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Minimum-gain Pole Placement with Sparse Static Feedback
Vaibhav Katewa and Fabio Pasqualetti

Abstract—The minimum-gain eigenvalue assignment/pole
placement problem (MGEAP) is a classical problem in LTI
systems with static state feedback. In this paper, we study
the MGEAP when the state feedback has arbitrary sparsity
constraints. We formulate the sparse MGEAP problem as an
equality-constrained optimization problem and present an an-
alytical characterization of its solution in terms of eigenvector
matrices of the closed loop system. This result is used to
provide a geometric interpretation of the solution of the non-
sparse MGEAP, thereby providing additional insights for this
classical problem. Further, we develop an iterative projected
gradient descent algorithm to solve the sparse MGEAP using
a parametrization based on the Sylvester equation. We present
a heuristic algorithm to compute the projections, which also
provides a novel method to solve the sparse EAP. Also, a relaxed
version of the sparse MGEAP is presented and an algorithm
is developed to obtain approximately sparse solutions to the
MGEAP. Finally, numerical studies are presented to compare
the properties of the algorithms, which suggest that the proposed
projection algorithm converges in almost all instances.

I. INTRODUCTION

The Eigenvalue/Pole Assignment Problem (EAP) using
static state feedback is one of the central problems in the
design of Linear Time Invariant (LTI) control systems. It plays
a key role in system stabilization and shaping its transient
behavior. Given the following LTI system

Dx(k) = Ax(k) +Bu(k), (1a)
u(k) = Fx(k), (1b)

where x ∈ Rn is the state of the LTI system, u ∈ Rm is
the control input, A ∈ Rn×n, B ∈ Rn×m, and D denotes
either the continuous time differential operator or the discrete-
time shift operator, the EAP involves finding a real feedback
matrix F ∈ Rm×n such that the eigenvalues of the closed
loop matrix Ac(F ) , A+BF coincide with a given set S =
{λ1, λ2, · · · , λn} that is closed under complex conjugation.

It is well known that the existence of F depends on the
controllability properties of the pair (A,B). Further, for single
input systems (m = 1), the feedback vector that assigns
the eigenvalues is unique and can be obtained using the
Ackermann’s formula [1]. On the other hand, for multi-input
systems (m > 1), the feedback matrix is not unique and there
exists a flexibility to choose the eigenvectors of the closed loop
system. This flexibility can be utilized to choose a feedback
matrix that satisfies some auxiliary control criteria in addition
to assigning the eigenvalues. For instance, the feedback matrix
can be chosen to minimize the sensitivity of the closed loop
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system to perturbations in the system parameters, thereby
making the system robust. This is known as Robust Eigenvalue
Assignment Problem (REAP). Alternatively, one can choose
the feedback matrix with minimum gain, thereby reducing
the overall control effort. This is known as Minimum Gain
Eigenvalue Assignment Problem (MGEAP). Both of these
problems have been studied extensively [2]- [3].

Recently, considerable attention has been given to the study
and design of sparse feedback control systems, where certain
entries of the matrix F are required to be zero. Feedback
sparsity typically arises in large scale systems in which the
controllers do not have access to all the states of the system.
Sparsity may also be a result of the special structure of the
control system which prohibits feedback from some states to
the controllers.

The feedback design problem with sparsity constraints is
considerably more difficult than the unconstrained case. There
have been numerous studies to determine the optimal feed-
back control law for H2/LQR/LQG problems with sparsity,
particularly when the controllers have access to only local
information (see [4]–[7] and the references therein). While the
optimal H2/LQR/LQG design problems with sparsity have a
rich history, studies on the REAP/MGEAP in the presence of
arbitrary sparsity constrains are lacking. Even the problem of
finding a particular (not necesary optimal) sparse feedback
matrix that solves the EAP is not well studied. In this
paper, we study the EAP and MGEAP with arbitrary sparsity
constraints on the feedback matrix F . We provide analytical
characterization for the solution of sparse MGEAP and provide
iterative algorithms to solve the sparse EAP and MGEAP.
Related work There have been numerous studies on the
optimal pole placement problem without sparsity constraints.
For the REAP, authors have considered optimizing different
metrics which capture the sensitivity of the eigenvalues, such
as the condition number of the eigenvector matrix [2], [8]–
[11], departure from normality [12] and others [13], [14]. Most
of these methods use gradient-based iterative procedures to
obtain the solutions. For surveys and performance comparisons
of these REAP methods, see [8], [15], [16] and the references
therein.

Early works for MGEAP, including [17], [18], presented
approximate solutions using low rank feedback and successive
pole placement techniques. Simultaneous robust and minimum
gain pole placement were studied in [11], [19]–[21]. For a
survey and performance comparison of these MGEAP studies,
see [3] and the references therein. The regional pole placement
problem was studied in [22], [23], where the eigenvalues were
assigned inside a specified region. While all these studies
have provided useful insights on REAP/MGEAP, they do not
consider sparsity constraints on the feedback matrix. Further,
the techniques in these studies cannot be used or simply
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extended to obtain a sparse solution. In contrast, we study
the sparse EAP/MGEAP by explicitly including the sparsity
constraints into the problem.

There have also been numerous studies on EAP with sparse
dynamic LTI feedback. The concept of decentralized fixed
modes (DFMs) was introduced in [24] and later refined in
[25]. Decentralized fixed modes are those eigenvalues of
the system which cannot be shifted using a static/dynamic
feedback with fully decentralized sparsity pattern (i.e. the case
where controllers have access only to local states). The re-
maining eigenvalues of the system can be arbitrarily assigned.
However, this cannot be achieved in general using a static
decentralized controller and requires the use of dynamic decen-
tralized controller [24]. Other algebraic characterizations of the
DFMs were presented in [26], [27]. The notion of DFMs was
generalized for an arbitrary sparsity pattern and the concept of
structurally fixed modes (SFMs) was introduced in [28]. Graph
theoretical characterizations of structurally fixed modes were
provided in [29], [30]. As in the case of DFMs, assigning the
non-SFMs also requires dynamic controllers. These studies on
DFMs and SFMs present feasibility conditions and analysis
methods for the EAP problem with sparse dynamic feedback.
In contrast, we study both EAP and MGEAP with sparse static
controllers, assuming the sparse EAP is feasible. We remark
that EAP with sparsity and static feedback controller is in fact
important for several network design and control problems,
and easier to implement than its dynamic counterpart.

Recently, there has been a renewed interest in studying
linear systems with sparsity constraints. Using a different
approach than [29], the original results regarding DFMs in
[24] were generalized for an arbitrary sparsity pattern by
the authors in [31], [32], where they also present a sparse
dynamic controller synthesis algorithm. Further, there have
been many recent studies on minimum cost input/output and
feedback sparsity pattern selection such that the system has
no structurally fixed modes (see [33], [34] and the references
therein). In contrast, we consider the problem of finding a
static minimum gain feedback with a given sparsity pattern
that solves the EAP.
Contribution The contribution of this paper is three-fold.
First, we study the MGEAP with static feedback and arbitrary
sparsity constraints (assuming feasibility of sparse EAP). We
formulate the sparse MGEAP as an equality constrained op-
timization problem and present an analytical characterization
of an optimal sparse solution. As a minor contribution, we
use this result to provide a geometric insight for the non-
sparse MGEAP solutions. Second, we develop two heuristic
iterative algorithms to obtain a solution of the sparse EAP. The
first algorithm is based on repeated projections on linear sub-
spaces. The second algorithm is developed using the Sylvester
equation based parametrization and it obtains a solution via
projection of a non-sparse feedback matrix on the space of
sparse feedback matrices that solve the EAP. Third, using
the latter EAP projection algorithm, we develop a projected
gradient descent method to solve the sparse MGEAP. We
also formulate a relaxed version of the sparse MGEAP using
penalty based optimization method and develop an algorithm
to obtain approximately-sparse solutions.

Paper organization The remainder of the paper is organized
as follows. In Section II we formulate the sparse MGEAP
optimization problem. In Section III, we obtain the solution
of the optimization problem using the Lagrangian theory of
optimization. We also provide a geometric interpretation for
the optimal solutions of the non-sparse MGEAP. In Section IV,
we present two heuristic algorithms for solving the sparse EAP.
Further, we present a projected gradient descent algorithm to
solve the sparse MGEAP and also an approximately-sparse
solution algorithm for a relaxed version of the sparse MGEAP.
Section V contains numerical studies and comparisons of the
proposed algorithms. Finally, we conclude the paper in Section
VI.

