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Abstract: The controllability Gramian of a dynamical network carries rich information of the
fundamental properties of the network. How to identify the connections from these fundamental
properties to the network topology and weights is of great interest. It is, however, very
challenging to do that because the Gramian is an extremely complicated function of the network
topology and weights. In this paper, we consider the simplest case where the Gramian is diagonal.
One of the main contributions of this paper is to prove the necessary and sufficient graphical
conditions for a discrete-time dynamical network to feature a diagonal Gramian. The explicit
relations between the values of the diagonal entries of the Gramian and the network weights
are also established. The proposed results may be used to design networks with desired control

energy and robustness performance.
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1. INTRODUCTION

The controllability Gramian of a dynamical network car-
ries rich information of the fundamental properties of the
network. For example, its nonsingularity indicates that
the network is controllable; its eigenvalues quantify the
minimum control energy required to steer the network
state along the eigenvectors [Yan et al. 2012, Pasqualetti
et al. 2014, Cortesi et al. 2014, Kumar et al. 2015, Yan et al.
2015, Bof et al. 2016, Zhao and Cortes 2016, Tzoumas et al.
2016]; and its trace measures how robust the network state
is against external disturbance [Summers et al. 2016, Zhou
et al. 1995]. It is of great interest to identify the connec-
tions from these properties to the network structure and
weights. These connections, which are generally difficult
to characterize, can be used to design networks to achieve
desired properties such as control energy and robustness
performance.

In this paper, we study the simplest case of when a network
features a diagonal Gramian. Since the Gramian is a solu-
tion to the Lyapunov equation, our approach is to study
when the Lyapunov equation has a unique positive defi-
nite diagonal solution. While continuous-time Lyapunov
equations with diagonal solutions have been studied in
the context of D-stability [Kaszkurewicz and Hsu 1984,
Geromel 1985, Hershkowitz 1992], in our work we focus
on the discrete-time case and explore its application to
network design.

The main contribution of this paper is to prove the neces-
sary and sufficient graphical conditions for a discrete-time
network to feature a diagonal controllability Gramian. In
particular, we prove that the Gramian of a network with a
single control input is diagonal if and only if the network is
a stem or a bud (see Theorem 1). When there are multiple
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control inputs, we show that the Gramian is diagonal if
and only if the network is a combination of stem and bud
networks (see Theorem 2). Additionally, we also derive the
expression of the diagonal entries of the Gramian in terms
of the network weights. With the proposed results, we
are able to design networks to feature any desired control
energy or robust performance.

2. PRELIMINARIES AND PROBLEM STATEMENT
2.1 Network Dynamics

Consider a network with n nodes and n. independent
control inputs. The control inputs are injected into the
network through n. distinct control nodes. The network
interaction is described by a graph G = (V,€&), where
V={1,...,n}and E CVxV.Let V. = {k1,...,kn.} CV
be the set of control nodes. The network dynamics are
described by the linear time-invariant system

xz(t +1) = Az(t) + Bu(t), (1)
where z(t) = [21(t), ..., 2,(t)]T € R™ is the network state
and u(t) € R is the input vector. The matrix A = [a;;]
is the weighted adjacency matrix of the graph G, where
ai; 7 0 when there is a directed edge from node j to node
i. Two nodes are called adjacent if either a;; # 0 or a;; # 0.
The input matrix is

B = [ekl,ekg, . 7eknc] c Rnxnc, (2)

where ey, is the k;th canonical vector of dimension n.

In this paper, we always assume that the network is
connected. If the network consists of disconnected compo-
nents, the results presented in this paper are applicable to
each disconnected component. Finally, let di" and do"* be
the in-degree and out-degree of node i, respectively. The
value of di* (d9") equals the number of edges entering
(leaving) node i, that is, the number of nonzero entries in
the ith row (column) of A.
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2.2 Controllability Gramian

The dynamical system (1) or the pair (A, B) is controllable
if and only if the controllability matriz

K = [ByAB,AQB7...7A"_1B} c Rx () (3)

has full row rank. Controllability can also be evaluated
based on the controllability Gramian, which is defined as

W => A"BBT(AMT (4)
k=0
The controllability Gramian is an n by n positive semi-
definite matrix, and it becomes positive definite (i.e.,
nonsingular) if and only if the system is controllable [Zhou
et al. 1995, Lemma 21.2]. We write W > 0 (W > 0) when
W is positive definite (positive semi-definite).

