the two inputs: (1, 3), (1, 2, 3), and (4, 3). The control
impacts along the three paths are β13 = β123 = β43 = 1.

It should be noticed that the set D(W , B) contains both stable
and unstable adjacency matrices A. When A is stable, W is the
unique solution to the Lyapunov equation (7) and, thus, it equals
the network controllability Gramian. When A is unstable, the Lya-
punov equation (7) may admit multiple solutions, one of which is
W . In this section we derive necessary and sufficient conditions
for a network to be diagonally admissible. In the next section we
will further characterize stability and controllability of diagonally
admissible networks.

Because W = diag(w1, . . . , wn) > 0 and [BBT
]ii = 1 if i ∈ Vc

([BBT
]ii = 0 otherwise), we have [AW + WAT

]ii = 2aiiwi and
[AW + WAT

]ij = aijwj + wiaji. By equating the diagonal and off-
diagonal entries of both sides of the Lyapunov equation (7), we
obtain the following necessary and sufficient algebraic conditions
for the Lyapunov equation (7) to admit a diagonal solutionW :

[AW + WAT
]ii = 2aiiwi =

{
−1, i ∈ Vc,

0, otherwise, (9)

[AW + WAT
]ij = aijwj + wiaji = 0, i ̸= j. (10)

Wenext elaborate on equations (9)–(10) to obtain useful graph-
ical insights. We first define two important notions.

Definition 2 (Sign-Skew-Symmetric Network). A network is sign-
skew-symmetric if its adjacency matrix satisfies

(i) aii < 0 if i ∈ Vc and aii = 0 otherwise;
(ii) aijaji < 0 if nodes i and j are adjacent, and aij = aji = 0

otherwise. □

Condition (i) requires the control nodes to have negative self-
loops, and the remaining nodes to have no self-loops. Condition
(ii) requires adjacent nodes to be connected by two edges with
opposite signs and directions. See Fig. 1 for an example of sign-
skew-symmetric network.

It can be verified that any network satisfying (9)–(10) is sign-
skew-symmetric. Yet, the converse is not true. In fact, in order to
satisfy conditions (9) and (10), a sign-skew-symmetric network
must satisfy additional constraints on the control impacts, which
we define below.

Definition 3 (Control Impact Along a Path). Given a sign-skew-
symmetric network, consider the path (i1, i2, . . . , ip) with i1 ∈

Vc and ip ∈ V . The control impact on node ip along the path
(i1, i2, . . . , ip) is

βi1...ip :=
1

|2ai1 i1 |
ri1...ip , (11)
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where

ri1...ip :=

⏐⏐⏐⏐ai2 i1ai1 i2

⏐⏐⏐⏐ ⏐⏐⏐⏐ai3 i2ai2 i3

⏐⏐⏐⏐ · · ·
⏐⏐⏐⏐⏐aip ip−1

aip−1 ip

⏐⏐⏐⏐⏐
is the weight ratio product along the path. In the case of p = 1, we
let βi1 i1 := 1/|2ai1 i1 |. □

The control impact in Definition 3 may be interpreted as the
influence of a control input on a node in a network. Since there
may bemultiple paths froma control node to a given node, an input
mayhave different impacts on the samenode along different paths.
When all inputs have the same control impact on every node along
all different paths, the network is called uniformly input-connected.

Definition 4 (Uniformly Input-Connected Networks). A network is
uniformly input-connected if (i) it is sign-skew-symmetric, and (ii)
for every node i ∈ V and j ∈ Vc , the control impact along every
path (j, . . . , i) equals βi, where βi is a constant that depends only
on i. □

To illustrate Definition 4, consider the network in Fig. 1. For
node 3, for instance, there are three different paths from the two
inputs: (1, 3), (1, 2, 3), and (4, 3). It can be verified that the control
impacts along the three paths are all equal to 1. Further, because
(i) in Definition 4 is also satisfied, this network is uniformly input-
connected.

We are now ready to state the main result of this section.