II. SPARSE MGEAP FORMULATION

A. Mathematical Notation and Properties

We use the following notation throughout the paper:
‖ · ‖2 Spectral norm
‖ · ‖F Frobenius norm

< ·, · >F Inner (Frobenius) product
|·| Cardinality of a set

Γ(·) Spectrum of a matrix
tr(·) Trace of a matrix
(·)+ Moore-Penrose pseudo inverse
(·)T Transpose of a matrix
R(·) Range of a matrix
A > 0 Positive definite matrix A
◦ Hadamard (element-wise) product
⊗ Kronecker product

(·)∗ Complex conjugate
(·)H Conjugate transpose

supp(·) Support of a vector
vec(·) Vectorization of a matrix

diag(a) n× n Diagonal matrix with diagonal
elements given by n−dim vector a

Re(·) Real part of a complex variable
Im(·) Imaginary part of a complex variable

1n(0n) n-dim vector of ones (zeros)
1n×m(0n×m) n×m-dim matrix of ones (zeros)

In n-dim identity matrix
ei i-th canonical vector
Tm,n Permutation matrix that satisfies

vec(AT) = Tm,nvec(A), A ∈ Rm×n
The Kronecker sum of two square matrices A and B with

dimensions n amd m, respectively, is denoted by

A⊕B = (Im ⊗A) +B ⊗ In.
Further, we use the following properties for deriving our
results [35], [36]:

P.1 tr(A) = tr(AT) and tr(ABC) = tr(CAB),
P.2 ‖A‖2F = tr(ATA) = vecT(A)vec(A),
P.3 vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A),
P.4 vec(ABC) = (CT ⊗A)vec(B),
P.5 (A⊗B)T = AT ⊗BT and (A⊗B)H = AH ⊗BH,
P.6 1Tn(A ◦B)1n = tr(ATB),
P.7 A ◦B = B ◦A and A ◦ (B ◦ C) = (A ◦B) ◦ C,
P.8 vec(A◦B) = vec(A)◦vec(B), (A◦B)T = AT ◦BT,
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P.9 d
dX tr(AX)=AT, d

dX tr(XTX)=2X , d
dx (Ax)=A,

P.10 d(X−1) = −X−1dXX−1,
P.11 d(A⊗B) = dA⊗B +A⊗ dB,
P.12 Let Dxf and D2

xf be the gradient and Hessian of
f(x) : Rn → R. Then, df = (Dxf)Tdx and
d2f = (dx)T(D2

xf)dx,
P.13 T−1

m,n = TT
m,n = Tn,m.

P.14 Projection of a vector y ∈ Rn on the null space of
A ∈ Rm×n is given by yp = [In −A+A]y.

B. Sparse MGEAP

The sparse MGEAP involves finding a real feedback matrix
F ∈ Rm×n with minimum norm that assigns the closed
loop eigenvalues of (1a)-(1b) at some desired locations given
by set S = {λ1, λ2, · · · , λn}, and satisfies a given sparsity
constraints. Let F̄ ∈ {0, 1}m×n denote a binary matrix that
specifies the sparsity structure of the feedback matrix F . If
F̄ij = 0 (respectively F̄ij = 1), then the jth state is unavailable
(respectively available) for calculating the ith input. Thus,

Fij =

{
0 if F̄ij = 0, and
? if F̄ij = 1,

where ? denotes a real number. Let F̄c , 1m×n − F̄ denote
the complementary sparsity structure matrix. Further, (with a
slight abuse of notation, c.f. (1a)) let X , [x1, x2, · · · , xn] ∈
Cn×n, xi 6= 0n denote the non-singular eigenvector matrix of
the closed loop matrix Ac(F ) = A+BF .

The MGEAP can be mathematically stated as the following
optimization problem

min
F,X

1

2
||F ||2F (2)

s.t. (A+BF )X = XΛ, (2a)

xHi xi = 1 ∀ i = 1, 2, · · · , n and (2b)
F̄c ◦ F = 0m×n, (2c)

where Λ = diag([λ1, λ2, · · · , λn]T) is the diagonal matrix
constructed from the entries of the desired eigenvalue set S.
Equations (2a) and (2c) represent the eigenvalue assignment
and sparsity constraints, respectively. Further, the normaliza-
tion constraint in (2b) is included to uniquely determine the
eigenvector matrix X .

The constraint (2a) is not convex in (F,X) and, therefore,
the optimization problem (2) is non-convex. Consequently,
multiple local minima may exist. This is a common feature
in various minimum distance and eigenvalue assignment prob-
lems [37], including the non-sparse MGEAP.

Remark 1. (Choice of norm) The Frobenius norm explicitly
measures the element-wise gains of a matrix, which is infor-
mative in sparsity constrained problems arising, for instance,
in network control problems. Further, it is also convenient
for the analysis, as it allows us to analytically compute the
derivatives of the cost function. �

Definition 1. (Fixed modes [24], [31]) The fixed modes of
(A,B) with respect to the sparsity constraints F̄ are those

eigenvalues of A which cannot be changed using LTI static
(and also dynamic) state feedback, and are denoted by

Γf (A,B, F̄) ,
⋂

F : F ◦ F̄c = 0

Γ(A+BF ).

�

We make the following assumptions regarding the fixed
modes and feasibility of the optimization problem (2).
A1: The fixed modes of the triplet (A,B, F̄) are included in
the desired eigenvalue set S, i.e., Γf (A,B, F̄) ⊆ S.
A2: There exists at least one feedback matrix F that satisfies
constraints (2a)-(2c) for the given S.

Assumption A1 is clearly necessary for the feasibility of
the optimization problem (2). Assumption A2 is restrictive
because, in general, it is possible that a static feedback matrix
with a given sparsity pattern cannot assign the closed loop
eigenvalues to arbitrary locations (i.e. for an arbitrary set
S satisfying Assumption A1).1 In such cases, only a few
(< n) eigenvalues can be assigned independently and other
remaining eigenvalues are a function of them. To the best
of our knowledge, there are no studies on characterizing
conditions for the existence of a static feedback matrix for an
arbitrary sparsity pattern F̄ and eigenvalue set S [38] (although
such characterization is available for dynamic feedback laws
with arbitrary sparsity pattern [28], [31], [32], and static output
feedback for decentralized sparsity pattern [39]). Thus, for
the purpose of this paper, we focus on finding the optimal
feedback matrix assuming that at least one such feedback
matrix exists.

III. SOLUTION TO THE SPARSE MGEAP

In this section we present the solution to the optimization
problem (2). We use the theory of Lagrangian multipliers for
equality constrained minimization problems to derive the op-
timality conditions. We begin with a remark on the formalism
involving complex variables.

Remark 2. (Complex variables) If the desired eigenvalue set
S contains complex entries, the corresponding eigenvectors
in X will also be complex. Thus, the eigenvalue-eigenvector
constraint in (2a) is a complex-valued constraint, and it
induces the following conjugate constraint:

(A+BF )X∗ = X∗Λ∗. (3)

In the optimization problem, we use the formalism wherein a
complex number and its conjugate are treated as independent
variables [40], [41] and, thus, we treat X and X∗ as
independent variables. �

Remark 3. (Conjugate eigenvectors) We use the convention
that the right eigenvectors (xi, xj) corresponding to two
conjugate eigenvalues (λi, λj) are also conjugate. Thus, if
λi = λ∗j , then xi = x∗j . Similar convention is also used for
the left eigenvectors. �

1Although a sparse dynamic feedback law can assign the eigenvalues to
arbitrary locations under Assumption A1 [32].
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In the theory of equality constrained optimization, the first-
order optimality conditions are meaningful only when the
optimal point satisfies the following regularity condition: the
Jacobian of the constraints, defined by Jb, is full rank. This
regularity condition is mild and usually satisfied for most
classes of problems [42]. Before presenting the main result,
we derive the Jacobian and state the regularity condition for
the optimization problem (2).

Computation of Jb requires vectorization of the matrix
constraints (2a)-(2c). For this purpose, let x , vec(X) ∈
Cn2

, f , vec(F ) ∈ Rmn. Recalling Remark 2, let z ,
[xT, xH, fT]T be the vector containing all the independent
variables of the optimization problem. Further, let ns denote
the total number of feedback sparsity constraints (i.e. number
of 1’s in F̄c):

ns = |{(i, j) : F̄c = [̄fcij ], f̄
c
ij = 1}|.

Finally, note that the constraint (2c) can be equivalently written
as (see the proof of Lemma III.1 for a formal definition of Q)

Qf = 0ns
, (4)

for some binary matrix Q ∈ {0, 1}ns×mn.

Lemma III.1. (Jacobian of the constraints) The Jacobian of
the equality constraints (2a)-(2c) is given by

Jb(z)=




Ac(F )⊕(−ΛT) 0n2×n2 XT⊗B
0n2×n2 Ac(F )⊕(−ΛH) XH⊗B
x̄ x̄∗ 0n×mn

0ns×n2 0ns×n2 Q


, (5)

where x̄ , (1n ⊗ xH) ◦ (In ⊗ 1Tn).