For unstable systems, the calculation of W by (4) may
diverge and hence W may not be well defined. For stable
systems, W is well defined and it equals the unique solution
to the Lyapunov equation

AW AT - W = —-BB7T. (5)

More information on equation (5) can be found in [Zhou
et al. 1995, Lemma 21.2].

2.8 Nodal Energy

The minimum energy required to control a network is
usually of great theoretical and practical interest. This
minimum energy can be calculated from the Gramian. In
particular, if z; is the desired final state, the minimum
energy required to drive the state from the origin to xy
over the infinite time horizon is x}fW_la: ¢ [Pasqualetti
et al. 2014]. If z; is a unit-norm eigenvector of W, then
the minimum energy equals J:F;W_lm r = 1/A, where A
is the eigenvalue associated with x . The value of 1/X is
referred to as eigen-energy in [Yan et al. 2015]. Clearly a
small eigenvalue corresponds to large eigen-energy. In the
special yet important case of x; = e;, we have

g = el Wte; = (W14,

where [W~1];; denotes the ith diagonal entry of W 1. The
value of ¢; is referred to as ith nodal energy in this paper,
The nodal energy is of particular interest because it has a
clear intuitive interpretation: the ith nodal energy is the
energy required to drive the state of node ¢ from 0 to 1,
while leaving the final states of the other nodes to 0.

Nodal and eigen energies are usually different for general
networks. They, however, coincide with each other when
W is diagonal because the canonical vectors eq,...,e,
are eigenvectors of W in this case. In particular, if W =

diag(ws, ..., wy,) > 0, both the ith nodal energy and eigen-
energy equal to
1
E; = —.
w;

When W is diagonal, nodal energies also indicate the
robustness of the states against input disturbance. In
particular, in addition to the input dynamics (1), consider
the output y(t) = Cx(t) with C as a given output matrix.
Let G(z) be the transfer function of the discrete-time
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system (A, B, C). The Hy norm of G(z) can be computed
as

IG5 = te(CWCT). (6)
The derivation of (6) can be found in [Zhou et al. 1995,
Remark 21.6]. The #Hy norm can be interpreted as the
expected root mean square value of the output in response
to white noise excitation or, equivalently, the energy of the
output response to unit impulse inputs [Zhou et al. 1995].
If C =el, then y(t) = z;(t). Substituting C' = e} into (6)
gives

1
G113 = =, (7)
&g
which indicates that the inverse of the nodal energy, 1/¢;,
equals the Hy norm of the network when the output is
y(t) = x;(t). As a result, a larger nodal energy of a node
leads to less sensitivity or stronger robustness of the state
against input disturbances.

2.4 Problem Statement

Nodal energies quantify both network controllability and
state robustness when the Gramian is diagonal. It is
important to study how to design networks that feature
specified nodal energies. This problem, which is solved in
this paper, is formally stated below.

Problem 1. (Network nodal energy design). Given a
network with node set V, control node set V. C V, input
matrix B as in (2), and desired nodal energies {e;}? , with
€; > 0, the task is to design the network adjacency matrix
A such that the following three conditions hold:

(a) A is stable,

(b) (A, B) is controllable, and

(¢c) W = diag(e;!,...,e; ") is the controllability Grami-
an.

Problem 1 is to design a stable and controllable network
that features a specified positive definite diagonal Grami-
an. The nodal energies {&;}"_, can be set according to
practical requirement. For example, if we wish to render
node ¢ very robust against any external disturbance, then
we can set ¢; to be large.

Our approach to solve Problem 1 is to first identify the
graphical conditions for the controllability Gramian to
be diagonal. Considering that the Gramian solves the
Lyapunov equation, we next define a notion that will be
used throughout the paper.

