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 37 

Dynamical brain state transitions are critical for flexible working memory but the network 38 

mechanisms are incompletely understood. Here, we show that working memory entails brain-39 

wide switching between activity states. The stability of states relates to dopamine D1 40 

receptor gene expression while state transitions are influenced by D2 receptor expression 41 

and pharmacological modulation. Schizophrenia patients show altered network control 42 

properties, including a more diverse energy landscape and decreased stability of working 43 

memory representations. 44 

 45 

Working memory is an essential part of executive cognition depending on prefrontal neurons 46 

functionally modulated through dopamine D1 and D2 receptor activation (1-3). The dual-state 47 

theory of prefrontal dopamine function links the differential activation of dopamine receptors 48 

to two discrete dynamical regimes: a D1-dominated state with a high energy barrier favoring 49 

robust maintenance of cognitive representations and a D2-dominated state with a flattened 50 

energy landscape enabling flexible switching between states (4). Recent accounts extend the 51 

idea of dopamine’s impact on working memory from a local prefrontal to a brain-wide network 52 

perspective (5, 6), but the underlying neural dynamics and brain-wide interactions have 53 

remained unclear. 54 

Network control theory (NCT) can be used to model brain network dynamics as a function of 55 

interconnecting white matter tracts and regional control energy (7). Based on the 56 

connectome, NCT can be used to examine the landscape of brain activity states: that is, 57 

which states within a dynamic scheme would the system have difficulty accessing, and more 58 

importantly, which regions need to be influenced (and to what extent) to make those states 59 

accessible (8). Specifically, to quantify accessibility, we approximate brain dynamics locally 60 

by a simple linear dynamical system, ݔሶ(ݐ) = (ݐ)ݔ࡭ +  where x (t) is the brain state 61 ,(ݐ)ݑ࡮

inferred from functional magnetic resonance imaging (fMRI), A is a structural connectome 62 

inferred from DTI data, u is the control input, and B is a matrix describing which regions enact 63 
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control. To investigate, based on this conception, how the brain transitions between different 64 

cognitive states, we defined states as individual brain activity patterns related to a working 65 

memory condition (2-back) and to an attention control condition requiring motor response (0-66 

back) in a sample of 178 healthy individuals undergoing fMRI (Fig. S1; Online Methods). 67 

Further, we obtained individual structural connectomes from white matter by DTI fiber 68 

tracking, and computed the optimal control energy necessary to drive the dynamical system 69 

from the 0-back activity pattern to the 2-back pattern, or vice versa (Fig. S2). 70 

We defined the stability of both brain states as the inverse energy necessary to revisit that 71 

state, where the energy, loosely, is defined as the average size of the control signals u(t) 72 

needed to instantiate a specific trajectory in the dynamical system as defined above (see Eq. 73 

3 & 5 in Online Methods). As expected, the cognitively more demanding 2-back state was 74 

less stable (i.e., required higher energy for maintenance) than the control state (Fig. 1a; 75 

repeated measures ANOVA: main effect of 0- vs. 2-back stability: F(1,173) = 66.80, p < 76 

0.001, see Online Methods for details on all analyses). Further, the stability of the 2-back 77 

state was significantly associated with working memory accuracy (Fig. 1b; b = 0.274, p = 78 

0.006), suggesting that more stable 2-back network representations support higher working 79 

memory performance. We next investigated how the brain flexibly changes its activity pattern 80 

between states. Transitioning into the cognitively more demanding 2-back state required 81 

more control energy than the opposite transition (Fig. 1c; repeated measures ANOVA: 82 

F(1,174) = 27.98, p = 0.001). Other analyses suggested that prefrontal and parietal cortices 83 

steer both types of transitions, while default mode areas are preferentially important for the 84 

switch to the more cognitively demanding state (Fig. 1d; Online Methods). These results are 85 

in line with the assumed role of frontal-parietal circuits in steering brain dynamics (9) and 86 

shifting brain connectivity patterns (10); they also emphasize the importance of the 87 

coordinated behavior of brain systems commonly displaying deactivations during demanding 88 

cognitive tasks (11). 89 
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Following from the dual-state theory of network function, the stability of task-related brain 90 

states should be related to prefrontal D1 receptor status. To estimate individual prefrontal D1 91 

receptor expression, we utilized methods relating prefrontal cortex D1 and D2 receptor 92 

expression to genetic variation in their co-expression partner (Online Methods), thereby 93 

enabling us to predict individual dopamine receptor expression levels from genotype data 94 

across the whole genome (12, 13). We found that D1 (but not the D2) expression-related 95 

gene score predicted stability of both states (Fig. 2a; 0-back: b = 0.184, p = 0.034; 2-back: b 96 