Proof. We construct the Jacobian Jb by rewriting the con-
straints (2a)-(2c), (3) in vectorized form and taking their
derivatives with respect to z. Constraint (2a) can be vectorized
in the following two different ways (using P.3 and P.4):

[(A+BF )⊕ (−ΛT)]x = 0n2 , (6a)

[A⊕−(ΛT)]x+ (XT ⊗B)f = 0n2 . (6b)

Differentiating (6a) w.r.t. x and (6b) w.r.t f yields the first
(block) row of Jb. Similar vectorizations of the conjugate
eigenvalue constraint (3) and differentiation w.r.t. z yields the
second (block) row of Jb. Differentiating constraint (2b) for
i = 1, 2, · · · , n w.r.t. x and x∗yields

d

dx




xH1 x1 − 1
xH2 x2 − 1

...
xHnxn − 1


 =




xH1 0Tn · · · 0Tn
0Tn xH2 · · · 0Tn
...

...
. . .

...
0Tn 0Tn · · · xHn


 = x̄,

and x̄∗, respectively. Finally, (2c) consists of ns non-trivial
sparsity constraints, which can be written as (4) where Q =
[eq1 eq2 . . . eqns

]T and {q1, . . . , qns
} = supp(vec(F̄c)) is the

set of indices indicating the ones in vec(F̄c). Differentiating
(4) w.r.t. z yields the fourth (block) row of Jb, thus completing
the proof.

Next, we provide the optimality conditions for the optimiza-
tion problem (2).

Theorem III.2. (Optimality conditions) Let (X̂, F̂ ) (equiv-
alently ẑ = [x̂T, x̂H, f̂T]T) satisfy the constraints (2a)-(2c).
Then, (X̂, F̂ ) is a local minimum of the optimization problem
(2) if and only if

F̂ = −F̄ ◦ (BTL̂X̂T), (7a)

where X̂ and L̂ are the right and left eigenvector matrices of
Ac(F̂ ), respectively, and satisfy

(A+BF̂ )X̂ = X̂Λ (7b)

(A+BF̂ )TL̂ = L̂ΛT and, (7c)
Jb(ẑ) is full rank, (7d)

P (ẑ)D̂P (ẑ) > 0, (7e)

where D̂ is the Hessian defined as

D̂ ,




0n2×n2 0n2×n2 L̄H

0n2×n2 0n2×n2 L̄T

L̄ L̄∗ 2Imn


 , (8)

where L̄ , Tn,m(BTL̂⊗In), and P (z) is the projection matrix
of Jb(z) defined as

P (z) = I2n2+mn − J+
b (z)Jb(z). (9)

Proof. We prove the result using the Lagrange theorem for
equality constrained minimization. Let L ∈ Cn×n, L∗,M ∈
Rm×n and h ∈ Rn be the Lagrange multipliers associated
with constraints (2a),(3),(2b) and (2c), respectively. Further,
let H = diag(h). The Lagrange function for the optimization
problem (2) is given by

L P.2
=

1

2
tr(FTF ) +

1

2
1Tn[L ◦ (Ac(F )X −XΛ)]1n

+
1

2
1Tn[L∗ ◦ (Ac(F )X∗ −X∗Λ∗)]1n + tr((XHX − In)H)

+1Tm[M ◦ (F̄c ◦ F )]1n
P.6,P.7

=
1

2
tr(FTF ) +

1

2
tr[LT(Ac(F )X −XΛ)]

+
1

2
tr[LH(Ac(F )X∗ −X∗Λ∗)] + tr((XHX − In)H)

+tr[(M ◦ F̄c)TF ].

We next derive the first-order necessary condition for a sta-
tionary point. Differentiating l w.r.t. X and setting to 0, we
get

d

dX
L P.9

=
1

2
[AT
c (F )L− LΛT] +X∗H = 0n×n. (10)

Pre-multiplying (10) by XT, we get

1

2
[XTAT

c (F )L−XTLΛT] +XTX∗H = 0n×n,

(2a)⇒ 1

2
[ΛTXTL−XTLΛT] +XTX∗H = 0n×n. (11)

Since Λ is diagonal and xHi xi = 1, the vector containing the
diagonal elements of the left side of (11) is h. Therefore, h =
0n (and H = 0n×n) and from (10), we get (7c). Equation (7b)
is a restatement of (2a) for the optimal (F̂ , X̂).
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Differentiating L w.r.t. F , we get

d

dF
L P.9

= F + Re(BTLXT) +M ◦ F̄c = 0m×n. (12)

Taking the Hadamard product of (12) with F̄c and using (2c),
we get (since F̄c ◦ F̄c = F̄c)

F̄c ◦ Re(BTLXT) +M ◦ F̄c = 0m×n (13)

Replacing M ◦ F̄c from (13) into (12), we get

F = −F̄ ◦ Re(BTLXT).

Since the eigenvectors in X (and L , [l1, l2, · · · .ln]) are
closed under complex conjugation (c.f. Remark 3), the product
LXT =

∑n
i=1 lix

T
i is real and (7a) follows. Equation (7d) is

the necessary regularity condition and follows from Lemma
III.1

Next, we derive the second-order sufficient condition for a
local minimum by calculating the Hessian of L. Taking the
differential of L twice, we get

d2L = tr((dF )TdF ) + tr(LTBdFdX) + tr(LHBdFdX∗)

+ 2tr((dX)HdXH)

(P.2,H=0)
= dfTdf + vecT(dFTBTL)dx+ vecT(dFTBTL∗)dx∗

(P.3,P.5)
= dfTdf + dfTL̄dx+ dfTL̄∗dx∗

=
1

2
[dxH, dxT, dfT]D



dx
dx∗

df


 ,

where D is the Hessian (c.f. P.12) defined in (8). The suf-
ficient second-order optimality condition for the optimization
problem requires the Hessian to be positive definite in the
kernel of the Jacobian at the optimal point [43]. That is,
yTDy > 0, ∀y : Jb(z)y = 0. This condition is equivalent to
P (z)DP (z) > 0, since Jb(z)y = 0 if and only if y = P (z)s
for a s ∈ R2n2+mn [42]. Since the projection matrix P (z) is
symmetric, (7e) follows, and this concludes the proof.

Remark 4. (Eigenvector normalization constraints) From the
proof of Theorem III.2, we observe that the Lagrange multipli-
ers associated with the eigenvector normalization constraints
in (2b) are zero (h = 0n). This implies that these constraints
are redundant. Further, observe from (7a) that any pair of
left and right eigenvector matrices {L̂D−1, X̂D} where D
is any diagonal matrix with non-zero (and possibly complex)
diagonal entries, will result in the same feedback matrix F̂ .
Thus, we can always choose a suitable D to normalize X̂ .
Therefore, we ignore the eigenvector normalization constraints
in the remainder of the paper. �

Observe that the Hadamard product in (7a) guarantees that
the feedback matrix satisfies the sparsity constraints given
in (2c). However, note that the optimal sparse feedback F̂
cannot be obtained by sparsification of the optimal non-sparse
feedback. The feedback optimality condition (7a) is an implicit
condition in terms of the closed loop right and left eigenvector
matrices. Next, we provide an explicit optimality condition in
terms of {L̂, X̂}.

Corollary III.3. (Stationary point equation) Ẑ , [X̂T, L̂T]T

is a stationary point of the optimization problem (2) if and
only if

ĀẐ − ẐΛ = B̄1[F ◦ (B̄T
1 ĪẐẐ

TB̄2)]B̄T
2 Ẑ, (14)

where,

Ā ,

[
A 0n×n

0n×n AT

]
, B̄1 ,

[
B 0n×n

0n×m In

]
,

B̄2 ,

[
In 0n×m

0n×n B

]
, F ,

[
F̄ 0m×m

0n×n F̄T

]
, and

Ī ,

[
0n×n In
In 0n×n

]
.

Proof. Combining (7b) and (7c) and using ΛT = Λ, we get
[
AX̂ − X̂Λ

ATL̂− L̂Λ

]
= −

[
BF̂X̂

F̂TBTL̂

]

⇒ ĀẐ − ẐΛ = −B̄1

[
F̂ 0

0 F̂T

]
B̄T

2 Ẑ

= B̄1

[
F̄ ◦ (BTL̂X̂T) 0

0 F̄T ◦ (X̂L̂TB)

]
B̄T

2 Ẑ

= B̄1

(
F ◦
{
B̄T

1

[
L̂X̂T 0

0 X̂L̂T

]
B̄2

})
B̄T

2 Ẑ

= B̄1

(
F ◦
{
B̄T

1 Ī(ẐẐT ◦ Ī)B̄2

})
B̄T

2 Ẑ

= B̄1{F ◦ (B̄T
1 ĪẐẐ

TB̄2)}B̄T
2 Ẑ,

where the above equations follow from direct manipulations
using definition of Hadamard product.