Definition 1. (Diagonally admissible networks). Giv-
en a positive definite diagonal Gramian W and an input
matrix B as in (2), a network with the adjacency matrix
A is diagonally admissible for W if AW AT —W = —BBT.

A network that solves Problem 1 must be diagonally
admissible. The converse is, however, not true because
a diagonally admissible network may not be stable or
controllable. Thus, we must study when a diagonally
admissible network is both stable and controllable.

We next derive algebraic conditions for diagonally admis-
sible networks. Let W = diag(wy, ..., w,) with w; > 0 for
all 7. Comparing the diagonal entries of the both sides of
the Lyapunov equation gives
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(b) Bud: ¢ € {1,...,n}
Fig. 1. An illustration of stem and bud networks.

(a)

(b)

u(t) —>

(c) (d

)
u(t) —>O—>OCO u(t) —>O—>Q—>8

Fig. 2. All the possible stem and bud networks in the case
of n = 3.

T __,n 2 —l-LieV,
[AWAS — W], = kz Qi WE — Wi = { 0, otherwise.
=1

(8)

Comparing the off-diagonal entries of both sides gives
[AWAT — W1 = " aajwe =0, i,j € V,i#j. (9)
k=1

Equations (8) and (9) are necessary and sufficient con-
ditions for the network to be diagonally admissible, but
they need to be further explored to reveil their graphical
interpretation. Since (9) is difficult to analyze when the
edge weights may assume arbitrary values, we make the
following assumption.

Assumption 1. (Positive Edge Weights). All nonzero en-
tries of A are positive.

In the rest of the paper, we first consider the case where
the network has a single input and then analyze the multi-
input case.

3. NETWORKS WITH SINGLE INPUTS

In this section, we consider discrete-time networks with
single control inputs, and derive conditions for stability
and controllability of diagonally admissible networks. We
start with some important definitions.

Definition 2. (Stem and Bud Networks).

(a) A stem network is of the form as shown in Figure 1(a),
where the network is a path starting from a control
node.

A bud network is of the form as shown in Figure 1(b),
where the network is a stem combined with the edge
pointing from the ending node to an arbitrary node in
the stem including the ending node itself.

(b)

All the edges in a stem or bud network are directed. To
illustrate, Figure 2 shows all the possible stem and bud
networks with 3 nodes. The definition of stem and bud
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networks in our work is different from [Lin 1974] because
(i) the location of the control node is specified and (ii) the
joint node ¢ in a bud network may be any node in the
network.

For bud networks, two useful weight products are defined
below. For the directed path (1,2, ...,%) from control node
1 to node i, define the weight product p;; as

1, =1,
P1i =

2 2 2 .
a31033 - - A1y, © = 2.
See Figure 2(b) for an illustration of py;. For the directed
path (n,q,q+1,...,4) from node n to node i, define the
weight product p,; as
0, i <q,
2 .
Pni = Qan s 9 9 vt =dq,
aqna(q+1)q e ai(i_l), 1> q.
See Figure 2(b) for an illustration of p,;. Since a stem
network can be viewed as a special case of a bud network
with ag, = 0, the weight products defined above are also
applicable to stem networks.

With the above definitions, we are able to give necessary
and sufficient graphical condition for a diagonally admis-
sible network.

Theorem 1. (Graphical Condition). Under Assumpti-

on 1, a discrete-time dynamical network with a single
control input is controllable and diagonally admissible if
and only if it is a stem or bud. Moreover, the network is

admissible for the Gramian W = diag(wy, ..., w,) with
Wi = Pp1; + PriWpn, ©EV, (10)
where
Pin
= . 11
Wn =1 — (11)

Proof. The proof consists of two parts. In the first part,
we determine the topology of the network by analyzing
(9). In the second part, we determine the expression of
the diagonal Gramian by analyzing (8).