= 0.242, p = 0.007, Online Methods), in line with the assumed role of D1-related signaling in 97 

maintaining stable activity patterns during task performance (4, 14). 98 

Independent of stability, switching between different activity representations should relate to 99 

dopamine D2 receptor function. Indeed, when controlling for stability as a nuisance covariate 100 

in the regression model, the control energy of both state transitions could be predicted by the 101 

D2 (but not the D1) receptor expression gene score (Fig. 2b; 0- to 2-back: b = -0.076, p = 102 

0.037; and trending for 2- to 0-back: b = -0.134, p = 0.068, Online Methods). This finding is 103 

particularly interesting, as it suggests that the function of D1 and D2 receptors are 104 

differentially, but cooperatively, involved in steering brain dynamics between different activity 105 

patterns, in line with previous research on D1 and D2 functioning in prefrontal circuits (4, 15). 106 

Our results thus far support the notion that the brain is a dynamical system in which the 107 

stability of a state is substantially defined by cognitive effort and modulated by D1 receptor 108 

expression, while transitions between states depend primarily on D2 receptor expression. If 109 

true, such a system should be sensitive to dopaminergic manipulation, and interference with 110 

D2-related signaling should reduce the brain’s ability to control its optimal trajectories, i.e. 111 

increase the control energy needed when switching between states. To test these 112 

hypotheses, we investigated an independent sample of healthy controls (n=16, Table S2) 113 

receiving 400 mg Amisulpride, a selective D2 receptor antagonist, in a randomized, placebo-114 

controlled, double-blind pharmacological fMRI study. As expected, we observed that greater 115 

control energy was needed for transitions under D2 receptor blockade (Fig. 2c; repeated 116 



 

 6

measures ANOVA with drug and transition as within-subject factors; main effect of drug: 117 

F(1,10) = 7.27, p = 0.022; drug-by-condition interaction: F(1,10) = 0.42, p = 0.665). We 118 

observed no effect on the stability of states; that is, the inverse control energy required to 119 

stabilize a current state (main effect of drug: F(1,8) = 0.715, p = 0.422, Table S3). 120 

Dopamine dysfunction, working memory deficits, and alterations in brain network 121 

organization are hallmarks of schizophrenia (16-19). We therefore tested for differences in 122 

the state stability and in the ability to control state transitions between schizophrenia patients 123 

and a healthy control sample balanced for age, sex, performance, head motion, and 124 

premorbid IQ (see Table S1). Stability in schizophrenia patients was reduced for the 125 

cognitively demanding working memory state (F(1,98) = 6.43, p = 0.013), but not for the 126 

control condition (F(1,98) = 0.052, p = 0.840, Table S3). Control energy needed for the 0- to 127 

2-back transition was significantly higher in schizophrenia (Fig. 2d; F(1,98) = 5.238, p = 128 

0.024), while the opposite transition showed no significant group difference (ANOVA: F(1,98) 129 

= 0.620, p = 0.433, Table S3), in line with clinical observations that D2 blockade does not 130 

ameliorate cognitive symptoms in schizophrenia (20). These results suggest that the brain 131 

energy landscape is more diverse in schizophrenia, making the system more difficult to steer 132 

appropriately. To further strengthen this notion, we estimated the variability in suboptimal 133 

