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Abstract—In this paper, we study cluster synchronization
in networks of oscillators with heterogenous Kuramoto dy-
namics, where multiple groups of oscillators with identical
phases coexist in a connected network. Cluster synchro-
nization is at the basis of several biological and technolog-
ical processes; yet, the underlying mechanisms to enable
the cluster synchronization of Kuramoto oscillators have
remained elusive. In this paper, we derive quantitative con-
ditions on the network weights, cluster configuration, and
oscillators’ natural frequency that ensure the asymptotic
stability of the cluster synchronization manifold; that is, the
ability to recover the desired cluster synchronization con-
figuration following a perturbation of the oscillators’ states.
Qualitatively, our results show that cluster synchroniza-
tion is stable when the intracluster coupling is sufficiently
stronger than the intercluster coupling, the natural frequen-
cies of the oscillators in distinct clusters are sufficiently dif-
ferent, or, in the case of two clusters, when the intracluster
dynamics is homogeneous. We validate the effectiveness of
our theoretical results via numerical studies.

Index Terms—Biological networks, Kuramoto oscillators,
nonlinear systems, networks of autonomous agents.

I. INTRODUCTION

SYNCHRONIZATION refers broadly to patterns of coordi-
nated activity that arise spontaneously or by design in sev-

eral natural and man-made systems [1]–[3]. Examples include
coherent firing of neuronal populations in the brain [4], coor-
dinated flashing of fireflies [5], flocking of birds [6], exchange
of signals in wireless networks [7], consensus in multiagent
systems [8], and power generation in the smart grid [9]. Syn-
chronization enables complex functions: while some systems
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require complete (or full) synchronization among all compo-
nents in order to function properly, others rely on cluster (or
partial) synchronization, where different groups exhibit differ-
ent, yet synchronized, internal behaviors [10].

While studies of full synchronization are numerous and have
generated rich literature (e.g., see [11]–[13]), conditions ex-
plaining the onset of cluster synchronization and its properties
are less well understood. Such conditions are necessary for the
analysis and, more important, the control of synchronized activ-
ity across biological [14]–[16] and technological [17] systems.
For instance, a deeper understanding of the mechanisms en-
abling cluster synchronization might not only shed light on the
nature of the healthy human brain [18], but also enable and guide
targeted interventions for patients with neurological disorders,
such as epilepsy [19] and Parkinson’s disease [20].

We study cluster synchronization in networks of oscillators
with Kuramoto dynamics [21], which, despite their apparent
simplicity, are particularly suited to represent complex synchro-
nization phenomena in neural systems [22], as well as in many
other natural and technological systems [9]. Although our study
and modeling choices are guided by the practical need to under-
stand and control patterns of synchronized functional activity in
the human brain, as they naturally arise in healthy and diseased
populations [23], [24], in this paper, we focus on developing
the mathematical foundations of a quantitative approach to the
analysis and control of cluster synchronization in a weighted
network of Kuramoto oscillators. In particular, we derive con-
ditions on the oscillators’ coupling and their natural frequencies
that guarantee the stability of an arbitrary cluster configuration.

Related work: Cluster synchronization, where multiple syn-
chronized groups of oscillators coexist in a connected network,
is an exciting phenomenon that has attracted the attention of the
physics, dynamical systems, and controls communities, among
others. The existing work on this topic has shown that cluster-
synchronized states can be linked to the existence of certain
network symmetries [25]–[29] or symmetries in the nodes’
dynamics [30]. More recently, in [31] and [32], the stability
of cluster states corresponding to network symmetries is ad-
dressed with the master stability function approach [33]. In con-
trast to this previous work, [34] combines network symmetries
with contraction analysis to study the stability of synchronized
states. Further studies relating contraction properties and cluster
synchronization are conducted in [35] and [36]. Finally, control
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algorithms for cluster synchronization are developed in [37]
and [38]. To the best of our knowledge, however, the aforemen-
tioned studies are not applicable to oscillators with Kuramoto
dynamics, which we study in this paper.

A few papers have studied cluster synchronization of Ku-
ramoto oscillators. Specifically, in [39] and [40], the authors
provide invariance conditions for an approximate definition of
cluster synchronization and for particular types of networks. In-
variance of exact cluster synchronization, which is the notion
used in this paper, is also studied in [41] and [42]. Stability
of exact cluster synchronization is investigated in [43], where,
however, only the restrictive case of two clusters for identical
Kuramoto oscillators with inertia is considered, and in [44],
where only implicit and numerical stability conditions are pro-
vided. To the best of our knowledge, our work presents the first
explicit analytical conditions for the (local) stability of the clus-
ter synchronization manifold in sparse and weighted networks
of heterogeneous Kuramoto oscillators.

Paper contribution: The main contribution of this paper is
to characterize conditions for the stability of cluster synchro-
nization in networks of oscillators with Kuramoto dynamics.
We consider a notion of exact cluster synchronization, where
the phases of the oscillators within each cluster remain equal to
each other over time, and different from the phases of the os-
cillators in the other clusters. We derive three conditions. First,
we show that the cluster synchronization manifold is locally ex-
ponentially stable when the intracluster coupling is sufficiently
stronger than the intercluster coupling. We quantify this trade-
off using the perturbation theory for dynamical systems together
with the invariance properties of cluster synchronization. Sec-
ond, through a Lyapunov argument, we show that the cluster
synchronization manifold is locally exponentially stable when
the natural frequencies of the oscillators in disjoint clusters are
sufficiently different (in their limit to infinity). Third, we focus
on the case of two clusters, and provide a quantitative condition
on the network weights and oscillators’ natural frequency for
the stability of the cluster synchronization manifold. This anal-
ysis shows that the asymptotic stability of the cluster synchro-
nization manifold is guaranteed for weak intercluster weights,
sufficiently different natural frequencies, or even homogeneous
intracluster configurations.

As minor contributions, we provide examples showing that
network symmetries are not necessary for cluster synchroniza-
tion of Kuramoto oscillators, and a sufficient condition guaran-
teeing the absence of stable synchronization submanifolds.

Paper organization: The rest of this paper is organized as
follows. Section II contains the problem setup and some pre-
liminary notions. Section III contains the main results; that is,
the conditions for the stability of the cluster synchronization
manifold in Kuramoto networks. Finally, Section IV concludes
this paper, and the Appendix contains the proofs of our results.

Mathematical notation: The set R>0 (resp., R<0) denotes the
positive (resp., negative) real numbers, whereas the sets S1 and
Tn denote the unit circle and the n-dimensional torus, respec-
tively. The vector of all ones is represented by 1. We let O(f)
denote the order of the function f . Further, we denote a positive
(resp., negative) definite matrix A with A � 0 (resp., A ≺ 0).

We indicate the smallest (resp. largest) eigenvalue of a sym-
metric matrix with λmin(·) (resp., λmax(·)). A (block-)diagonal
matrix is represented by (blk-)diag(·). We let ‖ · ‖ denote the �2 -
norm, and i =

√
−1. Finally, A† represents the Moore–Penrose

pseudoinverse of the matrix A.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

In this paper, we characterize the stability properties of cer-
tain synchronized trajectories arising in networks of oscilla-
tors with Kuramoto dynamics. To this aim, let G = (V, E) be
the connected and weighted graph representing the network
of oscillators, where V = {1, . . . , n} and E ⊆ V × V represent
the oscillators, or nodes, and their interconnection edges, re-
spectively. Let A = [aij ] be the weighted adjacency matrix of
G, where aij ∈ R>0 is the weight of the edge (i, j) ∈ E , and
aij = 0 when (i, j) �∈ E . The dynamics of the ith oscillator is

θ̇i = ωi +
∑

j �=i

aij sin(θj − θi) (1)

where ωi ∈ R>0 and θi ∈ S1 denote the natural frequency and
the phase of the ith oscillator. Unless specified differently, we
assume that the edge weights are symmetric as follows:

(A1) The network adjacency matrix satisfies A = AT.
Assumption (A1) is typical in the study of (cluster) synchro-

nization in networks of Kuramoto oscillators, e.g., see [45]–[47],
as it facilitates the derivation of stability results. While relax-
ing this assumption is beyond the scope of this paper, we will
discuss how our stability results can also be applied to study
cluster synchronization with asymmetric network weights (see
Remark 5). Finally, since the diagonal entries of the adjacency
matrix A do not contribute to the dynamics in (1), we assume
that G does not contain self-loops.