Theorem 3.1 (Graphical Condition for Diagonally Admissible Net-
works). A network is diagonally admissible if and only if it is uniformly
input-connected. When a network is uniformly input-connected, it is
diagonally admissible for

W = diag(β1, . . . , βn), (12)

where βi > 0 is the control impact of node i.

Proof. (Necessity) Suppose a network is diagonally admissible for
W = diag(w1, . . . , wn). Then, Eqs. (9) and (10) hold. We only need
to show that the two conditions in Definition 4 are satisfied. First,
it can be easily verified that the network is sign-skew-symmetric
according to Eqs. (9) and (10). Thus, condition (i) in Definition 4
is satisfied. Second, for any two adjacent nodes, Eq. (10) can be
rewritten as

wj = wi

⏐⏐⏐⏐ajiaij

⏐⏐⏐⏐ := wirij. (13)

For any i ∈ V and any path (i1, . . . , ip, i), it follows from (13) that
wi = rip iwip , wip = rip−1 ipwip−1 , . . . , wi3 = ri2i3wi2 , wi2 = ri1 i2wi1 . It
follows that

wi = ri1 i2 ri2 i3 . . . rip−1 ip ripiwi1 = ri1...ipiwi1 . (14)

If node i1 is a control node, we have wi1 = 1/|2ai1i1 | by (9).
Substituting wi1 = 1/|2ai1i1 | into (14) gives

wi = ri1...ip i/|2ai1i1 | = βi1...ipi, (15)

where βi1...ipi is the control impact along the path (i1, . . . , ip, i) as
in Definition 3. Equation (15) indicates that the control impacts
of any control input i1 ∈ Vc along any path (i1, . . . , ip, i) are all
equal to wi. As a result, condition (ii) in Definition 4 is satisfied,
and consequently the network is uniformly input-connected. In
addition, since the value ofβi1...ipi dependsmerely on i, letβi1...ipi :=

βi and hence (15) implies (12).
(Sufficiency) Suppose a network is uniformly input-connected.

We only need to show that the graphical conditions (i) and (ii) in
Definition 4 imply equations (9) and (10). LetD := diag(β1, . . . , βn)
where βi is the control impact of node i. First, for any i ∈ Vc ,

Fig. 2. The three networks are all diagonally admissible for W = diag(1, 1, 1)
because they satisfy A + AT

= −BBT where B = [1, 0, 0]T . Network (a) is
disconnected and uncontrollable. Network (b) is connected but uncontrollable.
Network (c) is controllable.

by considering the specific path (i, i), we have βi = 1/|2aii| ⇒

2aiiβi = −1. For any i ∈ V \ Vc , we have aii = 0 according to the
definition of sign-skew-symmetric networks. Thus, equation (9)
holds. Second, for any pair of adjacent nodes i and j, consider
the path (k, . . . , i, j) from an arbitrary control node k to node i
and then to node j. The control impacts on nodes i and j satisfy
βk...ij = |aji/aij|βk...i. Because βi = βk...i and βj = βk...ij, we
have βj = |aji/aij|βi and consequently equation (10) holds. Since
both (9) and (10) hold, the network is diagonally admissible and
D = diag(β1, . . . , βn) is a solution of AD + DAT

= −BBT. □

Theorem3.1 establishes an equivalence betweennodal energies
and control impacts, and provides a graphical interpretation of the
nodal energy in diagonally admissible networks. In particular, if
a diagonally admissible network is stable, the matrix (12) is its
controllability Gramian and, consequently, the ith nodal energy is

εi =
1
βi

.

Therefore, a large control impact leads to a small nodal energy.
Since the value of βi is determined by the edge weights, we can
obtain arbitrary nodal energies by selecting appropriate weights
(see Section 5 for details).