(higher energy) trajectories connecting different of cognitive states (Online Methods). We 134 

expected that in a diversified energy landscape, the variation of trajectories around the 135 

minimum-energy trajectory should be larger, implying that small perturbations may have a 136 

more substantial impact. In line with our hypothesis, we found that the variability in such 137 

perturbed trajectories was indeed increased in schizophrenia (rm-ANOVA: main effect of 138 

group: F(1,98) = 4.789, p = 0.031, Online Methods).  139 

Several aspects of our work require special consideration. Firstly, to relate brain dynamics to 140 

cognitive function, we focus on discrete brain states where each state is summarized by a 141 

single brain activation patterns rather than linear combination of multiple brain activity 142 

patterns. Secondly, although we could demonstrate a link between brain dynamics, 143 
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measured by means of control energy, and predicted prefrontal dopamine receptor 144 

expression, the link is indirect and requires confirmation by direct measurements. Thirdly, we 145 

cannot exclude the possibility that disorder severity, duration, symptoms or medication may 146 

have influenced network dynamics in schizophrenia patients, although our supplemental 147 

analyses do not support this conclusion (Online Methods). Finally, while the sample sizes of 148 

our pharmacological and patient study are rather small, we were able to show comparable 149 

effects of dopaminergic manipulation on control properties using a second (Online Methods), 150 

further supporting the validity of the underlying rationale. 151 

In summary, our data demonstrate the utility of network control theory for the non-invasive 152 

investigation of the mechanistic underpinnings of (altered) brain states and their transitions 153 

during cognition. Our data suggest that engagement of working memory involves brain-wide 154 

switching between activity states and that the steering of these network dynamics is 155 

differentially, but cooperatively, influenced by dopamine D1 and D2 receptor function. 156 

Moreover, we show that schizophrenia patients show reduced controllability and stability of 157 

working memory network dynamics, consistent with the idea of an altered functional 158 

architecture and energy landscape of cognitive brain networks. 159 

 160 

  161 



 

 8

Acknowledgements 162 

The authors thank all individuals who have supported our work by participating in our studies. 163 

There was no involvement by the funding bodies at any stage of the study. We thank Oliver 164 

Grimm, Leila Haddad, Michael Schneider, Natalie Hess, Sarah Plier and Petya Vicheva for 165 

valuable research assistance. The authors thank Jason Kim and Lorenzo Caciagli for 166 

valuable feedback on the manuscript. 167 

U.B. acknowledges grant support by the German Research Foundation (DFG, grant BR 168 

5951/1-1). H.T. acknowledges grant support by the German Research Foundation (DFG, 169 

Collaborative Research Center SFB 1158 subproject B04, Collaborative Research Center 170 

TRR 265 subproject A04, GRK 2350 project B2, grant TO 539/3-1) and German Federal 171 

Ministry of Education and Research (BMBF, grants 01EF1803A project WP3, 01GQ1102). 172 

AML acknowledges grant support by the German Research Foundation (DFG, Collaborative 173 

Research Center SFB 1158 subproject B09, Collaborative Research Center TRR 265 174 

subproject S02, grant ME 1591/4-1) and German Federal Ministry of Education and 175 

Research (BMBF, grants 01EF1803A, 01ZX1314G, 01GQ1003B), European Union’s 176 

Seventh Framework Programme (FP7, grants 602450, 602805, 115300 and HEALTH-F2-177 

2010-241909, Innovative Medicines Initiative Joint Undertaking (IMI, grant 115008) and 178 

Ministry of Science, Research and the Arts of the State of Baden-Wuerttemberg, Germany 179 

(MWK, grant 42-04HV.MED(16)/16/1). DSB and RBF would like to acknowledge support 180 

from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, 181 

the Army Research Laboratory and the Army Research Office through contract numbers 182 

W911NF-10-2-0022 and W911NF-14-1-0679, the National Institute of Health (2-R01-DC-183 

009209-11, 1R01HD086888-01, R01-MH107235, R01-MH107703, and R21-M MH-106799), 184 

the Office of Naval Research, and the National Science Foundation (BCS-1441502, 185 

CAREER PHY-1554488, and BCS-1631550). E.S. gratefully acknowledges grant support by 186 

the Deutsche Forschungsgemeinschaft, DFG (SCHW 1768/1-1). X.L.Z. is a Ph.D. 187 

scholarship awardee of the Chinese Scholarship Council. DD acknowledges grant support by 188 



 

 9

the German Research Foundation (DFG, Du 354/10-1). G.P. has received funding from the 189 

European Union's Horizon 2020 research and innovation program under the Marie 190 