A network exhibits cluster synchronization when the oscilla-
tors can be partitioned so that the phases of the oscillators in each
cluster evolve identically. To be precise, letP = {P1 , . . . ,Pm},
with m > 1, be a partition of V , where

⋃m
i=1 Pi = V and

Pi ∩ Pj = ∅ if i �= j. Define the cluster synchronization mani-
fold associated with the partition P as

SP = {θ ∈ Tn : θi = θj for all i, j ∈ Pk , k = 1, . . . , m}.

Then, the network is cluster-synchronized with partitionP when
the phases of the oscillators belong to SP at all times.

In this paper, we characterize conditions on the network
weights and the oscillators’ natural frequency that guarantee
local exponential stability of the cluster synchronization mani-
fold SP , for a given partition P .1 In order to study the stability
of the cluster synchronization manifold, we assume SP to be
invariant [48, ch. 3].2 In particular, following [42], invariance of
SP is guaranteed by the following conditions:

1Loosely speaking, the manifold SP is locally exponentially stable if θ con-
verge to SP exponentially fast when θ(0) is sufficiently close to SP .

2The manifold SP is invariant if θ(0) ∈ SP implies θ ∈ SP at all times.
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Fig. 1. (a) Network of six oscillators with adjacency matrix as in (b).
In this network, the partition P = {P1 ,P2}, which satisfies Assumption
(A3), cannot be identified by group symmetries of the network for any
choice of the positive weights α1 , α2 , α3 , α4 , β1 , and β2 . The manifold
SP is invariant whenever the oscillators’ natural frequencies satisfy As-
sumption (A2). Thus, this example shows that network symmetries are
not necessary for cluster synchronization of Kuramoto oscillators.

(A2) Given P = {P1 , . . . ,Pm}, the natural frequen-
cies satisfy ωi = ωj for every i, j ∈ Pk and k ∈
{1, . . . , m}.3

(A3) The network weights satisfy
∑

k∈P�
aik − ajk = 0 for

every i, j ∈ Pz and z, � ∈ {1, . . . ,m}, with z �= �.
Thus, in the remainder of this paper, we assume that

(A2) and (A3) are satisfied for the network partition being
considered.

Remark 1. (Network symmetries, equitable partitions, and
balanced weights): Conditions to ensure the invariance of the
cluster synchronization manifold have been linked to network
symmetries, which are defined by the group comprising all node
permutations that leave the network topology unchanged, e.g.,
see, [31], [32], and [44]. In Fig. 1, we propose a network with
two clusters, which are not defined by any group symmetry, that
satisfies Assumption (A3), and thus, admits an invariant clus-
ter synchronization manifold. This example shows that cluster
synchronization of Kuramoto oscillators does not require sym-
metric networks. Our Assumption (A3), and in fact, the equiva-
lent notion of external equitable partition [41], is less restrictive
than requiring partitions satisfying group symmetries [50]–[52].
Finally, Assumptions (A2) and (A3) are necessary when the nat-
ural frequencies in distinct clusters are sufficiently different (see
[42] and Remark 2). �

Remark 2. (Invariance of submanifolds of SP ): When the
network of oscillators is cluster-synchronized (i.e., θ(t) ∈ SP
for all t ≥ 0), submanifolds of SP may appear whenever the
phases belonging to two (or more) disjoint clusters have equal
values (see Fig. 2). Interestingly, the example in Fig. 2 also
points out that Assumption (A3) may not be necessary for
the invariance of SP if the clusters do not evolve with dif-
ferent frequencies (see [42, Assumption (A1)]). In what fol-
lows, we show that, if the natural frequencies of the oscilla-
tors in disjoint clusters are sufficiently different, then invariant,
and hence, stable, submanifolds cannot exist. To see this, as-
sume that the phases of the disjoint clusters P� and Pz remain
equal over time. Then, using Assumptions (A2) and (A3), the
dynamics

3This condition is necessary for SP to be forward invariant, and thus, stable
[42], and is motivated by observed synchronization phenomena, e.g., see [49].

Fig. 2. (a) Network with partition P = {P1 ,P2 ,P3}. As shown in (b),
the phases of the oscillators in P1 and P2 have the same value over
time, showing that a submanifold of SP is invariant and stable. For this
simulation, we use ω1 = 4, ω2 = 2, ω3 = 6, a14 = 3, and a47 = 5.

θ̇� − θ̇z = ω� − ωz +
m∑

k=1

[(
∑

r∈Pk

a�r

)
sin(θk − θ�)

−
(
∑

r∈Pk

azr

)
sin(θk − θz )

]
(2)

must be identically zero, where θi denotes the phase of any
oscillator in Pi . Clearly, if the following inequality holds:

|ω� − ωz | > 2(m − 2) max
k �=�,z

{
∑

r∈Pk

a�r ,
∑

r∈Pk

azr

}
(3)

Equation (2) cannot vanish, and consequently, the clusters P�

and Pz cannot evolve with the same phases when the network
is cluster synchronized.4 More generally, if condition (3) is
satisfied for all pairs of clusters, then invariant, and hence, stable,
cluster synchronization submanifolds cannot exist. �

We conclude with an example showing that the synchroniza-
tion manifold SP is, in general, not globally asymptotically
stable due to the existence of multiple invariant sets.

Example 1. (Multiple invariant sets): Consider a Kuramoto
network with 2N oscillators (N ≥ 2) and with an adjacency
matrix defined as follows 5 (see Fig. 3(a) for the case N = 5):

aij =

{
1, if |i − j| ≤ 2
0, otherwise

with i, j ∈ {1, . . . , 2N} (and the convention 2N + � � �,−� �
2N + � − 1, for � ∈ {1, 2}). Let P = {P1 ,P2}, with P1 =
{1, 3, . . . , 2N − 1}, P2 = {2, 4, . . . , 2N}, and define

MP = {θ ∈ T 2N : θi+2 = θi + 2π/N, i = 1, . . . , 2N − 2}.

It can be verified that Assumption (A3) is satisfied, and that
the set SP is invariant whenever the natural frequencies satisfy
Assumption (A2). Yet, the set SP is not the only invariant set.
In fact, MP is also invariant (we prove this by showing that

4In (3), we have (m − 2) because for k = z, �, the sine terms in (2) vanish.
5This analysis extends directly to arbitrary weights aij = a, a ∈ R> 0 .
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Fig. 3. (a) Network in Example 1 for the case N = 5. The nodes be-
longing to partition P1 are blue and have natural frequency ω1 = 1,
while the nodes belonging to partition P2 are orange and have ω2 = 3.
(b) Stability of the set MP via numerical simulations. We performed
103 iterations, each one with θ(0) chosen randomly within an angle of
±0.01 [rad] from MP . The thick line represents the mean value among all
simulations of the 2-norm distance between θ and MP , while the faded
area represents the smallest and largest value of the 2-norm distance
between θ and MP . (c) and (d) Invariance of the set MP as the phases
in the clusters P1 and P2 evolve, respectively, with the same frequencies.

θ̇i = θ̇i+2 when θi, θi+2 ∈ MP )

θ̇i = ωi + sin(θi−2 − θi) + sin(θi+2 − θi)

+ sin(θi−1 − θi) + sin(θi+1 − θi)

= ωi + sin(θi − θi+2) + sin(θi+4 − θi+2)

+ sin(θi+1 − θi+2) + sin(θi+3 − θi+2) = θ̇i+2

where we have used the fact that θi+2 − θi = 2π/N , and ωi =
ωj for all i, j in the same cluster. Further, it can be verified
numerically that, depending on the number of oscillators N , the
setMP is also locally stable [see Fig. 3(b)]. We conclude that the
cluster synchronization manifold SP is not, in general, globally
asymptotically stable. In what follows, we derive conditions
guaranteeing local stability of SP . �

III. CONDITIONS FOR THE STABILITY OF THE CLUSTER

SYNCHRONIZATION MANIFOLD

In this section, we derive sufficient conditions for the local
exponential stability of the cluster synchronization manifold.
Define the phase difference xij = θj − θi , and notice that

ẋij = ωj − ωi +
n∑

z=1

[ajz sin(xjz ) − aiz sin(xiz )] . (4)

Given a partition P = {P1 , . . . ,Pm} of the set V in the graph
G, we define the following graphs (see also Example 2):

1) the graph of the kth cluster, with k ∈ {1, . . . ,m}, Gk =
(Pk , Ek ), where Ek = {(i, j) : (i, j) ∈ E , i, j ∈ Pk};

2) a spanning tree Tk = (Pk , Espan,k ) of Gk ;6

3) a spanning tree T = (V, ET ) of G with ET =⋃m
k=1 Espan,k ∪ Einter, where Einter satisfies |Einter| =

m − 1.
Further, we define the following vectors of phase differences:
4) x

(k)
intra = [xij ] for all (i, j) ∈ Espan,k with i < j;

5) xintra =
[
x

(1)T
intra , . . . , x

(m )T
intra

]T
;

6) xinter = [xij ] for all (i, j) ∈ Einter with i < j.