Remark 5. (Partial spectrum assignment) The results of
Theorem III.2 and Corollary III.3 are also valid when only
p (p < n) eigenvalues need to be assigned and the remain-
ing eigenvalues are unspecified. In this case, Λ ∈ Cp×p,
X̂ ∈ Cn×p and L̂ ∈ Cn×p. Partial assignment is useful
when the sparsity constraints allow only a limited number of
eigenvalues to be assigned independently and the remaining
eigenvalues are functionally related to them (c.f. discussion
below Assumption A2). Nevertheless, in this paper we focus
on assigning all the closed loop eigenvalues. �

Remark 6. (General eigenstructure assignment) Although
the optimization problem (2) is formulated by considering Λ
to be diagonal, the result in Theorem III.2 is valid for any
general Λ satisfying Γ(Λ) = S. For instance, we can choose
Λ in a Jordan canonical form. However, note that for a general
Λ, X will cease to be an eigenvector matrix. Thus, in such
cases, we need to omit the normalization constraints (2b) in
the optimization problem. �

A solution of the optimization problem (2) can be obtained
by numerically/iteratively solving the matrix equation (14),
which resembles a Sylvester type equation with a non-linear
right side, and using (7a) to compute the feedback matrix.
The regularity and local minimum of the solution can be ver-
ified using (7d) and (7e), respectively. Since the optimization
problem is not convex, only local minima can be obtained
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via this procedure. To improve upon the local solutions, the
above procedure can be repeated for several different initial
conditions (for solving (14)). However, convergence to the
global minimum is not guaranteed.

In this paper, instead of solving (14) directly, we use a
different approach based on the gradient descent procedure
to obtain a local solution. Details of this approach and corre-
sponding algorithms are presented in Section IV.

A. Results for non-sparse MGEAP
In this subsection, we present some results specific to the

case when the optimization problem (2) does not have any
sparsity constraints (i.e. F̄ = 1m×n). Although the non-sparse
MGEAP has been studied previously, these results are novel
and further illustrate the properties of an optimal solution.

We begin by presenting a geometric interpretation of the
optimality conditions provided in Theorem III.2 under the as-
sumption that B = In, i.e. all the entries of A can be perturbed
independently. In this case, the optimization problem (2) can
be written as (while ignoring the eigenvector normalization
constraints; c.f. Remark 4):

min
X

1

2
||A−XΛX−1||2F . (15)

Since A and R(X) , XΛX−1 are elements (or vectors) of
the matrix inner product space with Frobenius norm, a solution
of the optimization problem (15) is given by the projection of
A on the manifold M , {R(X) : X is non-singular}. This
projection can be obtained by solving the normal equation,
which states that the optimal error vector F̂ = A − X̂ΛX̂−1

should be orthogonal to the tangent plane of the manifold
M at the optimal point X̂ . The next result shows that the
optimality conditions derived in Theorem III.2 are in fact the
normal equations for the optimization problem (15).

Lemma III.4. (Geometric interpretation) Let F̄ = 1m×n
and B = In. Then, Equations (7a)-(7c) are equivalent to the
following normal equation:

< F̂ , TM(X̂) >F= 0, (16)

where TM(X) denotes the tangent space of M at X .

Proof. We begin by characterizing the tangent space TM(X),
which is given by the first order approximation of the matrix
function R(X):

R(X + dX) = (X + dX)Λ(X + dX)−1

(P.10)
= R(X) + dXΛX−1 −XΛX−1dXX−1

+ higher order terms.

Thus, the tangent space is given by

TM(X) = {Y ΛX−1 −XΛX−1Y X−1 : Y ∈ Cn×n}
Necessity: Using F̂ given by (7a), we get

< F̂ ,TM(X̂) >= tr(F̂T(Y ΛX̂−1 − X̂ΛX̂−1Y X̂−1))

= −tr(X̂L̂TY ΛX̂−1) + tr(X̂L̂TX̂ΛX̂−1Y X̂−1)

(P.1)
= − tr(L̂TY Λ) + tr(L̂TX̂ΛX̂−1Y )

(a)
= − tr(L̂TY Λ) + tr(ΛL̂TX̂X̂−1Y )

(P.1)
= 0,

where (a) follows from the fact that Λ and L̂TX̂ commute.
Sufficiency: From (16), we get

tr(F̂T(Y ΛX̂−1 − X̂ΛX̂−1Y X̂−1)) = 0

(P.1)⇒ tr[(ΛX̂−1F̂T − X̂−1F̂TX̂ΛX̂−1)Y ] = 0.

Since the above equation is true for all Y ∈ Cn×n, we get

ΛX̂−1F̂T − X̂−1F̂TX̂ΛX̂−1 = 0n×n

⇒ X̂ΛX̂−1F̂T = F̂TX̂ΛX̂−1

⇒ Ac(F̂ )F̂T = F̂TAc(F̂ ).

Thus, Ac(F̂ ) and F̂T commute and therefore, have common
left and right eigenspaces [44], i.e. F̂T = −X̂GX̂−1 =
−X̂L̂T, where G is a diagonal matrix. This completes the
proof.

Next, we show the equivalence of the non-sparse MGEAP
for two orthogonally similar systems.

Lemma III.5. (Invariance under orthogonal transformation)
Let F̄ = 1m×n and (A1, B1), (A2, B2) be two orthogonally
similar systems such that A2 = PA1P

−1 and B2 = PB1,
with P being an orthogonal matrix. Let an optimal solutions
of (2) for the two systems be denoted by (X̂1, L̂1, F̂1) and
(X̂2, L̂2, F̂2), respectively. Then

X̂2 = PX̂1, L̂2 = PL̂1, F̂2 = F̂1P
T, and

||F̂1||F = ||F̂2||F .
(17)

Proof. From (7b), we have

(A2 +B2F̂2)X̂2 = X̂2Λ

⇒ (PA1P
−1 + PB1F̂1P

T)PX̂1 = PX̂1Λ

⇒ (A1 +B1F̂1)X̂1 = X̂1Λ.

Similar relation can be shown between L̂1 and L̂2 using (7c).
Next, from (7a), we have

F̂2 = −BT
2 L̂2X̂

T
2 = −BT

1 L̂1X̂
T
1 P

T = F̂1P
T.

Finally, ||F̂1||2F = tr(F̂T
1 F̂1)

(P.1)
= tr(F̂T

2 F̂2) = ||F̂2||2F , thereby
completing the proof.

Recall from Remark 5 that Theorem III.2 is also valid for
MGEAP with partial spectrum assignment. Next, we consider
the case when only one real eigenvalue needs to assigned for
the MGEAP while the remaining eigenvalues are unspecified.
In this special case, we can explicitly characterize the global
minimum of (2) as shown in the next result.

Corollary III.6. (One real eigenvalue assignment) Let F̄ =
1m×n, Λ ∈ R, and B = In. Then, the global minima of
the optimization problem (2) is given by F̂gl = −σmin(A −
ΛIn)uvT, where u and v are unit norm left and right singular
vectors, respectively, corresponding to σmin(A−ΛIn). Further,
‖F̂gl‖F = σmin(A− ΛIn).
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Proof. Since Λ ∈ R, X̂ ∈ Rn , x̂ and L̂ ∈ Rn , l̂. Let
l̂ = β

ˆ̃
l where β , ‖l̂‖2 > 0. Substituting F̂ = −l̂x̂T from

(7a) into (7b)-(7c), we get

(A− l̂x̂T)x̂ = x̂Λ
(2b)⇒ (A− ΛIn)x̂ = β

ˆ̃
l and,

(AT − x̂l̂T)l̂ = l̂Λ⇒ (A− ΛIn)T
ˆ̃
l = βx̂.

The above two equations imply that the unit norm vectors x̂
and ˆ̃

l are left and right singular vectors of A−ΛIn associated
with the singular value β. Since ‖F̂‖2F = tr(F̂TF̂ ) =
tr(x̂l̂T l̂x̂T) = β2, we pick β as the minimum singular value
of A− ΛIn, and the proof is complete.

We conclude this subsection by presenting a brief com-
parison of the non-sparse MGEAP solution with deflation
techniques for eigenvalue assignment. For B = In, an
alternative method to solve the non-sparse EAP is via the
Wielandt deflation technique [45]. Wielandt deflation achieves
pole assignment by modifying the matrix A in n steps A →
A1 → A2 → · · · → An. Step i shifts one eigenvalue of
Ai−1 to a desired location λi, while keeping the remaining
eigenvalues of Ai−1 fixed. This is achieved by using the
feedback F idf = −(µi − λi)viz

T
i , where µi and vi are any

eigenvalue and right eigenvector pair of Ai−1, and z is any
vector such that zTi vi = 1. Thus, the overall feedback that
solves the EAP is given as Fdf =

∑n
i=1 F

i
df .