Skłodowska-Curie No. 798181: “IdentiFication of brain deveLopmental gene co-expression 191 

netwOrks to Understand RIsk for SchizopHrenia” (FLOURISH). 192 

The content of this paper is solely the responsibility of the authors and does not necessarily 193 

represent the official views of any of the funding agencies 194 

  195 



 

 10

Financial disclosures 196 

A.M.-L. has received consultant fees from Blueprint Partnership, Boehringer Ingelheim, 197 

Daimler und Benz Stiftung, Elsevier, F. Hoffmann-La Roche, ICARE Schizophrenia, K. G. 198 

Jebsen Foundation, L.E.K Consulting, Lundbeck International Foundation (LINF), R. 199 

Adamczak, Roche Pharma, Science Foundation, Synapsis Foundation – Alzheimer 200 

Research Switzerland, System Analytics, and has received lectures including travel fees 201 

from Boehringer Ingelheim, Fama Public Relations, Institut d'investigacions Biomèdiques 202 

August Pi i Sunyer (IDIBAPS),  Janssen-Cilag, Klinikum Christophsbad, Göppingen, Lilly 203 

Deutschland, Luzerner Psychiatrie, LVR Klinikum Düsseldorf, LWL PsychiatrieVerbund 204 

Westfalen-Lippe, Otsuka Pharmaceuticals, Reunions i Ciencia S. L., Spanish Society of 205 

Psychiatry, Südwestrundfunk Fernsehen, Stern TV, and Vitos Klinikum Kurhessen. A.B. has 206 

received consultant fees from Biogen and speaker fees from Lundbeck, Otsuka, Recordati, 207 

and Angelini. 208 

The remaining authors reported no biomedical financial interests of potential conflicts of 209 

interest. 210 

 211 

  212 



 

 11

References 213 

1. Goldman-Rakic PS (1995): Cellular basis of working memory. Neuron. 14:477-485. 214 
2. Ott T, Jacob SN, Nieder A (2014): Dopamine receptors differentially enhance rule coding in 215 
primate prefrontal cortex neurons. Neuron. 84:1317-1328. 216 
3. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, et 217 
al. (2005): Midbrain dopamine and prefrontal function in humans: interaction and modulation by 218 
COMT genotype. Nat Neurosci. 8:594-596. 219 
4. Durstewitz D, Seamans JK (2008): The dual-state theory of prefrontal cortex dopamine 220 
function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol 221 
Psychiatry. 64:739-749. 222 
5. Arnsten AF (2011): Catecholamine influences on dorsolateral prefrontal cortical networks. 223 
Biol Psychiatry. 69:e89-99. 224 
6. Roffman JL, Tanner AS, Eryilmaz H, Rodriguez-Thompson A, Silverstein NJ, Ho NF, et al. 225 
(2016): Dopamine D1 signaling organizes network dynamics underlying working memory. Sci Adv. 226 
2:e1501672. 227 
7. Kim JZ, Soffer JM, Kahn AE, Vettel JM, Pasqualetti F, Bassett DS (2018): Role of Graph 228 
Architecture in Controlling Dynamical Networks with Applications to Neural Systems. Nat Phys. 229 
14:91-98. 230 
8. Betzel RF, Gu S, Medaglia JD, Pasqualetti F, Bassett DS (2016): Optimally controlling the 231 
human connectome: the role of network topology. Sci Rep. 6:30770. 232 
9. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, et al. (2016): 233 
Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. 234 
351:aac9698. 235 
10. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013): Multi-task 236 
connectivity reveals flexible hubs for adaptive task control. Nat Neurosci. 16:1348-1355. 237 
11. Greicius MD, Krasnow B, Reiss AL, Menon V (2003): Functional connectivity in the resting 238 
brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of 239 
Sciences of the United States of America. 100:253-258. 240 
12. Fazio L, Pergola G, Papalino M, Di Carlo P, Monda A, Gelao B, et al. (2018): Transcriptomic 241 
context of DRD1 is associated with prefrontal activity and behavior during working memory. Proc 242 
Natl Acad Sci U S A. 115:5582-5587. 243 
13. Pergola G, Di Carlo P, D'Ambrosio E, Gelao B, Fazio L, Papalino M, et al. (2017): DRD2 co-244 
expression network and a related polygenic index predict imaging, behavioral and clinical 245 
phenotypes linked to schizophrenia. Transl Psychiatry. 7:e1006. 246 
14. Bloemendaal M, van Schouwenburg MR, Miyakawa A, Aarts E, D'Esposito M, Cools R (2015): 247 
Dopaminergic modulation of distracter-resistance and prefrontal delay period signal. 248 
Psychopharmacology. 232:1061-1070. 249 
15. Trantham-Davidson H, Neely LC, Lavin A, Seamans JK (2004): Mechanisms underlying 250 
differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci. 251 
24:10652-10659. 252 
16. Howes OD, Kapur S (2009): The dopamine hypothesis of schizophrenia: version III--the final 253 
common pathway. Schizophrenia bulletin. 35:549-562. 254 
17. Barch DM, Smith E (2008): The cognitive neuroscience of working memory: relevance to 255 
CNTRICS and schizophrenia. Biol Psychiatry. 64:11-17. 256 
18. Tost H, Alam T, Meyer-Lindenberg A (2010): Dopamine and psychosis: theory, 257 
pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev. 34:689-700. 258 
19. Braun U, Schafer A, Bassett DS, Rausch F, Schweiger JI, Bilek E, et al. (2016): Dynamic brain 259 
network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA 260 
receptor function. Proc Natl Acad Sci U S A. 113:12568-12573. 261 
20. Millan MJ, Fone K, Steckler T, Horan WP (2014): Negative symptoms of schizophrenia: clinical 262 
characteristics, pathophysiological substrates, experimental models and prospects for improved 263 