Theorem 3.1 is only applicable to connected networks, where
each input has control impacts on all the nodes. Yet, a diagonally
admissible network may have disconnected components (see, for
example, Fig. 2(a)). If each disconnected component has inde-
pendent control inputs, then Theorem 3.1 can be applied inde-
pendently to each of them (disconnected components with no
control nodes are not of interest). In addition, Theorem 3.1 can be
viewed as a generalization of the result in Kaszkurewicz and Hsu
(1984), where the right-hand side of the Lyapunov equation AW +

WAT
= −BBT is assumed to be negative definite — in our setup,

this condition corresponds to the case where there are n control
nodes. Instead, Theorem 3.1 solves the case where the number of
control nodes is less than n and, more importantly, establishes the
equivalence between the network topology, its weights, and the
energy needed to control the network to certain states.

4. Stability and controllability of diagonally admissible net-
works

In the previous section we present graphical conditions for
diagonally admissible networks. Yet, there may exist an infinite
number of diagonally admissible networks, with different network
structures and edge weights, for the same diagonal Gramian. Fur-
ther, it is not guaranteed that all diagonally admissible networks
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are stable and controllable (see Fig. 2 for an example). If a di-
agonally admissible network is controllable and stable, then the
diagonal matrix (12) is its controllability Gramian; otherwise, the
diagonal matrix (12) is still a solution to the Lyapunov equation
although the controllability Gramian may not be well defined.

Motivated by the above discussion, in this section we study
stability and controllability of diagonally admissible networks.
Based on some basic properties of Lyapunov equations, two results
about stability and controllability can immediately be obtained.
First, the eigenvalues {λi}

n
i=1 of any A ∈ D(W , B) have non-positive

real parts, that is, ℜ(λi) ≤ 0 for all i (Horn & Johnson, 1991,
Lemma 2.4.5). As a result, a diagonally admissible network is either
stable (i.e., ℜ(λi) < 0 for all i) or marginally stable (i.e., ℜ(λi) = 0
for some i). Second, for any diagonally admissible A ∈ D(W , B), we
have that A is stable if and only if the pair (A, B) is controllable.2
Given the equivalence between stability and controllability of diag-
onally admissible networks, we will next focus on controllability.

The next result shows that, for any W and B, the set D(W , B)
is nonempty and it always contains controllable networks. We call
a path that spans all the nodes in a network a spanning path, and
refer to a sign-skew-symmetric network with one single spanning
path as to a chain network (see Fig. 3 for an illustrative example).

Lemma 4.1 (Existence of Controllable Networks inD(W , B)). For any
diagonal positive definite matrix W and input matrix B as in (2), the
set D(W , B) always contains a controllable chain network.

Proof. First, we construct a chain network that is diagonally
admissible. Suppose W = diag(w1, . . . , wn) > 0. Assign the self-
loop weights as aii = −1/(2wi) < 0 for i ∈ Vc , and aii = 0
otherwise. Select an arbitrary control node i1 ∈ Vc and a spanning
path (i1, . . . , in) that starts from node i1 (each node appears only
once in the spanning path). For any adjacent nodes i and j in the
path, select aij and aji such that aji/aij = −wj/wi < 0. The
obtained network is a chain network and diagonally admissible for
W because it satisfies (9) and (10). An illustrative example is given
in Fig. 3.

Second, we prove the chain network constructed above is con-
trollable. Although there may exist multiple inputs, we first exam-
ine the controllability of the chain network with the single input
on node i1. Due to the special structure of the chain network, by re-
indexing the nodes appropriately, the adjacency matrix and input
matrix can be expressed as

A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12
a21 a22 a23

a32 a33 a34
. . .

. . .
. . .

. . . ann

⎤⎥⎥⎥⎥⎥⎦ , B1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where aii ̸= 0 if i ∈ Vc and aii = 0 otherwise. SinceA is a tridiagonal
matrix, the controllability matrix has the form of

K = [B1, AB1, A2B1, . . . , An−1B1]

=

⎡⎢⎢⎢⎢⎣
1 ∗ ∗ . . . ∗

0 a21 ∗ . . . ∗

0 0 a21a32 . . . ∗

...
...

...
. . .

...