It is interesting to compare the optimal feedback expression
in (7a), F̂ = −∑n

i=1 l̂ix̂
T
i , with the deflation feedback. Both

feedbacks are sum of n rank−1 perturbations. However, the
Wielandt deflation has an inherent special structure and a
restrictive property that, in each step, all except one eigenvalue
remain unchanged. Furthermore, each rank−1 term in F̂ and
Fdf involves the right/left eigenvectors of the closed and open
loop matrix, respectively. Due to these reasons, it clearly
follows that ||F̂ ||F ≤ ||Fdf ||F .

IV. SOLUTION ALGORITHMS

In this section, we present an iterative algorithm to obtain
a solution to the sparse MGEAP in (2). To develop the
algorithm, we first present two algorithms for computing non-
sparse and approximately-sparse solutions to the MGEAP,
respectively. Next, we present two heuristic algorithms to
obtain a sparse solution of the EAP (i.e. any sparse solution,
which is not necessarily minimum-gain). Finally, we use these
algorithms to develop the algorithm for sparse MGEAP. Note
that although our focus is to develop the sparse MGEAP
algorithm, the other algorithms presented in this section are
novel in themselves to the best of our knowledge.

We make the following assumptions:
A3: The triplet (A,B, F̄) has no fixed modes, i.e.,
Γf (A,B, F̄) = ∅.
A4: The open and closed loop eigenvalue sets are disjoint, i.e.,
Γ(A) ∩ Γ(Λ) = ∅.

Assumption A4 is not restrictive since if there are any
common eigenvalues in A and Λ, we can use a preliminary
sparse feedback Fp to shift the eigenvalues of A to some
other locations such that Γ(A + BFp) ∩ Γ(Λ) = ∅. Since
the system has no fixed modes (c.f. Assumption A3), such a

Fp always exists. Then, we can solve the modified MGEAP2

with parameters (A+BFp, B,Λ, F̄). If F is the sparse solution
of this modified problem, then the solution of the original
problem is Fp + F .

To avoid complex domain calculations in the algorithms, we
use the real counterpart of (2a). For two complex conjugate
eigenvalues (λi, λ

∗
i ) and corresponding eigenvectors (xi, x

∗
i ),

the following complex equation

(A+BF )
[
xi x∗i

]
=
[
xi x∗i

] [ λi 0
0 λ∗i

]

is equivalent to the following real equation

(A+BF )
[
Re(xi) Im(xi)

]
=
[
Re(xi) Im(xi)

][ Re(λi) Im(λi)
−Im(λi) Re(λi)

]

Thus, for each complex eigenvalue, the columns
[
xi x∗i

]
of

X are replaced by
[
Re(xi) Im(xi)

]
to obtain a real X ′ and

the sub-matrix
[
λi 0
0 λ∗i

]
of Λ is replaced by

[
Re(λi) Im(λi)
−Im(λi) Re(λi)

]
to

obtain a real Λ′. Clearly, X ′ is not the eigenvector matrix of
A+BF (c.f. Remark 6), and the latter can be easily obtained
by combining the columns of X ′. Also, the invertibility of X
is equivalent to the invertibility of X ′. In the remainder of this
section, we assume (2a) to be in the real form.

A. Algorithms for non-sparse MGEAP

In this subsection, we present two iterative gradient based
descent algorithms to obtain non-sparse and approximately-
sparse solutions to the MGEAP, respectively. To develop the
algorithms, we use the Sylvester equation based parametriza-
tion [11], [46]. In this parametrization, instead of defining
(F,X) as free variables, we define a parameter G , FX ∈
Rm×n as the free variable. With this parametrization, the non-
sparse MGEAP is stated as (while ignoring the eigenvector
normalization constraints; c.f. Remark 4):

min
G

J =
1

2
||F ||2F (18)

s.t. AX −XΛ +BG = 0, (18a)

F = GX−1. (18b)

Note that, for any given G, we can solve the Sylvester equation
(18a) to obtain X . Assumption A4 guarantees that (18a) has
a unique solution [47]. Further, we can use (18b) to obtain a
non-sparse feedback matrix F . Thus, (18) is an unconstrained
optimization problem in the free parameter G.

The Sylvester equation based parametrization requires the
unique solution X of (18a) to be non-singular, which holds
generically if (i)(A,−BG) is controllable and (ii) (Λ,−BG)
is observable [48]. Since the system has no fixed modes
(c.f. Assumption A3), (A,B) is controllable. Therefore, the
above two conditions are mild and are satisfied for almost all
instances as confirmed in our simulations (see Section V).

The next result provides the gradient and Hessian of the
cost J w.r.t. to the parameter g , vec(G).

2Although the minimization cost of the modified MGEAP is 0.5||Fp +
F ||2F , it can be solved using techniques similar to solving MGEAP in (2).
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Lemma IV.1. (Gradient and Hessian of J) The gradient and
Hessian of the cost J in (18) with respect to g is given by

dJ

dg
=
[
(X−1⊗ Im)+(In⊗BT)Ã−T(X−1⊗ FT)

]

︸ ︷︷ ︸
, Z(F,X)

f, (19)

d2J

d2g
, H(F,X) = Z(F,X)ZT(F,X)

+ Z1(F,X)ZT(F,X) + Z(F,X)ZT
1 (F,X), (20)

where Z1(F,X) , (In ⊗BT)Ã−T(X−1FT ⊗ In)Tm,n,

and Ã , A⊕ (−ΛT).

Proof. Vectorizing (18a) using P.3 and taking the differential,
we get

Ãx+ (In ⊗B)g = 0

⇒ dx = −Ã−1(In ⊗B)dg. (21)

Note that due to Assumption A4, Ã is invertible. Taking the
differential of (18b) and vectorizing, we get

dF
P.10
= dGX−1 −GX−1

︸ ︷︷ ︸
F

dXX−1 (22)

P.3,P.4⇒ df = (X−T ⊗ Im)dg − (X−T ⊗ F )dx
(21)
= [(X−T ⊗ Im) + (X−T ⊗ F )Ã−1(In ⊗B)]︸ ︷︷ ︸

P.5
= ZT(F,X)

dg. (23)

The differential of cost J P.2
= 1

2f
Tf is given by dJ=fTdf .

Using (23) and P.12, we get (19). To derive the Hessian,
we compute the second-order differentials of the involved
variables. Note that since g(G) is an independent variable,
d2g = 0(d2G = 0) [36]. Further, the second-order differential
of (18a) yields d2X = 0. Rewriting (22) as dFX = dG −
FdX , and taking its differential and vectorization, we get

(d2F )X + (dF )(dX) = −(dF )(dX)

⇒ d2F = −2(dF )(dX)X−1

P.4⇒ d2f = −2(X−T ⊗ dF )dx. (24)

Taking the second-order differential of J (and omitting the
parameter dependence notation), we get

d2J = (df)Tdf + fT(d2f) = (df)Tdf + (d2f)Tf
(23),(24),P.5

= dgTZZTdg − 2dxT (X−1 ⊗ (dF )T)f︸ ︷︷ ︸
P.5
= vec((dF )TFX−T)

P.5
= dgTZZTdg − 2dxT(X−1FT ⊗ In)Tm,ndf

(21),(23)
= dgTZZTdg

+ 2dgT(In ⊗BT)Ã−T(X−1FT ⊗ In)Tm,nZ
Tdg︸ ︷︷ ︸

dgT(Z1ZT+ZZT
1 )dg

.

(25)

The Hessian in (20) follows from (25) and P.12 and the proof
is complete.

Clearly, the first-order optimality condition of the un-
constrained optimization problem (18) is given by dJ

dg =
Z(F,X)f = 0. The next result shows that this condition is
equivalent to the first-order optimality conditions of Theorem
III.2 without sparsity constraints.

Corollary IV.2. (Equivalence of first-order optimality condi-
tions) Let F̄ = 1m×n. Then, the first-order optimality condition
Z(F̂ , X̂)f̂ = 0 of (18) is equivalent to (7a)-(7c), where

l̂ , vec(L̂) = Ã−T(X̂−1⊗ F̂T)f̂ . (26)

Proof. The optimality condition (7b) follows from (18a)-
(18b). Equation (7a) can be rewritten as F̂ X̂−T + BTL̂ = 0
and its vectorization using P.3 yields Z(F̂ , X̂)f̂ = 0. Finally,
vectorization of the left side of (7c) yields

vec[(A+BF̂ )TL̂− L̂ΛT] = vec[ATL̂− L̂ΛT + (BF̂ )TL]
P.3,P.5

= ÃT l̂ + (In ⊗ (BF̂ )T)l̂
(26)
= (X̂−1⊗ F̂T)f̂ + (In ⊗ (BF̂ )T)Ã−T(X̂−1⊗ F̂T)f̂
P.5
= (In ⊗ F̂T)Z(F̂ , X̂)f̂ = 0.