It should be noticed that the vectors x
(k)
intra, xintra, and xinter

contain, respectively, nintra,k = |Pk | − 1, nintra = n − m, and
ninter = m − 1 entries. Notice that every phase difference can
be computed as a linear function of xintra and xinter. To see this,
let i, j ∈ V , and let p(i, j) = {p1 , . . . , p�} be the unique path
on T from i to j. Define diff(p(i, j)) =

∑�−1
k=1 sk , where sk =

xpk pk + 1 if pk < pk+1 , and sk = −xpk + 1 pk
otherwise. Then,

xij = diff(p(i, j)), and the vectors xintra and xinter contain a
smallest set of phase differences that can be used to quantify the
synchronization among all of the oscillators in the network.

Let B = [bk� ] ∈ R|V|×|E| denote the oriented incidence matrix
of the graphG = (V, E), where � corresponds to the edge (i, j) ∈
E , bk� = 1 if node k is the sink of the edge �, bk� = −1 if k is the
source of �, and bk� = 0 otherwise.7 Further, let Bk and Bspan,k

denote the incidence matrices of Gk and Tk , respectively. Notice
that Bspan,k is of full rank because it is the incidence matrix of an
acyclic graph (tree) [53, Th. 8.3.1]. Let Tintra,k = BT

k (BT
span,k )†

be the unique matrix that maps the phase differences contained
in x

(k)
intra to all intracluster phase differences in the kth cluster.

That is,

x(k) = Tintra,kx
(k)
intra (5)

where x(k) contains all phase differences in the cluster Pk .
We conclude this part by rewriting the intracluster dynamics

in a form that will be useful to prove our results. In particular,
from the aforementioned discussion and for an intracluster phase
difference xij of x

(k)
intra, we rewrite (4) as

ẋij =
∑

z∈Pk

[ajz sin(diff(p(j, z))) − aiz sin(diff(p(i, z)))]

︸ ︷︷ ︸
F

(k )
i j (x(k )

intra)

+
∑

z �∈Pk

[ajz sin(diff(p(j, z))) − aiz sin(diff(p(i, z)))]

︸ ︷︷ ︸
G

(k )
i j (x intra,x inter)

(6)

which leads to

ẋ
(k)
intra = F (k)(x(k)

intra) + G(k)(xintra, xinter) (7)

6We assume that G and its subgraphs Gk are connected. This guarantees the
existence of the (connected) spanning trees defined in 2) and 3). A graph is
connected if there exists a path between any pair of nodes [53].

7Node i is the source (resp., sink) of (i, j) if i < j (resp., i > j).
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Fig. 4. Graph-theoretic definitions introduced in Section III for a net-
work of nine Kuramoto oscillators (see also Example 2). (a) Partitions
P = {P1 ,P2 ,P3}. (b) Espan,1 , Espan,2 , and Espan,3 represent (in red) the
edges of the intracluster spanning trees T1 , T2 , and T3 , respectively,
while the edges belonging to the set Einter are depicted in purple.

where F (k) is the vector of F
(k)
ij and G(k) is the vector of G

(k)
ij ,

for all (i, j) ∈ Espan,k with i < j. Finally, by concatenating the
dynamics (7) for all clusters, we obtain

ẋintra = F (xintra) + G(xintra, xinter). (8)

Example 2. (Illustration of the definitions): We provide
here an illustrative example of the definitions introduced in
this section. Consider the network in Fig. 4(a) with partition
P = {P1 ,P2 ,P3}, where P1 = {1, 2, 3}, P2 = {4, 5, 6}, and
P3 = {7, 8, 9}. Fig. 4(b) illustrates the definitions of span-
ning trees, together with the edge sets Espan,k (k = 1, 2, 3), and
the intercluster edges in Einter = {(3, 6), (4, 7)}. The vectors
of intracluster differences read as x

(1)
intra = [x12 x23 ]T, x

(2)
intra =

[x45 x56 ]T, and x
(3)
intra = [x78 x79 ]T, whereas the vector of inter-

cluster differences reads as xinter = [x36 x47 ]T.
For the partition P1 , order the edges as �1 = (1, 2),

�2 = (1, 3), and �3 = (2, 3). Then, a spanning tree is T1 =
(P1 , Espan,1), with Espan,1 = {(1, 2), (2, 3)}, and the (oriented)
incidence matrices B1 of G1 and Bspan,1 of T1 are

B1 =

⎡

⎣
−1 −1 0
1 0 −1
0 1 1

⎤

⎦ , Bspan,1 =

⎡

⎣
−1 0
1 −1
0 1

⎤

⎦ .

Finally, the matrix Tintra,1 = BT
1 (BT

span,1)
† satisfies

Tintra,1 =
[

1 1 0
0 1 1

]T

.

�

A. Asymptotic Stability of SP Via the Perturbation Theory

In what follows, we will make use of the perturbation theory
of dynamical systems to provide our first stability condition. We
first introduce the following instrumental result.

Lemma 3.1. (Properties of intracluster dynamics): The in-
tracluster dynamics (8) satisfies the following properties.

1) The Jacobian matrix Jintra of F (xintra) computed at the
origin is Hurwitz stable and can be written as

Jintra =
∂F (xintra)

∂xintra

∣∣∣∣
x intra=0

= blk-diag (J1 , . . . , Jm )

(9)

where for k ∈ {1, . . . , m}, Tintra,k is as in (5) and

Jk = −BT
span,kBk diag({aij}(i,j )∈Ek

)Tintra,k . (10)

Thus, the origin is an exponentially stable equilibrium of
the system ẋintra = F (xintra).

2) There exist constants γ(k�) ∈ R>0 such that

‖G(k)(xintra, xinter)‖ ≤
m∑

�=1

γ(k�)‖x(�)
intra‖ (11)

for all k, � ∈ {1, . . . , m}. Specifically

γ(k�) = 2max
r

nintra,r γ̃(k�) (12)

where for any i ∈ Pk

γ̃(k�) =

⎧
⎨

⎩

∑
j∈P�

aij , if � �= k
∑m

�=1
� �=k

∑
j∈P�

aij , otherwise.
(13)

As formalized in the next theorem, Lemma 3.1, together with
results on the stability of perturbed systems [54, ch. 9], im-
plies that the origin of (8), and thus, the cluster synchronization
manifold SP , is exponentially stable for some choices of the
network weights. Recall that an M -matrix is a real nonsingular
matrix A = [aij ] such that aij ≤ 0 for all i �= j and all leading
principal minors are positive [55, ch. 2.5].

Theorem 3.2. (Sufficient condition on network weights for
the stability of SP ): Let SP be the cluster synchronization man-
ifold associated with a partition P = {P1 , . . . ,Pm} of the net-
work G of Kuramoto oscillators. Let γ(k�) be the constants
defined in (12). Define the matrix S ∈ Rm×m as

S = [sk� ] =

{
λ−1

max(Xk ) − γ(kk) if k = �

−γ(k�) if k �= �
(14)

where Xk � 0 is such that JT
k Xk + XkJk = −I , with Jk as

in (10). If S is an M -matrix, then the cluster synchronization
manifold SP is locally exponentially stable.

Remark 3. (Family of bounds): In (14), the matrices Xk can
be selected as the solutions to the Lyapunov equations JT

k Xk +
XkJk = −Qk , for arbitrary positive definite matrices Qk . Yet,
selecting Qk = I for all k yields a tighter stability bound. This
follows because 1) if S is an M -matrix, then S + Δ remains
an M -matrix whenever Δ is a nonnegative diagonal matrix
[55, Th. 2.5.3], and 2) the ratio λmin(Qk )/λmax(Xk ) is maximal
whenever Qk = I [54, Exercise 9.1]. �

Theorem 3.2 describes a sufficient condition on the network
weights for the stability of the cluster synchronization manifold.
Loosely speaking, the cluster synchronization manifold is ex-
ponentially stable when the intracluster coupling (measured by
λ−1

max(Xk ) − γ(kk)) is sufficiently stronger than the perturbation
induced by the intercluster connections (measured by γ(k�)). In
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Fig. 5. (a) Network of six Kuramoto oscillators in Example 3. We identify
the clusters P1 and P2 in blue and orange, respectively. (b) Adjacency
matrix of the network in (a). The parameters α1 , α2 , and β represent
the intracluster and intercluster weights, respectively. (c) Stability of the
cluster synchronization manifold SP for α1 = α2 = 1 and β = 0.1, as
predicted by Theorem 3.2. (d) SP is unstable when α1 = β = 1 and
α2 = 0.001.

particular, the term λ−1
max(Xk ) is proportional to the intracluster

weights and it is implicitly related to the network topology. In
fact, the matrix Xk is the solution of a Lyapunov’s equation
containing Jk , whose spectrum coincides with the stable eigen-
values of the negative Laplacian matrix of the kth cluster. We
refer the interested reader to the proof of Lemma 3.1. Finally,
we remark that a result akin to Theorem 3.2 has been derived
in [56], although for interconnected systems whose coupling
functions are required to satisfy certain assumptions that fail to
hold in the Kuramoto model.