0 0 0 . . .
∏n−1

i=1 a(i+1)i

⎤⎥⎥⎥⎥⎦ ,

where ∗ denotes the entries that do not contribute to the rank
of K . The matrix K is upper triangular and hence nonsingular for

2 Since any A ∈ D(W , B) satisfies AW + WAT
= −BBT and W > 0, this result

follows from Theorem 2.4.7 and Remark 2.4.9 in Horn and Johnson (1991).

Fig. 3. Given W = diag(1, 1, 1, 1) and B = [e1, e2], the chain network, which
contains one single spanning path (1, 2, 3, 4), is controllable and diagonally admis-
sible for W when α1/α2 = −1. The network remains controllable and diagonally
admissible forW when the dotted edges are added with γ1/γ2 = −1.

any nonzero edge weights. As a result, the chain network with the
single input on node i1 is controllable.

We next show that the network remains controllable when
there are additional inputs. Consider the controllability Gramian
Wtf =

∫ tf
0 eAtBBTeA

Ttdt . If B = ei1 , then Wtf =
∫ tf
0 eAtei1e

T
i1
eA

Ttdt ,
which is positive definite because the network is controllable in
this case as shown above. If B = [ei1 , . . . , einc ] where i1, . . . , inc ∈

Vc , then Wtf =
∑nc

k=1

∫ tf
0 eAteike

T
ik
eA

Tt
≥

∫ tf
0 eAtei1e

T
i1
eA

Ttdt >

0. Thus, the chain network with multiple control inputs is also
controllable. □

Based on Lemma 4.1, we are able to show that controllable and
diagonally admissible networks form a dense set in D(W , B). Let
∥ · ∥ be an arbitrary matrix norm.

Theorem 4.2 (Density of Controllable Networks in D(W , B))). For
any diagonal positive definite matrix W and input matrix B as in (2),
the set of controllable networks in D(W , B) is dense. That is, for any
A0 ∈ D(W , B) and any ϵ > 0, there exists A1 ∈ D(W , B) such that
(A1, B) is controllable and ∥A1 − A0∥ ≤ ϵ.

Proof. Suppose A2 ∈ D(W , B) corresponds to a controllable
network. Note A2 always exists according to Lemma 4.1. Inspired
by the proof in Lin (1974, Proposition 1), define

Aα := (1 − α)A0 + αA2, α ∈ [0, 1].

Note that Aα ∈ D(W , B) for all α ∈ [0, 1] because AαW + WAT
α =

−BBT for all α. For any ϵ > 0, there exists α0 ∈ [0, 1] such that
∥Aα − A0∥ < ϵ for all α ∈ [0, α0]. Let K (α) = [B, AαB, . . . , An−1

α B]
and φ(α) = det(K (α)K T(α)). It is evident that φ(α) = 0 if and only
if K (α) is row rank deficient, i.e., (Aα, B) is uncontrollable. Since
the network is controllable when α = 1, we have φ(1) ̸= 0 and
hence φ(α) is not identically zero. As a result, φ(α) = 0, which
is a polynomial equation in one variable with finite order, has
a finite number of zero roots. Consequently, there always exists
α1 ∈ [0, α0] such that φ(α1) ̸= 0, i.e., (Aα1 , B) is controllable. Thus,
Aα1 corresponds to a controllable network and satisfies ∥Aα1 − A0∥

≤ ϵ. □

Theorem4.2 lays a theoretical foundation for designing control-
lable diagonally admissible networks. In fact, given a diagonally
admissible network, we can always obtain a controllable network
by perturbing its adjacency matrix (the perturbation may or may
not change the network structure). For example, the network in
Fig. 2(b) is diagonally admissible but uncontrollable. We can per-
turb the weights between nodes 2 and 3 to obtain the controllable
one in Fig. 2(c) (note that the perturbation of γ may be arbitrarily
small). We remark that the controllability matrix of the perturbed
network may be arbitrarily close to being rank deficient; yet, its
nodal energies are guaranteed to equal the pre-specified values.
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5. Design of stable and controllable networks with specified
nodal energies

In this section we present a systematic way to construct di-
agonally admissible networks that are stable, thus controllable,
with pre-specified nodal energies. Our network design problem is
formally stated below.