Part 1: Network topology (Necessity) Suppose the network
is controllable and diagonally admissible (i.e., satisfying
(8) and (9)). Since all edge weights are assumed to be
positive, equation (9) indicates that

Vi, j.k € V,i # J,

which means each column of A has at most one nonzero
entry. As a result, there are at most n directed edges in the
network. On the other hand, since we assume the network
is connected, it must have at least n — 1 directed edges.
Hence the number of edges n. in the network satisfies

n—1<n,<n. (12)

a;pa;r = 0,

We next determine the topology of the network by study-
ing the in- and out-degrees of each node. In the sequel,
we call the nodes that are not control nodes as follower
nodes. Since each column of A has at most one nonzero
entry, we have d9"* < 1 for all 7. For a control node, we
must have d9"* > 1; otherwise, the follower nodes would
not be reachable from the control input and hence the
network would not be controllable. As a result, we have

dqut — {

1, node i is a control node,

0 or 1, node i is a follower node. (13)
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Since the network is controllable, every follower node must
have at least one in-degree and hence

(14)

> 0 node 7 is a control node,
i = 1 1 node 7 is a follower node.

Moreover, note Y ., d* = " d?"" = n,. Since n.
equals either n — 1 or n by (12), we study the two cases

respectively.

(a) Case 1:n.=n—1.Dueto ) ; , do" =n—1and (13),
we know d?"* = 1 for n — 1 nodes and d?"* = 0 for one
(follower) node. Due to Y., di" = n—1 and (14), we
know di* = 1 for n — 1 follower nodes and di* = 0 for
the control node. Therefore, for the control node we
have d™ = 0 and d°"* = 1; for n — 2 follower nodes we
have d'® = d°** = 1; and for the remaining follower
node we have d™ = 1 and d°** = 0. With these in-
and out-degrees, the topology of the network must be
a stem (see Figure 2(a) for illustration).

(b) Case 2: n. = n. Due to Y., d?"* = n and (13), we
know d¢"* = 1 for all 4. Due to Y., di" = n and
(14), we have (i) di® = 1 for all nodes, or (ii) di* =0
for the control node, di* = 1 for n — 2 follower
nodes, and di® = 2 for one follower node. For the
subcase (i), we have d9"* = di* = 1 for all nodes and
consequently the network is a circle (see Figure 2(b)
for illustration). For the subcase (ii), due to the in-
and out-degrees of the nodes, the network must be a
stem network together with a directed edge pointing
from the rightmost node to any other node except the
control node (see Figure 2(c)-(d) for illustration).

To sum up, the network has one of the topologies as shown
in Figure 1, which is either a stem or bud.

(Sufficiency) If the network has the topology as shown in
Figure 1, it is obvious that (9) is satisfied. Moreover, by
indexing the nodes properly, we have the adjacency and
input matrix as

0 0 1
0
asy 0 :
A= azz 0 Qgn | , B = ) (15)
An(n—1) 0 0

where agy, can be either zero or positive. It can be easily
calculated that the controllability matrix is expressed as

K =[B,AB,A’B,..., A" 'B]

n
= diag (1,&21, a1a39, ..., Hai(i1)> > 0,
1=2

which indicates the network is always controllable.

Part 2: Ezpression of the diagonal Gramian If the network
is a stem or bud, substituting (15) into (8) gives

-1 0 wy -1
0,51 —21 ) w2 0
asa -1 Agn = (]_6)
a727,(n71) -1 Wy, 0

In order to solve w; from (16), we consider three cases:
(i) agn = 0; (ii) agn # 0 and ¢ = 1; and (iii) agn # 0 and
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q > 2. We first solve case (iii) which is the most general
one. In case (iii), equation (16) can be rewritten as

—w1 = _1a
af(i_l)wi_l —w; =0, 1<i<gq
azz(i—l)wi—l —w; + ainwn =0, i=¢
af(i_l)wi_l — w; = 07 Z > q
which implies that
w1 = 1,
Wi = 421032 . - - Aj(;—1)W1 = P1;W1,
Wg = prgwi + LW, i=gq
w; = P1;W1 + afma%qﬂ)q .
= P1iW1 + PriWp-
Due to the definition of p1; and p,;, the expression of w;
can be written in a unified way as (10). In case (i) where
agn = 0, it is easy to see that (10) still holds since p,; = 0
for all ¢. In case (ii) where a4, # 0 and ¢ = 1, we have
wy = 1+ a},w, and w; = a?(ifl)wi,l, which can also be

1<i<q

2 .
(G- 1)Wny 1> (

expressed in (10). In order to calculate w,, we substitute
i = n into (10) and obtain w, = pi1n + PppWn, which
implies (11). O

The expression of w; in equation (10) has a clear graphical
meaning. In the case of stem, we have w; = py; for all 4.
In the case of bud, we have

w — J Pl i <q.