Thus, L̂ is the right eigenvector matrix and the proof is
complete.

Using Lemma IV.1, we next present a steepest/Newton
descent algorithm to solve the non-sparse MGEAP (18) [42].
In the algorithms presented in this section, we interchangeably
use the the matrices (G,F,X) and their respective vector-
izations (g, f, x). The conversion of a matrix to the vector
(and vice-versa) is not specifically stated in the steps of the
algorithms and is assumed wherever necessary.

Algorithm 1: Non-sparse solution to the MGEAP
Input: A,B,Λ, G0.
Output: Local minimum (F̂ , X̂) of (18).

Initialize: G0, X0 ← Solution of (18a), F0 ← G0X
−1
0

repeat
1 α← Compute step size (see below);
2 g ← g − αZ(F,X)f or;
3 g ← g − α[H(F,X) + V (F,X)]−1Z(F,X)f ;

X ← Solution of Sylvester equation (18a);
F ← GX−1;

until convergence;
return (F,X)

Steps 2 and 3 of Algorithm 1 represent the steepest
and (damped) Newton descent steps, respectively. Since, in
general, the Hessian H(F,X) is not positive-definite, the
Newton descent step may not result in a decrease of the cost.
Therefore, we add a Hermitian matrix V (F,X) to the Hessian
to make it positive definite [42]. We will comment on the
choice of V (F,X) in Section V. In step 1, the step size α
can be determined by backtracking line search or Armijo’s
rule [42]. For a detailed discussion of the steepest/Newton
descent methods, the interested reader is referred to [42]. The
computationally intensive steps in Algorithm 1 are solving the
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Sylvester equation (18a) and evaluating the inverses of X and
H + V .

Next, we present a relaxation of the optimization prob-
lem (2) and a corresponding algorithm that provides
approximately-sparse solutions to the MGEAP. We remove
the explicit feedback sparsity constraints (2c) and modify the
cost function to penalize it when these sparsity constraints are
violated. Using the Sylvester equation based parametrization,
the relaxed optimization problem is stated as (while ignoring
the eigenvector normalization constraints; c.f. Remark 4):

min
G

JW =
1

2
||W ◦ F ||2F (27)

s.t. (18a) and (18b) hold true,

where W ∈ Rm×n is a weighing matrix that penalizes the
cost for violation of sparsity constraints, and is given by

Wij =

{
1 if F̄ij = 1, and
� 1 if F̄ij = 0.

As the penalty weights of W corresponding to the sparse
entries of F increase, an optimal solution of (27) becomes
more sparse and approaches towards the optimal solution of
(2). Note that the relaxed problem (27) corresponds closely to
the non-sparse MGEAP (18). Thus, we use a similar gradient
based approach to obtain its solution.

Lemma IV.3. (Gradient and Hessian of JW) The gradient
and Hessian of the cost JW in (27) with respect to g is given
by

dJW
dg

= Z(F,X)W̄f, (28)

d2JW
d2g

, HW (F,X) = Z(F,X)W̄ZT(F,X)

+Z1,W (F,X)ZT(F,X) + Z(F,X)ZT
1,W (F,X), (29)

where W̄ , diag(vec(W ◦W )) and,

Z1,W (F,X) ,(In⊗BT)Ã−T(X−1(W ◦W ◦F )T⊗In)Tm,n

Proof. Since the constraints of optimization problems (18) and
(27) are same, Equations (21)-(24) from Lemma IV.1 also
hold true for problem (27). Now, JW

P.2,P.8
= 1

2 (vec(W ) ◦
f)T(vec(W ) ◦ f) = 1

2f
TW̄f . Thus, dJW = fTW̄df and

d2JW = (df)TW̄df + fTW̄d2f . Using the relation vec(W ◦
W ◦F ) = W̄f , the remainder of the proof is similar to proof
of Lemma IV.1.

Using Lemma IV.3, we next present an algorithm to obtain
an approximately-sparse solution to the MGEAP.

The step size rule and modification of the Hessian in
Algorithm 2 is similar to Algorithm 1.

B. Algorithms for Sparse EAP

In this subsection, we present two heuristic algorithms to
obtain a sparse solution to the EAP (i.e. any sparse solution,
which is not necessarily minimum-gain). This involves finding
a pair (F,X) which satisfies the eigenvalue assignment and
sparsity constraints (2a), (2c). We begin with a result that
combines these two constraints.

Algorithm 2: Approximately-sparse solution to the
MGEAP

Input: A,B,Λ,W,G0

Output: Local minimum (F̂ , X̂) of (27).

Initialize: G0, X0 ← Solution of (18a), F0 ← G0X
−1
0

repeat
1 α← Update step size;
2 g ← g − αZ(F,X)W̄f or;
3 g ← g − α[HW (F,X) + VW (F,X)]−1Z(F,X)W̄f ;

X ← Solution of Sylvester equation (18a);
F ← GX−1;

until convergence;
return (F,X)

Lemma IV.4. (Feasibility of (F,X)) An invertible matrix X ∈
Rn×n satisfies (2a) and (2c) if and only if

ã(x) ∈ R(B̃(X)) where, (30)

ã(x) , Ãx, B̃(X) , −(XT ⊗B)PF̄, PF̄ , diag(vec(F̄)).

Further, if (30) holds true, then the set of sparse feedback
matrices that satisfy (2a) and (2c) is given by

FX = {PF̄fns : B̃(X)fns = ã(x), fns ∈ Rmn}. (31)

Proof. Any feedback f which satisfies the sparsity constraint
(2c) can be written as f = PF̄fns where fns ∈ Rmn is a
non-sparse vector3. Vectorizing (2a) using P.3 and P.4, and
substituting f = PF̄fns, we get

Ãx = −(XT ⊗B)PF̄fns, (32)

from which (30) and (31) follow.

Based on Lemma IV.4, we develop a heuristic iterative
algorithm to obtain a sparse solution to the EAP. The algorithm
starts with a non-sparse EAP solution (F0, X0) that does not
satisfy (2c) and (30). Then, it takes repeated projections of
ã(x) on R(B̃(X)) to update X and F , until a sparse solution
is obtained.

Algorithm 3: Sparse solution to EAP

Input: A,B,Λ, F̄, G0, itermax.
Output: (F,X) satisfying (2a) and (2c).

Initialize: G0, X0← Solution of (18a), Fns,0 ← G0X
−1
0 ,

i← 0
repeat

1 ã(x)← B̃(X)[B̃(X)]+ã(x);
2 x← Ã−1ã(x);
3 X ← Normalize X;

i← i+ 1
until convergence or i > itermax;
return (f ∈ FX in (31), X)

In step 1 of Algorithm 3, we update ã(x) by projecting it on
R(B̃(X)). Step 2 computes x from ã(x) using the fact that Ã

3Since f satisfies (4), it can also be characterized as f = (Imn −
Q+Q)fns, and thus PF̄ = Imn −Q+Q.



10

is invertible (c.f. Assumption A4). Finally, the normalization
in step 3 is performed to ensure invertibility of X4.

Next, we develop a second heuristic algorithm for solv-
ing the sparse EAP problem using the non-sparse MGEAP
solution in Algorithm 1. The algorithm starts with a non-
sparse EAP solution (F0, X0). In each iteration, it sparsifies
the feedback to obtain f = PF̄fns (or F = F̄ ◦Fns), and then
solves the following non-sparse MGEAP

min
Fns,X

1

2
||Fns − F ||2F (33)

s.t. (A+BFns)X = XΛ, (33a)

to update Fns that is close to the sparse F . Thus, using the
heuristics of repeated sparsification of the solution of non-
sparse MGEAP in (33), the algorithm obtains a sparse solution.
Note that a solution F̂ns of the optimization problem (33) with
parameters (A,B,Λ, F ) satisfies F̂ns = F + K̂ns, where K̂ns

is a solution of the optimization problem (18) with parameters
(A+BF,B,Λ). Thus, we can use Algorithm 1 to solve (33).

Algorithm 4: Projection-based sparse solution to EAP

Input: A,B,Λ, F̄, G0, itermax.
Output: (F,X) satisfying (2a) and (2c).