Example 3. (Tradeoff between intra- and intercluster
weights): Consider the network in Fig. 5(a) with partition
P = {P1 ,P2}, where P1 = {1, 2, 3} and P2 = {4, 5, 6}, nat-
ural frequencies ω1 = 1 and ω2 = 6 for the oscillators in P1
and P2 , and adjacency matrix as in Fig. 5(b). The parameters
α1 , α2 ∈ R>0 , and β ∈ R>0 denote the strength of the intra-
and intercluster coupling, respectively. Let α1 = α2 , and con-
struct the matrix S as in Theorem 3.2 as

S =
[

λ−1
max(X1) − γ11 −γ12

−γ12 λ−1
max(X2) − γ22

]

where Xk � 0 is such that JT
k Xk + XkJk = −I , λ−1

max(X1) =
λ−1

max(X2) = 2α1 , and from (12), γij = 4β for all i, j. By
inspecting all leading principal minors, S is an M -matrix if
α1/β > 4, and the cluster synchronization manifoldSP is expo-
nentially stable [see Fig. 5(c)]. We remark that, when α1 �= α2 ,
the synchronization manifold SP can become unstable, as we
verify numerically in Fig. 5(d). �

Fig. 6. The condition in Theorem 3.2 leads to conservative stability
bounds. For the network in Example 3, we let β = 0.1 and plot, as a
function of the ratio α1 /α2 , the stable configurations predicted by Theo-
rem 3.2 (green) and those found numerically. For each value of α1 /α2 ,
we assess numerical stability by making use of the Floquet stability the-
ory [57, ch. 5] and by resorting to statement 1) in Lemma 3.4. This is
possible because the partition in Example 3 has only two clusters.

The stability condition in Theorem 3.2 depends only on the
network weights, and typically leads to conservative bounds
(see also Fig. 6). To derive refined stability conditions, we next
characterize how the natural frequencies of the oscillators affect
stability of the cluster synchronization manifold.

B. Asymptotic Stability of SP When the Oscillators’
Natural Frequencies are Sufficiently Different

Natural frequencies play a fundamental role for full and clus-
ter synchronization of Kuramoto oscillators. However, while
heterogeneity of the natural frequencies typically impedes full
synchronization [47], we will show that cluster synchronization
is in fact facilitated when the oscillators in different clusters
have sufficiently different natural frequencies. We start with an
asymptotic result that is valid for arbitrary networks and par-
titions, and then, improve our results for the case of partitions
containing only two clusters.

Theorem 3.3. (Stability of SP for large natural frequency
differences): Let SP be the cluster synchronization manifold as-
sociated with a partition P = {P1 , . . . ,Pm} of the network G
of Kuramoto oscillators. Let ωi ∈ R>0 be the natural frequency
of the oscillators in the cluster Pi , with i ∈ {1, . . . , m}. In the
limit |ωi − ωj | → ∞, for all i, j ∈ {1, . . . , m}, i �= j, the clus-
ter synchronization manifold SP is locally exponentially stable.

Theorem 3.3 shows that heterogeneity of the natural frequen-
cies of the oscillators in different clusters facilitates cluster syn-
chronization, independently of the network weights. We remark
that a similar behavior was also identified in [58], albeit with a
different method and definition of synchronization.

We next improve upon Theorem 3.3 by analyzing the case
where the natural frequencies are finite and the partition P
contains only two clusters. To this aim, let P = {P1 ,P2} and
assume, without loss of generality, that ω2 ≥ ω1 , where ωi is
the natural frequency of the oscillators in Pi . Define

ω̄ = ω2 − ω1 , and ā =
∑

k∈P2

aik +
∑

k∈P1

ajk

for any i ∈ P1 and j ∈ P2 . The next result characterizes the
intercluster phase difference when the network evolves on the
cluster synchronization manifold.

Lemma 3.4. (Nominal intercluster difference): Let SP be
the cluster synchronization manifold associated with a partition
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P = {P1 ,P2} of the network G of Kuramoto oscillators. Let
θ(0) ∈ SP (equivalently, xintra(0) = 0). Then, if xintra = 0 at all
times and ω̄ > ā

xinter(t) =

{
h(t), if t �= t0 + kT, k ∈ Z

π, if t = t0 + kT, k ∈ Z

� xnom(t) (15)

where

h(t) = 2 tan−1

⎛

⎝
ā +

√
ω̄2 − ā2 tan

(√
ω̄ 2 −ā2

2 (t + τ)
)

ω̄

⎞

⎠

t0 = −τ + π/
√

ω̄2 − ā2 , T = 2π/
√

ω̄2 − ā2 , and τ ∈ R is a
constant that depends only on θ(0). Moreover

1) xnom is T -periodic with zero time average;
2) the following inequality holds:

∣∣∣∣
∫ t

0
cos(xnom(τ)) dτ

∣∣∣∣ ≤
1
ā

log
(

ω̄ + ā

ω̄ − ā

)
. (16)

Remark 4. (Constant versus time-varying intercluster dif-
ference): The values of ω̄ and ā determine the behavior of the
intercluster phase difference. In particular, if ω̄ < ā, then the
intercluster difference evolves as in (15).8 If ω̄ = ā, (4) reduces
to ẋinter = ā − ā sin(xinter), which can be integrated as follows:

āt =
∫ x inter(t)

x inter(0)
(1 − sin(s))−1ds

āt =
2 sin(xinter(t)/2)

cos(xinter(t)/2) − sin(xinter(t)/2)
+ τ. (17)

By substitution, it can be verified that

xinter(t) = 2 cos−1

(
āt − τ + 2√

2(āt − τ + 1)2 + 2

)

satisfies (17). In both cases (ω̄ ≤ ā), xinter converges to the con-
stant value 2 tan−1((ā −

√
ā2 − ω̄2)/ω̄) as t increases to infin-

ity. In other words, if ω̄ ≤ ā, then the phases of the oscillators
in the two clusters evolve with the same frequency, and the os-
cillators are phase locked (see Fig. 7(a) and [47, Remark 1]).
Instead, if ω̄ > ā, the clusters evolve with different frequencies,
and the intercluster phase difference follows a limit cycle (see
Fig. 7(b) and [54, ch. 2]). �

In the remainder of this section, we assume that ω̄ > ā so that
the clusters evolve with different frequencies (see Remark 4).
Leveraging Lemma 3.4, we next present a refined condition for
the stability of the cluster synchronization manifold.

Theorem 3.5. (Sufficient condition on network weights and
natural frequencies for the stability of SP ): Let SP be the
cluster synchronization manifold associated with a partition
P = {P1 ,P2} of the network G of Kuramoto oscillators. Let
ωi ∈ R>0 be the natural frequency of the oscillators in the
cluster Pi , with i ∈ {1, 2}. Let Jintra be as in Lemma 3.1, and

8In fact,
√

ω̄2 − ā2 becomes a complex number, and by recalling that
tan(iα) = i tanh(α), where α ∈ R, in (15), we have xinter(t) = 2 tan−1 ((ā −√

ā2 − ω̄2 tanh(
√

ā2 − ω̄2 (t + τ )/2))/ω̄).

Fig. 7. For the network in Example 3 with α1 = α2 = β = 1, ā = 2
and ω̄ = 1, (a) shows that the clusters are synchronized (as ‖x(1)

intra‖
and ‖x(2)

intra‖ converge to zero), yet all oscillators remain phase locked
(xinter converges to a constant). Instead, (b) shows that the intercluster
difference follows a limit cycle when α1 = α2 = β = 1, ā = 2, and ω̄ = 6.