 

 12

treatment. European neuropsychopharmacology : the journal of the European College of 264 
Neuropsychopharmacology. 24:645-692. 265 

 266 

 267 

  268 



 

 13

Figures 269 

Figure 1: 270 

 271 

Controllability and stability of brain dynamics during working memory 272 

A) The stability of the 2-back state reflecting working memory activity is lower than that of the 273 

0-back state reflecting motor and basic attention control activity (F(1,173) = 66.80, p < 274 

0.001). Red lines indicate mean values and boxes indicate one standard deviation of the 275 

mean. B) Associations of 2-back stability with working memory performance (accuracy: b = 276 

0.274, p = 0.006; covarying for age, sex, and mean activity). C) Steering brain dynamics from 277 

the control condition to the working memory condition requires more control energy than vice 278 

versa (F(1,174) = 27.98, p < 0.001). D) Unique and common sets of brain regions contribute 279 

most to the transition from 0-back to 2-back and the transition from 2-back to 0-back 280 

transitions, respectively. For illustrative purposes, we projected the computed control impact 281 
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of each brain region (Online Methods) for the respective transitions on a 3D structural 282 

template, displaying the 20% highest for each transition.  283 

Figure 2: 284 

 285 

Dopamine receptor expression and pharmacological modulation impact whole brain 286 

dynamics 287 

A) Genetic scores predicting DRD1 expression in prefrontal regions positively predict stability 288 

of both brain states (0-back: b = 0.184, p = 0.034; 2-back: b = 0.242 p = 0.007; age, sex, 289 

mean brain state activity, first 5 genetic PCA components as covariates of non-interest). B) 290 

Genetic scores predicting DRD2 expression in prefrontal regions negatively predict control 291 

energy for both brain state transitions (0-back to 2-back: b = -0.076, p = 0.037; and trend 292 

wise for 2-back to 0-back: b = -0.134, p = 0.068; age, sex, mean brain activity difference, first 293 
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5 genetic PCA components, stability of 0-back and 2-back as covariates of non-interest). C) 294 

Amisulpride increases control energy for transitions in comparison to placebo (main effect of 295 

drug: F(1,10) = 7.27, p = 0.022; interaction drug by condition: F(1,10) = 0.42, p = 0.665, 296 

activity difference, drug order, and sex as covariates of non-interest). Black lines indicate 297 

mean values and boxes indicate one standard deviation of the mean. D) Schizophrenia 298 

patients need more control energy when transitioning into the working memory condition than 299 

matched healthy controls (F(1,98) = 5.238, p = 0.024, age, sex, tSNR and mean activity as 300 

covariates of non-interest), but not vice versa.  301 