! P1i + PniWn 2> g.

It is obvious that the control energy of node i (i > q) is
influenced jointly by nodes 1 and n. The expression of w;
suggests that larger edge weights would yield larger w; and
consequently less control energy.

The converse problem, which is important for network
design, is to determine the edge weights given desired w;
or ;. In the simplest case where the network is a stem as
in Figure 1(a), if the specified nodal energies are {g;}?
where €7 = 1, then the nodal energies can be achieved by
setting the edge weights as
€i—1

Ai(i—1) = P
K3

1=2,...,n.

That is because in this case we have p1; = a%l ... af(i_l) =
e1/e; = 1/g; for all i and, consequently, W = diag(p11, . - .,
p1n) = diag(e7!,...,e;1) according to Theorem 1. Tt is
worth mentioning that if the network is a stem then 1 can
only be selected as 1 because e; = 1/p11 where p1; = 1.

Finally, the conditions in Theorem 1 may lead to unstable
networks. In order to ensure the network stability, we need
an additional condition.

Proposition 1. (Stability Condition). A controllable and
diagonally admissible discrete-time network is stable if and
only if pp, < 1.

Proof. The adjacency matrix A of a controllable and di-
agonally admissible network can be written as the form in
(15). It can be verified that det(A\ — A) = Ad~1(An—9+! —
AgnO(g+1)q - - - On(n—1)) = AT LA — /p). Therefore,
the spectral radius of A is less than 1 if and only if
Pnn < 1. O
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The intuition behind Proposition 1 is clear: since p,, is the
gain for a signal propagating along the cycle, if p,, > 1,
any perturbation of the state away from the equilibrium
would be amplified while propagating along the cycle and
hence cause network instability.

4. NETWORKS WITH MULTIPLE INPUTS

In this section we consider discrete-time networks with
multiple control inputs. We show that the multiple-input
case can be converted to a set of single-input cases.

When there are multiple inputs, the input matrix has the
form of B = [--+ ,e;,---] where ¢ € V.. Then, we have
BBT = Zz‘ev e;ef and consequently the Gramian is

Ee{ge)e

i€V,

W = ZA’“BBT (AR)T
k=0

= Z iAkeie;F(Ak T

i€V k=0

(17)

w;
The matrix W; is the Gramian of the network with control
input 4. It is obvious that if all W; are diagonal, then W is
also diagonal. The converse is also true because all entries
of W; are nonnegative due to that all entries of A are
nonnegative. We have the following result.

Lemma 1. Under Assumption 1, the Gramian W in (17)
is diagonal if and only if W; is diagonal for all i € V.

It is notable that W; may be singular because there
may exist some nodes unreachable from control node i
(see Figure 3 for illustration). When W; is singular, it is
important to study under what conditions W =3, _,, W,

is nonsingular. In order to solve this problem, we mtro&uce
the following definitions. If there is a directed path from
a control input to a given node, then the given node
is called accessible by the control input; otherwise, it
is called unaccessible. The accessible nodes for a control
input compose a subnetwork as defined below.

Definition 3. (Accessible Subnetwork). The accessible
subnetwork of a control input is the network obtained
by deleting all the unaccessible nodes and the associated
edges from the original network.

An illustration of accessible subnetworks is given in Fig-
ure 3, where the accessible subnetworks for each input are
highlighted.

With the above preparation, we are ready to present the
necessary and sufficient graphical condition for multiple-
input diagonally admissible networks.