Problem 1 (Network Design Problem). Given a network with nodes
V , control nodes Vc ⊆ V , input matrix B as in (2), and desired nodal
energies {εi}

n
i=1 with εi > 0, design the network adjacency matrix

A such that A is stable and (A, B) is controllable with Gramian
W = diag(ε−1

1 , . . . , ε−1
n ). □

Before addressing Problem 1, we identify three edge operations
that preserve diagonal admissibility. For any A ∈ D(W , B), it can
be verified that A + ∆ ∈ D(W , B) if and only if

∆W + W∆T
= 0. (16)

SubstitutingW = diag(w1, . . . , wn) into (16) gives

[∆]ijwj = −[∆]jiwi. (17)

Eq. (17) leads to the following edge operations:

(o1) Edge scaling: For any pair of adjacent nodes i and j, change the
edge weights aij and aji to αaij and αaji,with α ∈ R̸=0. In this
case, [∆]ij = (α − 1)aij and [∆]ji = (α − 1)aji.

(o2) Edge addition: For any pair of nodes i and j that are not
adjacent (i.e., aij = aji = 0), add two edges with opposite
directions between them and set the edge weights to aij = α

and aji = −α(wj/wi), with α ∈ R̸=0. In this case, [∆]ij = α

and [∆]ji = −α(wj/wi).
(o3) Edge removal: For any pair of adjacent nodes i and j, delete

the existing edges between them, i.e., set aij = aji = 0. In this
case, [∆]ij = −aij and [∆]ji = −aji.

It can be easily shown that, if a network belongs to D(W , B),
then it still belongs to D(W , B) after performing any of the above
edge operations. These operations will be later used in our design
algorithm.

The following result shows that edge operations (o1) and (o2)
generically preserve network controllability. Operation (o3), in-
stead, may render the network disconnected and hence prevent
controllability.

Proposition 5.1 (Edge Operations that Preserve Controllability). Let
A ∈ D(W , B) for some diagonal positive definite matrix W and input
matrix B as in (2). Let (A, B) be controllable and let A1 = A+∆, where
∆ is obtained through the operations (o1)–(o2). Then, A1 ∈ D(W , B)
and (A1, B) is controllable for all α ∈ R̸=0 except at most a finite
number of values of α.

Proof. In the case of operation (o1), the weights aij, aji are changed
to αaij, αaji with α ∈ R̸=0. Let K (α) = [B, A1B, . . . , An−1

1 B] and
φ(α) = det(K (α)K T(α)). It is evident that φ(α) = 0 if and only
if K (α) is row rank deficient, i.e., (A1, B) is uncontrollable. Since the
network is controllable when α = 1, we have φ(1) ̸= 0 and hence
φ(α) is not identically zero. Because φ(α) = 0 is a polynomial
equation in one variable with finite order, there only exist a finite
number of α where φ(α) = 0 (i.e., (A1, B) is uncontrollable). The
case of operation (o2) can be proved analogously. □

Since edge operations (o1) and (o2) generically preserve net-
work controllability, they provide degrees of freedom to design
network structures and edge weights of diagonally admissible
networks. To illustrate Proposition 5.1, consider the network in
Fig. 3. For nodes 2 and 3, as long as α1/α2 = −1, the absolute

Algorithm1Design of stable and controllable networkswith spec-
ified diagonal Gramians
Require: The specified diagonal Gramian is W =

diag(w1, . . . , wn) > 0.
1: Design self-loops: Let aii = −1/(2wi) < 0 for control node

i ∈ Vc , and aii = 0 for other nodes.
2: Design a spanning path: Select a control node i1 ∈ Vc and

design a path (i1, . . . , in) that spans all the nodes in the network
and where each node appears only once.

3: Design edge weights for the path: Suppose i and j are two
adjacent nodes in the path. Select aij and aji such that aji/aij =

−wj/wi < 0. There are no constraints on the absolute values
of aij or aji.