Jinter = ∂G(xintra, xinter)/∂xintra along the trajectory xintra = 0
and xinter = xnom. The cluster synchronization manifold SP is
locally exponentially stable if the following inequality holds:

(
ω̄ + ā

ω̄ − ā

) 2
ā ‖J inter‖

< 1 +
1

2λmax(X)‖Jintra‖
(18)

where X � 0 is the solution of JT
intraX + XJintra = −I .

Theorem 3.5 provides a quantitative condition on the net-
work weights and the natural frequencies of the oscillators to
ensure the stability of the cluster synchronization manifold. It
can be shown that 1) when the intercluster weights decrease
to zero (ā → 0) and ω̄ remains bounded, then ‖Jinter‖/ā re-
mains bounded, the left-hand side of (18) converges to 1, and
the inequality is automatically satisfied, and 2) when ω̄ grows
(ω̄ → ∞) and the intercluster weights remain bounded, the left-
hand side of (18) converges to 1 and the inequality is automat-
ically satisfied. The role of the intracluster connections on the
stability of SP cannot be evaluated directly from (18) because of
the dependence of the right-hand side on λmax(X). The follow-
ing result, however, suggests that the synchronization manifold
may remain exponentially stable when the intracluster weights
are homogeneous, independently of the intercluster weights and
the natural frequencies.

Theorem 3.6. (Stability of SP with homogeneous clusters):
Let SP be the cluster synchronization manifold associated with
a partition P = {P1 ,P2} of the network G of Kuramoto oscil-
lators. Let ωi ∈ R>0 be the natural frequency of the oscillators
in the cluster Pi , with i ∈ {1, 2}. If Jintra = αI , for some con-
stant α ∈ R<0 , then the cluster synchronization manifold SP is
locally exponentially stable.

We provide an example that illustrates the stability conditions
derived in Theorem 3.5.

Example 4. (Heterogeneity of natural frequencies improves
stability of the cluster synchronization manifold): Consider the
network of Kuramoto oscillators in Example 3. Fig. 8(a) illus-
trates that the cluster synchronization manifold is asymptotically
stable when the condition in Theorem 3.5 is satisfied. Fig. 8(b)
illustrates the tradeoff in the latter stability condition between
the natural frequency ω̄ and the intercluster strength measured
by β∗, which denotes the largest intercluster weight β (see Ex-
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Fig. 8. For the network in Example 3, (a) illustrates the stability of SP
when α1 = α2 = β = ω1 = 1 and ω2 = 47, as predicted by the condi-
tion in Theorem 3.5. For the same network and weights, (b) shows the
largest value of intercluster weights β∗ that satisfies (18) with equality. As
predicted by Theorem 3.3 and Theorem 3.5, stability of the cluster syn-
chronization manifold SP is preserved when ω̄ grows with the intercluster
weights.

Fig. 9. For the network in Example 3, we let α1 = β = 1 and α2 =
10−4 and plot, as a function of ω̄, the stable configurations predicted
by Theorem 3.5 (green) and those found numerically. For each value of
ω̄, we assess numerical stability (in red) by making use of the Floquet
stability theory [57, ch. 5] and by resorting to statement 1) in Lemma
3.4. This is possible because the partition in Example 3 contains two
clusters. Although condition (18) is conservative, it captures the effect of
large ω̄ on the stability of SP .

ample 3) such that (18) is still satisfied. Further, we show in
Fig. 9 that, while being conservative, condition (18) captures
the fact that stability of the cluster synchronization manifold
can be recovered by increasing ω̄. Namely, choosing the same
network weights that yield instability as in Fig. 5(d), we show
that stability of the cluster synchronization manifold is recov-
ered as the difference in natural frequencies grows. �

We conclude this section with a discussion of cluster syn-
chronization in asymmetric networks and identical nodes.

Remark 5. (Extension to networks with asymmetric
weights): Symmetry of the network weights is typically ex-
ploited to provide conditions for the stability of the full synchro-
nization manifold in networks of Kuramoto oscillators [47]. We
rely on the symmetry assumption (A1) to derive statement 1) in
Lemma 3.1, which supports our main theorems. However, these
results remain valid for bidirected graphs,9 provided that the
Jacobian Jintra can be proven to be Hurwitz. In other words, As-
sumption (A1) is used to guarantee the stability of the isolated
clusters, and not of the cluster configuration. �

Remark 6. (Cluster synchronization in networks of iden-
tical oscillators): This paper focuses on heterogeneous oscil-
lators and leverages mismatches in the natural frequencies and

9A bidirected graph is a directed graph where (i, j) ∈ E implies (j, i) ∈ E .
The adjacency matrix of a bidirected graph needs not be symmetric.

Fig. 10. (a) Network of ten Kuramoto oscillators with partition P =
{P1 ,P2 ,P3 ,P4 ,P5}, where each cluster is color coded. All oscillators
have identical natural frequency ω = 3 and all edges have unit weight. As
illustrated in (b), the cluster synchronization manifold associated to P is
stable, showing that cluster synchronization is possible even in networks
of identical Kuramoto oscillators with identical edge weights.

the network weights to characterize the stability of the cluster
synchronization manifold. Yet, cluster synchronization can also
arise in networks of homogeneous Kuramoto oscillators, where
all units have equal natural frequencies and all edges have equal
weight (e.g., see Fig. 10). With the exception of Theorem 3.3,
which is also applicable in the case of identical edge weights,
our stability results cannot predict cluster synchronization in
networks of identical oscillators, a question that we leave as the
subject of future investigation. �

IV. CONCLUSION AND FUTURE WORK

In this paper, we characterize conditions for the stability
of cluster synchronization in networks of oscillators with Ku-
ramoto dynamics, where multiple synchronized groups of os-
cillators coexist in a connected network. We derive conditions
showing that the cluster synchronization manifold is locally
exponentially stable when 1) the intracluster coupling is suffi-
ciently stronger than the intercluster coupling, 2) the differences
of natural frequencies of the oscillators in disjoint clusters are
sufficiently large, or 3) in the case of two clusters, if the intra-
cluster dynamics is homogeneous. To the best of our knowledge,
our results are the first to characterize the stability of the cluster
synchronization manifold in sparse and weighted networks of
heterogeneous Kuramoto oscillators.

Directions of future research include the characterization of
tighter stability bounds, the design of methods to control the for-
mation of time-varying synchronized clusters, and the extension
of Theorem 3.5 to an arbitrary number of clusters.

APPENDIX

In this section, we provide the proofs of the results presented
in Section III, together with some instrumental lemmas.

A. Proofs of the Results in Section III-A

Proof of Lemma 3.1: Proof of statement 1). Notice that
the block-diagonal form of the Jacobian matrix Jintra follows
directly from the form of F (xintra) in (8). Therefore, the stabil-
ity of Jintra is equivalent to the stability of the diagonal blocks
Jk . Let θ(k) be the vector of θi , i ∈ Pk , and by Assumption
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(A2), let ωk be the natural frequency of any oscillator in Pk .
From (1), we write the phase dynamics of the kth cluster as
(see [45])

θ̇(k) = ωk1− Bk diag({aij}(i,j )∈Ek
) sin(BT

k θ(k)).

Because the phase differences satisfy x
(k)
intra = BT

span,k θ(k) and

x(k) = BT
k θ(k) , we have

ẋ
(k)
intra = −BT

span,kBk diag({aij}(i,j )∈Ek
) sin(x(k)) (19)

where we have used the property BT
span,k1 = 0. Using (5), the

Jacobian matrix of (19) computed at x
(k)
intra = 0 reads as

Jk = −BT
span,kBk diag({aij}(i,j )∈Ek

)Tintra,k . (20)

Recall that the Laplacian matrix of the graph Gk satisfies
LGk

= Bk diag({aij}(i,j )∈Ek
)BT

k , and that, because Gk is con-
nected, the eigenvalues of −LGk

have negative real part, except
one single eigenvalue located at the origin with eigenvector 1.
Define the matrix Wk = [Bspan,k 1]T and notice that, because
BT

span,k1 = 0 and Bspan,k being full column rank [53, Th. 8.3.1],

then Wk is invertible and W−1
k = [(BT

span,k )† (1T)†]. Therefore,
we have

Wk (−LGk
)W−1

k =
[

Jk 0
0 0

]

where we have used that Tintra,k = BT
k (BT

span,k )† in (20). This
shows that Jk contains only the stable eigenvalues of −LGk

.
Proof of statement 2). Notice that, for any (j, z) ∈ E with

j ∈ Pk , z ∈ P� , and k �= �, the difference diff(p(j, z)) in
G

(k)
ij (xinter, xinter) in (6) can be rewritten as

diff(p(j, z)) = diff(p(j, k∗))+diff(p(k∗, �∗))+ diff(p(�∗, z))

where k∗ and �∗ are such that p(k∗, �∗) is the shortest path on T
connecting the clusters Pk and P� . Then

G
(k)
ij (xinter, xinter) =

m∑

�=1
� �=k

∑

z∈P�

[ajz sin(diff(p(j, k∗))+diff(p(k∗, �∗))+diff(p(�∗, z)))

−aiz sin(diff(p(i, k∗)) + diff(p(k∗, �∗))+ diff(p(�∗, z)))].