Theorem 2. (Graphical Condition). Under Assumption 1,

a discrete-time dynamical network with multiple control
inputs is controllable and diagonally admissible if and only
if the following conditions hold:

(a) For each control input, the accessible subnetwork is a
stem or bud;
(b) Each node is accessible by at least one control input.

Proof. According to Lemma 1, W is diagonal if and only
if W, is diagonal for all i € V.. We next analyze the
graphical conditions for W; to be diagonal. Consider the
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case where control input ¢ is the only control input and all
the other inputs are removed. Without loss of generality,
we can permute the states such that the state vector x(t)

can be expressed as x(t) = [2] (t), 23 (t)]*, where x1(¢) and
xo(t) are the states corresponding to the accessible and
unaccessible nodes, respectively. The network dynamics
can be expressed as
$1(t+1) N A Aqg ,’Bl(t) By
|:$2(t—|—1):| B [ 0 A22:| |:1‘2(t):| + [ 0 :|u(t)’
where the adjacency matrix and input matrix are par-
titioned into block matrices according to the accessible
and unaccessible nodes. Consequently, the Gramian W; is
expressed by
o [ Ak« T, ARNT 0
w0 (0] ol [ e
k=0
T -
_ ZA BBy (A1) :[Wio], (18)
00
0 0

where * denotes matrix entries that do not contribute to
derivation. Equation (18) indicates that W; is diagonal if
and only if the matrix W; is diagonal. The matrix W; is
the Gramian of the accessible subnetwork with the control
input on node i. According to Theorem 1, the Gramian
W; is diagonal if and only if the accessible subnetwork is
a stem or bud network, which proves condition (a) in the
theorem.
We next analyze when W = 3 ,.,, W; is nonsingular.
Equation (18) indicates that the diagonal entries of W;
that correspond to the unaccessible nodes of control input
i are zero. Since W = >, ), Wj, there are no zero diagonal
entries in W if and only if there are no unaccessible nodes
for any control input, which proves condition (b) in the
theorem. O

In Theorem 2, condition (a) ensures that W is diagonal
and condition (b) guarantees that W is nonsingular (i.e.,
the entire network is controllable). The two conditions are
illustrated by an example in Figure 3.

Finally, a simulation example is shown in Figure 4 to
illustrate Theorem 2. In this example, the controllability
Gramian is diagonal because the accessible subnetwork of
either input is a bud. When the inputs are discrete white
noises, the states of the nodes have a response with very d-
ifferent magnitude. More specifically, if the nodal energy of
a node is large (small), the state response of the node has a
small (large) magnitude (see Figure 4(c)). This simulation
result verifies the implication of equation (7). In practice,
we may assign a node with a large nodal energy if we would
like to protect its state against input disturbance. This
phenomenon also reveal a tradeoff between controllability
and robustness; that is when the nodal energy of a node
is small, the node can be easily controlled, but its state is
also vulnerable to input disturbances.

5. CONCLUSIONS

In this paper, we proved necessary and sufficient graphical
conditions for discrete-time dynamical networks featuring
diagonal controllability Gramians. With the graphical con-
ditions, we are able to determine whether the Gramian of
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1
0

2
“ 2 2 W =Wy + Wz
a Cc
- 1
_ 1
- /
1

tzQ—Q—b2

< e Wy = b2

3. An illustration of the graphical conditions in Theorem 2. The network is diagonally admissible because the

accessible subnetwork for either input is a bud network and every node in the network is accessible by at least one

control input.

100

; 10t
10

Nodal energy

—_
==
=]

Input u1(t)

Input uz(t)

.
0 5 10 15 20 25 30 35 40 45 50
Time (sec)

(b) White-noise inputs

xg(t)\ |

States x(t)

other x i(t)

_1 5 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Time (sec)

(c) State response

Fig. 4. An example of discrete-time networks with diagonal
Gramians. There are 10 nodes and two inputs.

a network is diagonal by simply looking at its structure,
and to determine the values of nodal energies by simply
examining the edge weights. It has been shown by theo-
retical analysis and numerical simulation that nodes with
high nodal energies are robust against input disturbance.
This paper assumed that the edge weights are positive; in
the future it is meaningful to study networks with both
positive and negative weights.
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