4: Add extra edges: If desired, extra edges can be added. To add
edges between nodes i and j, the edge weights must satisfy
aji/aij = −wj/wi < 0.

values of α1 and α2 can arbitrarily be changed while the network
remains controllable with Gramian W = I4. Further, adding two
edges with weights satisfying γ1/γ2 = −1 between nodes 1 and 3
does not alter the Gramian of the network either.

We propose Algorithm 1 to design networks that are stable,
controllable, and diagonally admissible for arbitrary diagonal pos-
itive definite matrices. Algorithm 1 consists of four steps. In the
first three steps, a chain network that contains a single spanning
path is constructed. This chain network is controllable and features
the specified diagonal Gramian according to Theorem 3.1 and
Lemma 4.1.3 The fourth step adds extra edges to the chain network
to create various network structures. Adding these edges preserves
the controllability Gramian according to Proposition 5.1.

An illustrative example of Algorithm 1 is in Fig. 4. In this exam-
ple, the desired nodal energies are specified as ϵ1 = ϵ14 = 100,
ϵ16 = 0.001, and ϵ = 1 for the remaining nodes. Following the
first three steps of Algorithm 1, the spanning path (1, 2, 3, . . . , 16)
is first constructed, in a way that the nodal energy of this spanning
path is as desired. Then, following the fourth step of Algorithm 1,
extra edges are added to finally generate the network as shown in
Fig. 4(a).

The networks constructed by Algorithm 1 are not unique. Given
a set of desired nodal energies, there exist an infinite number of
controllable and stable networks featuring these nodal energies. In
fact, adding extra edges or carefully scaling the weights of existing
edges may not change nodal energies. This provides freedom to
design networks satisfying other constraints or performance ob-
jectives. For example, weights can be designed to lie within certain
intervals imposed by physical constraints, or optimized to achieve
certain performance objectives.

Algorithm 1 requires one control node to achieve arbitrarily
specified nodal energies. This is because the first three steps in
Algorithm 1 construct a chain network that is controllable with
one single control node. Although multiple inputs are redundant
to achieve specified nodal energies, they may affect other prop-
erties such as the spectrum and the robustness of the adjacency
matrix (adding an input node would also add a negative diagonal
entry to the adjacency matrix). Finally, Algorithm 1 requires only
simple operations, and it can be used efficiently to construct large
networks.

Remark 1 (Relevance of the Results in the Broader Context of Network
Analysis and Control). The results presented in this paper, particu-
larly the graphical conditions and the network design algorithm,

3 In Algorithm1, the spanning path can be replaced by any controllable structure
with weights satisfying the conditions in Theorem 3.1 forW .
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Fig. 4. Design of a stable and controllable networkwith specified nodal energies by
Algorithm 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

reveal important controllability properties and tradeoffs of contin-
uous time linear networks. For instance, our results rigorously lead
to the following novel observations:

(i) There exist a class of continuous-time networks whose con-
trol energy is independent of their cardinality and number of
control nodes. In particular, following Algorithm 1, we can
construct arbitrarily large networks with a single control
input and arbitrary nodal energies. This is a counterexample
to the conclusion drawn inYan et al. (2015), among other pa-
pers, that the control energy of complex networks increases
rapidly with the network cardinality. Further, this finding
constitutes the continuous-time counterpart of the result
presented in Pasqualetti and Zampieri (2014) for certain
anisotropic discrete-time networks.

(ii) The nodal energy of a node can be independent of its graphical
distance from the control nodes. As illustrated in Fig. 4(a),
nodes that are located close to the control node (for example,
node 2) may have high nodal energy while nodes that are
far away from the control node (for example, node 12) may
have low nodal energy. This property provides a note of
caution, for instance, for the procedure proposed in Chen,

Fig. 5. The controllability matrix K approaches to rank deficient while the control-
lability GramianW remains well conditioned when b, c → 0 and b/c is unchanged
(a, b, c > 0).

Wang, Wang, and Lai (2016) to reduce the energy to control
a network.