Initialize: G0, X0 ← Solution of (18a),
Fns,0 ← G0X

−1
0 , i← 0

repeat
F ← F̄ ◦ Fns;

1 (Kns, X)← Algorithm 1(A+BF,B,Λ);
Fns ← F +Kns;
i← i+ 1;

until convergence or i > itermax;
return (F,X)

Remark 7. (Comparison of EAP Algorithms 3 and 4)
1. Projection property: In general, Algorithm 3 results in a
sparse EAP solution F that is considerably different from the
initial non-sparse Fns,0. In contrast, Algorithm 4 provides a
sparse solution F that is close to Fns,0. This is due to the fact
that Algorithm 4 updates the feedback by solving the optimiza-
tion problem (33), which minimizes the deviations between
successive feedback matrices. Thus, Algorithm 4 provides a
good (although not necessarily orthogonal) projection of a
given non-sparse EAP solution Fns,0 on the space of sparse
EAP solutions.
2. Complexity: The computational complexity of Algorithm
4 is considerably larger than that of Algorithm 3. This is
because Algorithm 4 requires a solution of a non-sparse
MGEAP problem in each iteration. In contrast, Algorithm 3
only requires projections on the range space of a matrix in
each iteration. Thus, Algorithm 3 is considerably faster as
compared to Algorithm 4.
3. Convergence: Although we do not formally prove the
convergence of heuristic Algorithms 3 and 4) in this paper,

4Since X is not an eigenvector matrix, we compute the eigenvectors
from X , normalize them, and then recompute real X from the normalized
eigenvectors.

a comprehensive simulation study in Subsection V-B suggests
that Algorithm 4 converges in almost all instances. In contrast,
Algorithm 3 converges in much fewer instances and its con-
vergence deteriorates considerably as the number of sparsity
constraints increase (see Subsection V-B). �

C. Algorithm for sparse MGEAP

In this subsection, we present an iterative projected gradient
algorithm to compute the sparse solutions of the MGEAP in
(2). The algorithm consists of two loops. The outer loop is
same as the non-sparse MGEAP Algorithm 1 (using steepest
descent) with an additional projection step, which constitutes
the inner loop. Figure 1 represents one iteration of the algo-
rithm. First, the gradient Z(Fk, Xk)fk is computed at a current
point Gk (equivalently (Fk, Xk), where Fk is sparse). Next,
the gradient is projected on the tangent plane of the sparsity
constraints (4), which is given by

TF =

{
y ∈ Rmn :

[
d(Qf)

dg

]T
y = 0

}

=
{
y ∈ Rmn : QZT(F,X)y = 0

}
. (34)

From P.14, the projection of the gradient on TF is
given by PFk

Z(Fk, Xk)fk, where PFk
= Imn −

[QZT(Fk, Xk)]+[QZT(Fk, Xk)]. Next, a move is made
in the direction of the projected gradient to obtain
Gns,k(Fns,k, Xns,k). Finally, the orthogonal projection of
Gns,k is taken on the space of sparsity constraints to obtain
Gk+1(Fk+1, Xk+1). This orthogonal projection is equivalent
to solving (33) with sparsity constraints (2c), which in turn is
equivalent to the original sparse MGEAP (2). Thus, the orthog-
onal projection step is as difficult as the original optimization
problem. To address this issue, we use the heuristic Algo-
rithm 4 to compute the projections. Although the projections
obtained using Algorithm 4 are not necessarily orthogonal,
they are typically good (c.f. Remark 7).

Gk

Gns,k

TF

Zkfk

PFk
Zkfk

Qf = 0 Gk+1 |{
z}

Algorithm 4

Fig. 1. A single iteration of Algorithm 5.

Algorithm 5 is computationally intensive due to the use
of Algorithm 4 in step 1 to compute the projection on the
space of sparse matrices. In fact, the computational complexity
of Algorithm 5 is one order higher than that of non-sparse
MGEAP Algorithm 1. However, a way to considerably reduce
the number of iterations of Algorithm 5 is to initialize it using
the approximately-sparse solution obtained by Algorithm 2. In
this case, Algorithm 5 starts near the the local minimum and,
thus, its convergence time reduces considerably.
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Algorithm 5: Sparse solution to the MGEAP

Input: A,B,Λ, F̄, G0, itermax.
Output: Local minimum (F̂ , X̂) of (2).

Initialize:
(F0, X0)← Algorithm 4(A,B,Λ, F̄, G0, itermax),
G0 ← F0X0, i← 0

repeat
α← Update step size;
gns ← g − αPFZ(F,X)f ;
Xns ← Solution of Sylvester equation (18a);
Fns ← GnsX

−1
ns ;

1 (F,X)← Algorithm 4(A,B,Λ, F̄, Gns, itermax);
G← FX;
i← i+ 1;

until convergence or i > itermax;
return (F,X)

V. SIMULATION STUDIES

In this section, we present the implementation details of
the algorithms developed in Section IV and provide numerical
simulations to illustrate their properties.

A. Implementation aspects of the algorithms

In the Newton descent step (step 3) of Algorithm 1, we
need to choose (omitting the parameter dependence nota-
tion) V such that H + V is positive-definite. We choose
V = δImn − Z1Z

T − ZZT
1 where, 0 < δ � 1. Thus, from

(20), we have: H + V = ZZT + εImn. Clearly, ZZT is
positive-semidefinite and the small additive term εImn ensures
that H + V is positive-definite. Note that other possible
choices of V also exist. In step 1 of Algorithm 1, we use
the Armijo rule to compute the step size α. Finally, we
use

∥∥∥dJdg
∥∥∥

2
< ε, 0 < ε � 1 as the convergence criteria

of Algorithm 1. For Algorithm 2, we analogously choose
VW = δImn − Z1,WZ

T − ZZT
1,W and the same convergence

criteria and step size rule as Algorithm 1. In both algorithms,
if we encounter a scenario in which the solution X of (18a)
is singular (c.f. paragraph below (18b)), we perturb G slightly
such that the new solution is non-singular, and then continue
the iterations. We remark that such instances occur extremely
rarely in our simulations.

For the sparse EAP Algorithm 3, we use the convergence
criteria eX = ‖[In2 − B̃(X)(B̃(X))+]ã(x)‖2 < ε, 0 <
ε � 1. For Algorithm 4, we use the convergence criteria
eF = ‖F − F̄ ◦ F‖F < ε, 0 < ε � 1. Thus, the iterations
of these algorithms stop when x lies in a certain subspace and
when the sparsity error becomes sufficiently small (within the
specified tolerance), respectively. Further, note that Algorithm
4 uses Algorithm 1 in step 1 without specifying an initial
condition G0 for the latter. This is because in step 1, we
effectively run Algorithm 1 for multiple initial conditions in
order to capture its global minima. We remark that the capture
of global minima by Algorithm 1 is crucial for convergence
of Algorithm 4.

As the iterations of Algorithm 4 progress, the sparse matrix
F achieves eigenvalue assignment with increasing accuracy.
As a result, near the convergence of Algorithm 4, the eigen-
values of A + BF and Λ are very close to each other. This
creates numerical difficulties when Algorithm 1 is used with
parameters (A + BF,B,Λ) in step 1 (see Assumption A4).
To avoid this issue, we run Algorithm 1 using a preliminary
feedback Fp, as explained below Assumption A4.

Finally, for Algorithm 5, we use the following convergence
criteria:

∥∥∥PF dJdg
∥∥∥

2
< ε, 0 < ε � 1. We choose stopping

tolerance ε typically between 10−6 and 10−5 for all the
algorithms.

B. Numerical study

We begin this subsection with the following example:

A =




−3.7653 −2.1501 0.3120 −0.2484
1.6789 1.0374 −0.5306 1.3987
−2.1829 −2.5142 −1.2275 0.2833
−13.6811 −9.6804 −0.5242 2.9554


,

B =

[
1 1 2 5
1 3 4 2

]T
, F̄ =

[
1 1 0 0
1 0 1 1

]
,

S = {−2,−1,−0.5± j}.

The eigenvalues of A are Γ(A) = {−2,−1, 1± 2j}. Thus,
the feedback F is required to move two unstable eigenvalues
into the stable region while keeping the other two stable eigen-
values fixed. Table I shows the non-sparse, approximately-
sparse and sparse solutions obtained by Algorithms 1, 2 and
5, respectively, and Figure 2 shows a sample iteration run
of these algorithms. Since the number of iterations taken by
the algorithms to converge depends on their starting points,
we report the average number of iterations taken over 1000
random starting points. Further, to obtain approximately-sparse
solutions, we use the weighing matrix with Wij = w if
F̄ij = 1. All the algorithms obtain three local minima, among
which the first is the global minimum. The second column in
X̂ and L̂ is conjugate of the first column (c.f. Remark 3). It
can be verified that the non-sparse and sparse solutions satisfy
the optimality conditions of Theorem III.2.