Notice that diff(p(i, k∗)) and diff(p(j, k∗)) contain only dif-
ferences in x

(k)
intra, and diff(p(�∗, z)) only differences in x

(�)
intra.

Notice that sin(a + b) = sin(a) + δ, with |δ| ≤ |b|.10 Then

G
(k)
ij (xintra, xinter) =

m∑

�=1
� �=k

∑

z∈P�

[ajz (sin(diff(p(k∗, �∗)) + δjz )

− aiz (sin(diff(p(k∗, �∗)) + δiz )]

=
m∑

�=1
� �=k

(
∑

z∈P�

[(ajz − aiz )sin(diff(p(k∗, �∗)))]

+
∑

z∈P�

[ajz δjz − aiz δiz ]

)
(A3)=

m∑

�=1
� �=k

∑

z∈P�

[ajz δjz −aiz δiz ]

where δjz and δiz are upper bounded by
√

nintra,k‖x(k)
intra‖ +

√
nintra,�‖x(�)

intra‖. Therefore, we have the following bound:

|G(k)
ij | ≤

m∑

�=1
� �=k

(
∑

z∈P�

ajz |δjz | +
∑

z∈P�

aiz |δiz |
)

(A3)
≤ 2

m∑

�=1
� �=k

∑

z∈P�

ajz

(√
nintra,k‖x(k)

intra‖ +
√

nintra,�‖x(�)
intra‖

)

= 2
m∑

�=1

√
nintra,� γ̃

(k�)
ij ‖x(�)

intra‖

where

γ̃
(k�)
ij =

⎧
⎨

⎩

∑m

�=1
� �=k

∑
z∈P�

ajz , if � = k
∑

z∈P�

ajz , otherwise.

To conclude, ‖G(k)‖ ≤ √
nintra,k max(i,j )∈Espan, k

|G(k)
ij |, and due

to (A3), γ̃(k�)
ij = γ̃(k�) is independent of i and j. Thus, ‖G(k)‖ ≤

∑m
�=1 2maxr nintra,r γ̃(k�) ‖x(�)

intra‖, and this concludes the
proof. �

Proof of Theorem 3.2: The system (8) can be viewed as
the perturbation via G(xintra, xinter) of ẋintra = F (xintra), which
describes the dynamics of m disjoint networks of oscillators

ẋ
(k)
intra = F (k)(x(k)

intra). (21)

The origin of each system (21) is an exponentially stable equi-
librium, which can be shown with the Lyapunov candidate

Vk (xintra) = x
(k)T
intra Pkx

(k)
intra

where Pk � 0 is such that JT
k Pk + PkJk = −Qk for Qk � 0.

In fact, the derivative of V along the trajectories (21) is

V̇k (x(k)
intra) = F (k)T(x(k)

intra)Pkx
(k)
intra + x

(k)T
intra PkF (k)(x(k)

intra)

= x
(k)T
intra (JT

k Pk + PkJk )x(k)
intra + O(‖x(k)

intra‖3) (22)

10Letting δ = sin(a + b) − sin(a), we have |δ| = |2 sin( b
2 ) cos(a + b

2 )| ≤
|2 sin( b

2 )|, from which the inequality |δ| ≤ |b| follows.
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and the latter is strictly negative when ‖x(k)
intra‖ ≤ r and r ∈ R>0

is sufficiently small. Further, it holds that: 1) ‖∂Vk/∂x
(k)
intra‖ ≤

2λmax(Pk )‖x(k)
intra‖; 2) V̇k (x(k)

intra) ≤ −λmin(Qk )‖x(k)
intra‖2 ; and 3)

the perturbation terms G(k)(xintra, xinter) are linearly bounded in
‖x(k)

intra‖ following statement 2) in Lemma 3.1.
Consider now the following Lyapunov candidate for (8):

V (xintra) =
m∑

k=1

dkVk (x(k)
intra), dk > 0.

From [54, ch. 9.5], we have

V̇ (xintra) ≤ −1
2
(DS + STD)‖xintra‖2 (23)

where D = diag(d1 , . . . , dm ), and S satisfies

S = [sk� ] =

{
λmin(Qk )
λmax(Pk ) − γ(kk) , if k = �

−γ(k�) , if k �= �.
(24)

The origin of (8) is locally exponentially stable if S is an M -
matrix [54, Lemma 9.7 and Th. 9.2]. Finally, choosing Qk = I
in (24) yields condition (14) in Theorem 3.2. �

B. Proofs of the Results in Section III-B

Let C be the set of connected clusters pairs, that is,

C = {(�, z) : ∃ (i, j) ∈ E with i ∈ P� , j ∈ Pz , and � < z}.
With a slight abuse of notation, for any (�, z) ∈ C, we define
x(�z ) = xij , for any node i ∈ P� and j ∈ Pz .

Lemma A.1. (Linearized intracluster dynamics): The lin-
earization of the intracluster dynamics (8) around the trajectory
xintra = 0 and xinter = xnom reads as follows:

ẋintra = (Jintra + Jinter) xintra (25)

where Jintra is defined in Lemma 3.1, and

Jinter =
∂G

∂xintra

∣∣∣∣
x intra= 0

x inter= x nom

�
∑

(�,z )∈C
cos(x (�z ))J

(�z )
inter .

Proof: Linearization of (8) around the trajec-
tory (xintra, xinter) = (0, xnom) yields ∂F/∂xintra = Jintra and
∂G/∂xintra = Jinter. The remaining derivatives vanish. That
is, ∂F/∂xinter = 0 because F does not depend on xinter, and
∂G/∂xinter = 0 because of Assumption (A3). In fact, for any
intracluster difference xij with i, j ∈ P� , � ∈ {1, . . . , m}

∂Gij

∂xinter

∣∣∣∣
x intra= 0

x inter= x nom

=
∑

(�,z )∈C
cos(x (�z ))

∑

k∈Pz

[ajk − aik]

︸ ︷︷ ︸
=0

= 0.

This concludes the proof. �
We next characterize an asymptotic property of the interclus-

ter differences through the following instrumental result.
Lemma A.2. (Asymptotic behavior of the intercluster dy-

namics for large frequency differences): Let i ∈ P� , j ∈ Pz , and
� �= z. Then, the intercluster difference xij satisfies

lim
|ωj −ωi |→∞

xij (t)
ωj − ωi

= t. (26)

Proof: Let ω̄ij = ωj − ωi . We rewrite (4) as

ẋij = ω̄ij − (aij + aji) sin(xij )

+
∑

k �=i,j

[ajk sin(xjk ) − aik sin(xik )] . (27)

From (27), let β =
∑

k �=i,j [ajk + aik ], and

ẋ ij = ω̄ij − (aij + aji) sin(xij ) − β (28)

ẋij = ω̄ij − (aij + aji) sin(xij ) + β (29)

with xij (0) = xij (0) = xij (0). Integrating (28) yields
∫ x i j (t)

xi j (0)

dy

ω̄ij − (aij + aji) sin(y) − β
=
∫ t

0
dτ. (30)

As |ω̄ij | grows, it holds that |(aij + aji) + β| < |ω̄ij |. There-
fore

1
ω̄ij − (aij + aji) sin(y) − β

=
1

ω̄ij

⎡

⎣ 1

1 − (ai j +aj i ) sin(y )+β
ω̄i j

⎤

⎦

=
1

ω̄ij

∞∑

k=0

[
(aij + aji) sin(y) + β

ω̄ij

]k

.