(iii) The controllability Gramian and the controllability matrix can
provide different or even opposite measures of the controllabil-
ity degree of a network. In particular, as shown in Fig. 5, the
controllability matrix may become arbitrarily close to being
rank deficient, suggesting that the network approaches un-
controllability, whereas the controllability Gramian remains
well conditioned, indicating that the network requires con-
trol inputs with small energy. This property becomes partic-
ularly importantwhen assessing controllability numerically,
and it further motivates the development of analytical, thus
numerically reliable, controllability tests for networks.

(iv) Networks with one control node and diagonal controllability
Gramian typically have small stability margins. For example,
although the network in Fig. 4(a) is stable, its rightmost
eigenvalue is very close to the imaginary axis (its real part is
0.0015), indicating that a small perturbation of the network
structure or edge weights could render the network unsta-
ble. This observation is in linewith the results of Pasqualetti,
Favaretto, Zhao, and Zampieri (2018), where it is shown that
there exists a fundamental tradeoff between the controlla-
bility degree of a network and its robustness to parameter
changes.

Finally, our work addresses, for the first time, the problem of
designing sparse systems (networks) with prescribed, quantitative
controllability properties (Gramian), and it shows how a solution
to this problem can be used to design selectively secure networks
against disturbances (for example, in Fig. 4(a), nodes 2 and 14 are
purposively protected against the effect of a white noise input
entering node 1). While the design of non-sparse dynamical sys-
tems with diagonal Gramian has been previously studied, sparsity
constraints in the system matrices are considerably more difficult
to account for and have not been sufficiently investigated prior to
this work. □

6. Physical networks with diagonal Gramian

In this section, we present synthetic and physical networks
featuring a diagonal controllability Gramian.

6.1. Natural networks with diagonal Gramian

In many cyber–physical networks, such as wireless sensor net-
works or multi-robot systems, the edge weights are usually stored
as parameters in software programs and can be set easily to
achieve any desired pattern of nodal energies. As a matter of fact, a
sign-skew-symmetric interaction pattern exists in many natural
networks. For example, in ecological food webs, predator–prey
interactions have the sign-skew-symmetric structure (Allesina
et al., 2008; Kaszkurewicz & Bhaya, 2000). Specifically, for a pair of
prey and predator species, the population of the preys has positive
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Fig. 6. A simplified model of a predator–prey food chain.

impact on that of the predators because more preys provide more
food for the predators. On the other hand, the population of the
predators has negative impact on that of the preys because more
predators would consume more preys.

Consider a food chain of three species: lion, antelope, and grass.
Let pL, pA, and pG be the populations of the three species, re-
spectively. Due to the sign-skew-symmetric interactions between
predictor and pray populations, the dynamics of the food chain can
be described by the following linear system,[ ṗL

ṗA
ṗG

][
−α β2 0
−β1 0 γ2
0 −γ1 0

][ pL
pA
pG

]
+

[ 1
0
0

]
u,

where α, β1, β2, γ1, γ2 are all positive. The network is depicted in
Fig. 6. Thismodel is simplified because it ignores the self-regulation
of the populations of antelopes and grass. For this simplifiedmodel,
it follows from Theorem 3.1 that the Gramian is diagonal and has
the form

W =
1
2α

diag
(
1,

β1

β2
,

β1γ1

β2γ2

)
.

As a result, the energies to control the populations of the lions,
antelopes, grass are, respectively, 2α, 2αβ2/β1, 2αβ2γ2/(β1γ1).

6.2. Technological networks with diagonal Gramian

Sign-skew-symmetric structures also exist in circuits and me-
chanical networks (Kaszkurewicz & Bhaya, 2000). We next give
two examples and derive their diagonal Gramians. Fig. 7(a) shows
a resistor–inductor–capacitor (RLC) circuit. The state of the circuit
consists of vi(t) and ιi(t), which are the voltage of capacitor i and
current of inductor i, respectively. The input u(t) is the voltage
applied to the resistor. The notations R, Li, and Ci denote the
resistance, inductance, and capacitance, respectively. A graphical
representation of the circuit is shown in Fig. 7(b). The dynamics of
the circuit can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ι̇1
v̇1
ι̇2
v̇2
...