For the non-sparse solution, the number of iterations taken
by Algorithm 1 with steepest descent are considerably larger
than the Newton descent. This is because the steepest descent
converges very slowly near a local minimum. Therefore, we
use Newton descent steps in Algorithms 1 and 2. Next, observe
that the entries at the sparsity locations of the local minimum
feedbacks obtained by Algorithm 2 have small magnitude.
Further, the average number of Newton descent iterations
for convergence and the norm of the feedback obtained of
Algorithm 2 is larger as compared to Algorithm 1. This is
because the approximately-sparse optimization problem (27)
is effectively more restricted than its non-sparse counterpart
(18).

Finally, observe that the solutions of Algorithm 5 are sparse.
Note that Algorithm 5 involves the use of projection Algo-
rithm 4, which in turn involves running Algorithm 1 multiple
times. Thus, for a balanced comparison, we present the total
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TABLE I
COMPARISON OF MGEAP SOLUTIONS BY ALGORITHMS 1, 2 AND 5

Non-sparse solutions by Algorithm 1

X̂1 =

−0.0831 + 0.3288j

x̂∗
1

−0.5053 0.2031
0.1919− 0.4635j 0.5612 −0.2505
0.1603 + 0.5697j 0.5617 0.8441
0.3546 + 0.3965j −0.3379 0.4283


L̂1 =

−0.5569 + 1.4099j

l̂∗1

−0.9154 2.5568
−0.2967 + 1.0244j −0.5643 1.7468
−0.0687 + 0.0928j 0.0087 0.2722
0.2259− 0.2523j 0.0869 −0.4692


F̂1 =

[
−0.1111 −0.1089 −0.0312 −0.4399
−0.1774 −0.2072 0.0029 0.1348

]
, ‖F̂1‖F = 0.5580

F̂2 =

[
0.3817 −0.3349 0.7280 −0.2109
−0.0873 −0.4488 −0.4798 −0.0476

]
, ‖F̂2‖F = 1.1286

F̂3 =

[
0.3130 2.0160 1.2547 −0.6608
0.0683 −0.7352 −0.0748 −1.0491

]
, ‖F̂3‖F = 2.7972

Average # of Steepest/Newton descent iterations = 5402.1/15.5

Approximately-sparse solutions by Algorithm 2 with w = 30

F̂1 =

[
0.9652 −1.3681 0.0014 −0.0021
0.4350 −0.0023 −0.6746 −0.1594

]
, ‖F̂1‖F = 1.8636

F̂2 =

[
−1.0599 −1.7036 −0.0013 −0.0071
−0.1702 −0.0057 0.0263 −0.0582

]
, ‖F̂2‖F = 2.0146

F̂3 =

[
3.3768 2.2570 0.0410 −0.0098
−1.4694 −0.0061 0.1242 −3.8379

]
, ‖F̂3‖F = 5.7795

Average # of Newton descent iterations = 19.1

Sparse solutions by Algorithm 5

X̂1 =

−0.3370 + 0.3296i

x̂∗
1

−0.4525 0.5168
0.2884− 0.1698i 0.1764 −0.3007
−0.4705 + 0.5066i −0.7478 0.7831
0.2754 + 0.3347i −0.4527 0.1711


L̂1 =

 25.2072 + 16.5227i

l̂∗1

44.6547 82.3616
11.0347 + 11.8982i 12.5245 35.8266
−12.2600− 5.8549i −24.5680 −39.1736
−0.6417− 2.2060i −0.4383 −3.6464


F̂1 =

[
0.9627 −1.3744 0.0000 0.0000
0.4409 0.0000 −0.6774 −0.1599

]
, ‖F̂1‖F = 1.8694

F̂2 =

[
−1.0797 −1.7362 0.0000 0.0000
−0.1677 0.0000 0.0264 −0.0610

]
, ‖F̂2‖F = 2.0525

F̂3 =

[
3.4465 2.2568 0.0000 0.0000
−1.8506 −0.0000 0.3207 −4.0679

]
, ‖F̂3‖F = 6.0866

Average # of Newton descent iterations:
1. Using random initialization = 8231
2. Using initialization by Algorithm 2 = 715

number of Newton descent iterations of Algorithm 1 involved
in the execution of Algorithm 5.5 From Table I, we can
observe that Algorithm 5 involves considerably more Newton
descent iterations compared to Algorithms 1 and 2, since it
involves computationally intensive projection calculations by
Algorithm 4. One way to reduce its computation time is to
initialize is near the local minimum using the approximately
sparse solution of Algorithm 2.

Figure 3 shows a sample run of EAP Algorithms
3 and 4 for G0 =

[−1.0138 0.6851 −0.1163 0.8929
−1.8230 −2.2041 −0.1600 0.7293

]
.

The sparse feedback obtained by Algorithms 3 and 4
are F =

[
0.1528 −2.6710 0.0000 0.0000
−0.8382 0.0000 0.1775 −0.1768

]
and F =[

4.2595 4.2938 0.0000 0.0000
−0.2519 0.0000 −2.1258 −1.3991

]
, respectively. Observe that the

5Although the number of outer iteration of Algorithm 5 are considerably
less, for instance, 20 in Figure 2.

5 10 15 20 25
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Fig. 2. Optimization costs for a sample run of Algorithms 1, 2 and 5 (the
algorithms converge to their global minima).
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Fig. 3. Projection and sparsity errors for a sample run of (a) Algorithm 3
and (b) Algorithm 4, respectively.

projection error eX and the sparsity error eF decrease as the
respective algorithms progress.

Next, we provide an empirical verification of the conver-
gence of heuristic Algorithms 3 and 4. Let the sparsity ratio
(SR) be defined as the ratio of the number of sparse entries to
the total number of entries in F (i.e. SR = Number of 0′s in F̄

mn ).
We perform 1000 random executions of both the algorithms.
In each execution, n is randomly selected between 4 and 20
and m is randomly selected between 2 and n. Then, matrices
(A,B) are randomly generated with appropriate dimensions.
Next, a binary sparsity pattern matrix F̄ is randomly generated
with the number of sparsity entries given by bSR × mnc,
where b·c denotes rounding to the next lowest integer. To
ensure feasibility (c.f. Assumption A2 and discussion below),
we pick the desired eigenvalue set S randomly as follows: we
select a random Fr which satisfies the selected sparsity pattern
F̄, select S = Γ(A + BFr). Finally, we set itermax = 1000
and select a random starting point G0(F0, X0), and run both
algorithms from the same starting point. Let Fsol denote the
feedback solution obtained by Algorithms 3 and 4, respec-
tively, and let dFsol,F0 , ‖Fsol − F0‖F denote the distance
between the starting point F0 and the final solution.

TABLE II
CONVERGENCE PROPERTIES OF EAP ALGORITHMS 3 AND 4

SR Algorithm 3 Algorithm 4

1/4
Convergence instances = 427 Convergence instances = 997
Average dFsol,F0

= 8.47 Average dFsol,F0
= 1.28

1/2
Convergence instances = 220 Convergence instances = 988
Average dFsol,F0

= 4.91 Average dFsol,F0
= 1.61

2/3
Convergence instances = 53 Convergence instances = 983
Average dFsol,F0

= 6.12 Average dFsol,F0
= 1.92
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Table II shows the convergence results of Algorithms 3 and
4 for three different sparsity ratios. While the convergence
of Algorithm 3 deteriorates as F becomes more sparse,
Algorithm 4 converges in almost all instances. This implies
that in the context of Algorithm 5, Algorithm 4 provides a
valid projection in step 1 in almost all instances. We remark
that in the rare case that Algorithm 4 fails to converge, we
can reduce the step size α to obtain a new Gns and compute
its projection. Further, we compute the average of distance
dFsol,F0

over all executions of the Algorithms 3 and 4 that
converge. Observe that the average distance for Algorithm 4
is smaller than Algorithm 4. This shows that Algorithm 4
provides considerably better projection of F0 in the space of
sparse matrices as compared to Algorithm 3 (c.f. Remark 7).

VI. CONCLUSION

In this paper we studied the MGEAP for LTI systems with
arbitrary sparsity constraints on the static feedback matrix. We
presented an analytical characterization of its locally optimal
solutions, thereby providing explicit relations between an
optimal solution and the eigenvector matrices of the associated
closed loop system. We also provided a geometric interpreta-
tion of an optimal solution of the non-sparse MGEAP. Using
the Sylvester equation based parametrization, we developed a
projected gradient descent algorithm to solve the MGEAP. We
also presented two novel algorithms for solving the sparse EAP
and an algorithm to obtain approximately sparse solution to
the MGEAP. Various convergence properties of the algorithms
were discussed using numerical studies.

The analysis in the paper is developed under the assumption
that the sparse EAP problem with static feedback is feasible. A
future direction of research include finding necessary/sufficient
conditions for the feasibility of the sparse EAP, and formulat-
ing a convex relaxation of the sparse MGEAP with guaranteed
distance from optimality.
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