In view of the latter equality, (30) becomes

t =
xij (t) − xij (0)

ω̄ij

+
1

ω̄ij

∫ x i j (t)

xi j (0)

∞∑

k=1

[
(aij + aji) sin(y) + β

ω̄ij

]k

dy

︸ ︷︷ ︸
O(ω̄−1

i j )

or, equivalently

xij (t) = ω̄ij t + xij (0) + O
(
ω̄−1

ij

)
. (31)

Similarly, the solution of (29) has the form in (31). Finally, using
the comparison principle [54, Lemma 3.4], it holds that xij (t) ≤
xij (t) ≤ xij (t) for all t ≥ 0. Hence, xi j (t)

ω̄ i j
→ t as |ω̄ij | → ∞

and this concludes the proof. �
We are now ready to prove Theorem 3.3.
Proof of Theorem 3.3: Consider the Lyapunov candidate

V (xintra, t) = xT
intraΓ(t)xintra, and notice that, using (25),

V̇ (xintra, t) = ẋT
intraΓxintra + xT

intraΓẋintra + xT
intraΓ̇xintra

= xT
intra

⎡

⎣JT
intraΓ + ΓJintra + Γ̇

+
∑

(�,z )∈C
cos(x (�z ))

(
J

(�z )T
inter Γ + ΓJ

(�z )
inter

)
⎤

⎦xintra+O(‖xintra‖3).

(32)

Let

Γ̇ = −
∑

(�,z )∈C
cos(x (�z ))

(
J

(�z )T
inter Γ + ΓJ

(�z )
inter

)
. (33)
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When the intercluster natural frequencies satisfy |ωi − ωj | →
∞ for all i, j, then Γ(t) → Γ(0) for all times t. In fact, integrat-
ing both sides of (33) and substituting Γ(t) = Γ(0) yields
∫ t

0
Γ̇ dτ = Γ(t) − Γ(0) = Γ(0) − Γ(0) = 0

=−
∑

(�,z )∈C

∫ t

0
cos(x(�z ))

(
J

(�z )T
inter Γ + ΓJ

(�z )
inter

)
dτ

=−
∑

(�,z )∈C

(
J

(�z )T
inter Γ(0) + Γ(0)J (�z )

inter

)∫ t

0
cos(x(�z )) dτ

which holds true because
∫

cos(x(�z )) dτ = 0 due to Lemma
A.2. Because Jintra is stable, we conclude that, when the inter-
cluster natural frequencies satisfy |ωi − ωj | → ∞ for all i, j,
Γ̇ = 0, and there exists Γ(0) such that (32) is strictly negative.
This concludes the proof of the claimed statement. �

Proof of Lemma 3.4: When xintra = 0, the differential equation
(27) reduces to ẋinter = ω̄ − ā sin(xinter), which is a separable
differential equation with solution as in (15). To show that the pe-
riod of (15) is equal to T = 2π/

√
ω̄2 − ā2 , we assume, without

loss of generality, that τ = 0. It is easy to see that, because tan(t)
is π-periodic, xnom(t) = xnom(t + 2π/

√
ω̄2 − ā2). Further, no-

tice that the variable substitution z = xnom in
∫ t

0 cos(xnom) dτ
yields
∫ t

0
cos(xnom(τ)) dτ =

∫ xnom(t)

xnom(0)

cos(z)
ω̄ − ā sin(z)

dz

=
1
ā

log
(

ω̄ − ā sin(x(0))
ω̄ − ā sin(xnom(t))

)
(34)

which implies the bound (16). To prove that cos(xnom) has zero
time average, it suffices to substitute t = T into (34). �

Proof of Theorem 3.5: Consider the Lyapunov candidate
V (xintra, t) = xT

intraΓ(t)xintra, and notice that, using (25)

V̇ (xintra, t) = xT
intra[J

T
intraΓ + ΓJintra + Γ̇ + cos(xnom)

(
JT

interΓ + ΓJinter
)
]xintra + O(‖xintra‖3). (35)

Let Γ̇ = − cos(xnom)(JT
interΓ + ΓJinter) and notice that, follow-

ing [57, Exercise 3.9 and Property 4.2], its solution satisfies

Γ(t) = exp
[
−
∫ t

0
cos(xnom(τ))JT

inter dτ

]
Γ(0)

· exp
[
−
∫ t

0
cos(xnom(τ))Jinter dτ

]
.

This implies that V (xintra, t) is a Lyapunov function for (25)
because, by Lemma 3.4,

∫ t

0 cos(xnom(τ)) dτ is bounded. Fur-
thermore, notice that

exp
[
−
∫ t

0
cos(xnom(τ))JT

inter dτ

]

= I +
∞∑

k=1

(JT
inter)

k

k!

(
−
∫ t

0
cos(xnom(τ)) dτ

)k

︸ ︷︷ ︸
Δ

.

Thus, (35) can equivalently be written as V̇ = xT
intra[J

T
intraΓ(0)+

Γ(0)Jintra+M ]xintra+ O(‖xintra‖3), where M = JT
intraΔΓ(0)

ΔT + ΔΓ(0)ΔT Jintra + JT
intra(ΔΓ(0) + Γ(0)Δ) + (ΔΓ(0) +

Γ(0)Δ)Jintra. Using the triangle inequality and Lemma 3.4, we
obtain

‖Δ‖ =

∥∥∥∥∥

∞∑

k=1

(JT
inter)

k

k!

(
−
∫ t

0
cos(xnom(τ)) dτ

)k
∥∥∥∥∥

≤
∞∑

k=1

‖Jinter‖k

k!

∣∣∣∣
∫ t

0
cos(xnom(τ)) dτ

∣∣∣∣
k

= e|
∫ t

0 cos(xnom(τ )) dτ |‖J inter‖ − 1 ≤ e
1
ā log( ω̄ + ā

ω̄ −ā )‖J inter‖ − 1.

Because Jintra is stable, there always exists Γ(0) � 0 such that
JT

intraΓ(0) + Γ(0)Jintra = −Q for any Q � 0. Thus

V̇ ≤ (−λmin(Q) + ‖M‖)‖xintra‖2 + O(‖xintra‖3). (36)

By a simple Lyapunov argument, the cluster synchro-
nization manifold SP is locally exponentially stable
if ‖M‖ < λmin(Q). In addition, ‖M‖ can be upper
bounded as ‖M‖ ≤ 2‖Jintra‖‖Γ(0)‖‖Δ‖(‖Δ‖ + 2) ≤
2λmax(Γ(0))‖Jintra‖(e

2
ā log( ω̄ + ā

ω̄ −ā )‖J inter‖ − 1). Thus, a suf-
ficient condition for local exponential stability is

2λmax(Γ(0))‖Jintra‖(e
2
ā log( ω̄ + ā

ω̄ −ā )‖J inter‖ − 1) < λmin(Q), and
because the ratio λmin(Q)/λmax(Γ(0)) is maximized for Q = I
[54, Exercise 9.1], we have

2λmax(Γ(0))‖Jintra‖
(
e

2
ā log( ω̄ + ā

ω̄ −ā )‖J inter‖ − 1
)

< 1

from which condition (18) follows. �
Proof of Theorem 3.6: From (35) and for β ∈

R>0 , we have V̇ (xintra, t) = xT
intra[J

T
intraΓ + ΓJintra ]xintra +

O(‖xintra‖3) = −βxT
intraΓxintra + O(‖xintra‖3), which is nega-

tive in a small neighborhood of the origin. �
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[24] F. Váša, M. Shanahan, P. J. Hellyer, G. Scott, J. Cabral, and R. Leech,
“Effects of lesions on synchrony and metastability in cortical networks,”
Neuroimage, vol. 118, pp. 456–467, 2015.

[25] V. N. Belykh, I. Belykh, and M. Hasler, “Hierarchy and stability of partially
synchronous oscillations of diffusively coupled dynamical systems,” Phys.
Rev. E, vol. 62, no. 5, 2000, Art. no. 6332.

[26] A. Y. Pogromsky, G. Santoboni, and H. Nijmeijer, “Partial synchroniza-
tion: from symmetry towards stability,” Phys. D, Nonlinear Phenom.,
vol. 172, no. 1-4, pp. 65–87, 2002.

[27] I. Belykh, V. N. Belykh, K. Nevidin, and M. Hasler, “Persistent clusters
in lattices of coupled nonidentical chaotic systems,” Chaos, vol. 13, no. 1,
pp. 165–178, 2003.

[28] I. Stewart, M. Golubitsky, and M. Pivato, “Symmetry groupoids and pat-
terns of synchrony in coupled cell networks,” SIAM J. Appl. Dynamical
Syst., vol. 2, no. 4, pp. 609–646, 2003.

[29] A. Y. Pogromsky, “A partial synchronization theorem,” Chaos, vol. 18,
no. 3, 2008, Art. no. 037107.