ι̇n
v̇n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
−L1

1
−L1

1
C1

0 1
−C1

1
L2

0 1
−L2

1
C2

0 1
−C2

. . .
. . .

. . .
1
Ln

0 1
−Ln

1
Cn

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ι1
v1
ι2
v2
...

ιn
vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L1
0
0
0
...

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
u. (18)

By applying Theorem 3.1, we find that the Gramian is diagonal and
satisfies

W =
1
2R

diag
(

1
L1

,
1
C1

,
1
L2

,
1
C2

, . . . ,
1
Ln

,
1
Cn

)
.

As a result, the nodal energies required to control the current ιi
and the voltage vi can be, respectively, expressed in simple forms
as ειi = 2RLi and εvi = 2RCi. It should be noted that the weight for
each control input is assumed to be 1 in Theorem 3.1, whereas the
control input weight in the RLC network is 1/L1. In order to handle
the weighted input, wemay simply treat u(t)/L1 as a new input, so
that the energy obtained from Theorem 3.1 is

∫
∞

0 u2(t)/L21dt .

Fig. 7. A RLC circuit which is stable, controllable, and diagonally admissible.

Fig. 8. A mass–spring–damper mechanical network which is stable, controllable,
and diagonally admissible.

Fig. 8(a) shows a mass–spring–damper mechanical network.
The states of the network consist of νi(t) and ℓi(t), which are the
velocity of mass i and deformation of spring i, respectively. The
input u(t) is the force applied to the first mass. The notations c ,
mi, and κi denote the damping ratio, mass, and spring stiffness,
respectively. A graphical representation of the network is given in
Fig. 8(b). By Theorem 3.1, the Gramian is diagonal and equal to

W =
1
2c

diag
(

1
m0

,
1
κ1

,
1
m1

, . . . ,
1
κn

,
1
mn

)
.

The nodal energies required to control the velocity νi of themassmi
and the deformation ℓi of the spring i are ενi = 2cmi and εℓi = 2cκi,
respectively.

It is worth emphasizing two interesting features of the RLC and
mass–spring networks. First, either of the networks has a chain
structure and a single control input. Such kind of chain networks
always have diagonal Gramians for arbitrary edgeweights because
there is only one single path from the control input to each node.
Second, either of the networks has one single energy-consuming
component (i.e., the resistor and damper), while all the other
components do not consume any energy. The energy-consuming
components correspond to the negative self-loops of the control
nodes, whose role is to ensure system stability. Without these
components, the energy in the networks does not vanish and the
networks continuously oscillate.

7. Conclusions

In this paperwe characterize novel relations between the graph-
ical structure of a network and its controllability Gramian, and
we propose an algorithm to design networks with pre-specified
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controllability properties. In particular, the main technical contri-
bution of this paper is to derive necessary and sufficient graphical
conditions for a network to be controllablewith a diagonal andpre-
specified controllability Gramian. We derive precise expression of
the nodal energies, that is, the control energy needed to change
the state of a single node, in terms of edge weights along the paths
starting from the control nodes. We also propose an algorithm
to construct stable and controllable networks with desired nodal
energies. Because nodal energies quantify the H2 norm of the re-
sponses of individual nodes towhite-noise or impulsive inputs, our
network design algorithm can be used in multi-agent applications
to selectively enforce robustness and security of the nodes against
disturbances.

In a broader context, our study reveals novel controllability
properties and tradeoffs of complex networks. For example, con-
trary to previous studies, our results show that there exists a class
of continuous-time networkswhose control energy is independent
of the size of thenetwork andnumber of control nodes, and that the
energy to control a node can be made independent of its distance
from the control nodes. Several research directions are envisioned,
including the generalization of our analysis to more general sparse
Gramian structures, and the design of distributed algorithms to
modify the networkweights to dynamically change nodal energies.
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