[30] D. Fiore, G. Russo, and M. di Bernardo, “Exploiting nodes symmetries
to control synchronization and consensus patterns in multiagent systems,”
Control Syst. Lett., vol. 1, no. 2, pp. 364–369, 2017.

[31] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R.
Roy, “Cluster synchronization and isolated desynchronization in complex
networks with symmetries,” Nature Commun., vol. 5, 2014, Art. no. 4079.

[32] F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R.
Roy, “Complete characterization of the stability of cluster synchroniza-
tion in complex dynamical networks,” Sci. Adv., vol. 2, no. 4, 2016,
Art. no. e1501737.

[33] L. M. Pecora and T. L. Carroll, “Master stability functions for syn-
chronized coupled systems,” Phys. Rev. Lett., vol. 80, no. 10, 1998,
Art. no. 2109.

[34] G. Russo and J.-J E. Slotine, “Symmetries, stability, and control in
nonlinear systems and networks,” Phys. Rev. E, vol. 84, no. 4, 2011,
Art. no. 041929.

[35] Q. C. Pham and J.-J. Slotine, “Stable concurrent synchronization in dy-
namic system networks,” Neural Netw., vol. 20, no. 1, pp. 62–77, 2007.

[36] Z. Aminzare, B. Dey, E. N. Davison, and N. E. Leonard, “Cluster synchro-
nization of diffusively-coupled nonlinear systems: A contraction based
approach,” J. Nonlinear Sci., pp. 1–23, 2018.

[37] W. Wu, W. Zhou, and T. Chen, “Cluster synchronization of linearly cou-
pled complex networks under pinning control,” IEEE Trans. Circuits Syst.,
vol. 56, no. 4, pp. 829–839, Apr. 2009.

[38] W. Lu, B. Liu, and T. Chen, “Cluster synchronization in networks of
coupled nonidentical dynamical systems,” Chaos, vol. 20, no. 1, 2010,
Art. no. 013120.

[39] C. Favaretto, A. Cenedese, and F. Pasqualetti, “Cluster synchronization in
networks of Kuramoto oscillators,” in Proc. IFAC World Congr., Toulouse,
France, Jul. 2017, pp. 2433–2438, .

[40] Y. Qin, Y. Kawano, and M. Cao, “Partial phase cohesiveness in networks
of communitinized Kuramoto oscillators,” in Proc. Eur. Control Conf.,
Limassol, Cyprus, 2018, pp. 2028–2033.

[41] M. T. Schaub, N. O’Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte, and
M. Barahona, “Graph partitions and cluster synchronization in networks
of oscillators,” Chaos, vol. 26, no. 9, 2016, Art. no. 094821.

[42] L. Tiberi, C. Favaretto, M. Innocenti, D. S. Bassett, and F. Pasqualetti,
“Synchronization patterns in networks of Kuramoto oscillators: A geo-
metric approach for analysis and control,” in Proc. IEEE Conf. Decis.
Control, Melbourne, Australia, Dec. 2017, pp. 481–486.

[43] I. V. Belykh, B. N. Brister, and V. N. Belykh, “Bistability of patterns of
synchrony in Kuramoto oscillators with inertia,” Chaos, vol. 26, no. 9,
2016, Art. no. 094822.

[44] Y. S. Cho, T. Nishikawa, and A. E. Motter, “Stable chimeras and inde-
pendently synchronizable clusters,” Phys. Rev. Lett., vol. 119, no. 8, 2017,
Art. no. 084101.

[45] A. Jadbabaie, N. Motee, and M. Barahona, “On the stability of the Ku-
ramoto model of coupled nonlinear oscillators,” in Proc. Amer. Control
Conf., Boston, MA, USA, Jun. 2004, pp. 4296–4301.

[46] F. Dörfler and F. Bullo, “Exploring synchronization in complex oscillator
networks,” in Proc. IEEE Conf. Decis. Control, Maui, HI, USA, 2012,
pp. 7157–7170.

[47] F. Dörfler and F. Bullo, “Synchronization in complex networks of phase
oscillators: A survey,” Automatica, vol. 50, no. 6, pp. 1539–1564, 2014.

[48] A. N. Michel, L. Hou, and D. Liu, Stability of Dynamical Systems. Berlin,
Germany: Springer, 2008.

[49] D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta,
“Electrophysiological signatures of resting state networks in the human
brain,” Proc. Nat. Acad. Sci., vol. 104, no. 32, pp. 13170–13175, 2007.

[50] Z. Ma, Z. Liu, and G. Zhang, “A new method to realize cluster syn-
chronization in connected chaotic networks,” Chaos, vol. 16, no. 2, 2006,
Art. no. 023103.

[51] V. N. Belykh, G. V. Osipov, V. S. Petrov, J. A. K. Suykens, and J.
Vandewalle, “Cluster synchronization in oscillatory networks,” Chaos,
vol. 18, no. 3, 2008, Art. no. 037106.

[52] A. B. Siddique, L. Pecora, J. D. Hart, and F. Sorrentino, “Symmetry-and
input-cluster synchronization in networks,” Phys. Rev. E, vol. 97, no. 4,
2018, Art. no. 042217.

[53] C. Godsil and G. F. Royle, Algebraic Graph Theory (Graduate Texts in
Mathematics). New York, NY, USA: Springer, 2001.

[54] H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2002.

[55] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. New York, NY,
USA: Cambridge Univ. Press, 1994.

[56] J. Qin, Q. Ma, H. Gao, Y. Shi, and Y. Kang, “On group synchronization
for interacting clusters of heterogeneous systems,” IEEE Trans. Cybern.,
vol. 47, no. 12, pp. 4122–4133, Dec. 2017.

[57] W. J. Rugh, Linear System Theory (Information and System Sciences
Series). Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[58] C. Favaretto, D. S. Bassett, A. Cenedese, and F. Pasqualetti, “Bode meets
Kuramoto: Synchronized clusters in oscillatory networks,” in Proc. Amer.
Control Conf., Seattle, WA, USA, May 2017, pp. 2378–5861.

Tommaso Menara (S’17) received the Laurea
degree (B.Sc. equivalent) in mechatronics engi-
neering from the University of Padova, Padova,
Italy, in 2013, and the Laurea Magistrale degree
(M.Sc. equivalent) in robotics and automation
engineering from the University of Pisa, Pisa,
Italy, in 2016. He is currently working toward the
Ph.D. degree with the Department of Mechani-
cal Engineering, University of California at River-
side, Riverside, CA, USA.

His research interests include control of com-
plex networks and network neuroscience.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 20,2020 at 00:10:45 UTC from IEEE Xplore.  Restrictions apply. 



314 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020

Giacomo Baggio received the Ph.D. degree in
control systems engineering from the University
of Padova, Padova, Italy, in 2018.

He is currently a Postdoctoral Scholar with
the Department of Mechanical Engineering, Uni-
versity of California at Riverside, Riverside, CA,
USA. From 2015 to 2016, he was a Visiting
Scholar with the Department of Engineering,
University of Cambridge, Cambridge, U.K. His
current research interests are in the analysis and
control of dynamical networks.

Dr. Baggio was the recipient of the Best Student Paper Award at the
2018 European Control Conference.

Danielle S. Bassett received the B.S. degree
from Penn State University, University Park, PA,
USA, in 2004, and the CPGS and Ph.D. de-
grees from the University of Cambridge, Cam-
bridge, U.K., as a Churchill Scholar and as an
NIH Health Sciences Scholar, in 2005 and 2009,
respectively, all in physics.

She is the Eduardo D. Glandt Faculty Fellow
and an Associate Professor with the Department
of Bioengineering, University of Pennsylvania,
Philadelphia, PA, USA. She is most well known

for her work blending neural and systems engineering to identify funda-
mental mechanisms of cognition and disease in human brain networks.
She was a Postdoctoral Researcher with the UC Santa Barbara and a
Junior Research Fellow with the Sage Center for the Study of the Mind.
She is the author of more than 200 peer-reviewed publications, which
have garnered more than 15900 citations, as well as numerous book
chapters and teaching materials.

Dr. Bassett was the recipient of multiple prestigious awards, in-
cluding American Psychological Association’s “Rising Star” (2012), Al-
fred P Sloan Research Fellow (2014), MacArthur Fellow Genius Grant
(2014), Early Academic Achievement Award from the IEEE Engineer-
ing in Medicine and Biology Society (2015), Harvard Higher Education
Leader (2015), Office of Naval Research Young Investigator (2015), Na-
tional Science Foundation CAREER (2016), Popular Science Brilliant 10
(2016), Lagrange Prize in Complex Systems Science (2017), and Erdös-
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