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Phase-amplitude coupling in neuronal oscillator networks
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Cross-frequency phase-amplitude coupling (PAC) describes the phenomenon where the power of a high-
frequency oscillation evolves with the phase of a low-frequency one. It has been widely observed in the brain and
linked to various brain functions. In this paper, we show that Stuart-Landau oscillators coupled in a nonlinear
fashion can give rise to PAC in two commonly accepted architectures, namely, (1) a high-frequency neural
oscillation driven by an external low-frequency input and (2) two interacting local oscillations with distinct,
locally generated frequencies. We characterize the parameters that affect PAC behavior, thus providing insight
on this phenomenon observed in neuronal networks. Inspired by some empirical studies, we further present
an interconnection structure for brain regions wherein cross-region interactions are established only by low-
frequency oscillations. We then demonstrate that low-frequency phase synchrony can integrate high-frequency
activities regulated by local PAC and control the direction of information flow between distant regions.
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I. INTRODUCTION

Oscillatory activity at multiple frequency bands is widely
observed in many natural, biological, and technological sys-
tems. Synchronization of oscillatory activity within the same
frequency band has attracted extensive attention in past
decades (e.g., see Ref. [1] and references therein). Yet, there is
an emerging body of evidence revealing that brain oscillations
in distinct frequency bands are also not independent, and they
are instead found to interact through cross-frequency coupling
[2,3].

As one of the most prevalent representations of cross-
frequency coupling, phase-amplitude coupling (PAC) occurs
when the power (or amplitude) of a high-frequency rhythm
is locked to (and often modulated by) the phase of a low-
frequency rhythm [4] [see Fig. 1(a)]. Brain signals recorded
by various techniques, e.g., local field potential, electroen-
cephalograph, and magnetoencephalograph, have revealed
that PAC emerges in numerous brain regions, including audi-
tory and prefrontal cortices [5], nucleus [6], and hippocampus
[7], and plays a crucial role in motor functions [8] and cog-
nitive processes such as working memory [9], attention [10],
and learning [11].

Moreover, PAC usually does not emerge in the brain as
an isolated phenomenon. In fact, regions exhibiting local
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PAC may also be phase-coupled in low-frequency bands. The
combination of cross-region phase synchronization and local
cross-frequency PAC can thus effectively integrate local in-
formation in distant brain regions (which is processed and
regulated by high-frequency oscillations [4]). For instance,
correlated γ rhythms (>30 Hz) between the cortex and the
striatum are typically established by cross-regional phase syn-
chronization in the θ band (4–8 Hz) and θ -γ PAC that happen
concurrently [12].

Existing work studies synchronization and PAC separately,
yet these two phenomena often occur simultaneously and
are generally interdependent. In the context of synchroniza-
tion, there is a vast amount of literature on the analysis of
phase-reduced models such as Kuramoto oscillators [13–17].
Previous studies have investigated synchronization under the
influence of many different factors including time delays [18],
noise [19,20], and network symmetries [21]. Some work is
also committed to the modeling of neuronal behaviors (e.g.,
see Refs. [22–24]). In the context of PAC, most research
efforts are directed toward the description and analysis of
this phenomenon in brain networks. Many of the existing
models focus on the microscopic scale [25,26], but they fail
to capture the behavior of larger neural populations. Some
attempts have been made to describe PAC at the population
level with the aid of neural mass models [27–31]. In those mi-
croscopic and population-level models, two architectures have
been accepted to generate PAC [32]: (1) A neural population
oscillating at high frequency (fast) is modulated by an external
low-frequency (slow) input [see Fig. 1(b)]; (2) two popula-
tions that, respectively, generate fast and slow oscillations
interact with each other [see Fig. 1(c)]. Yet, a model capable
of assimilating the aforementioned instances with large-
scale synchronization of multiple regions is still critically
missing.
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FIG. 1. An overview of PAC. (a) Illustration of PAC. (b), (c) Dif-
ferent architectures for the emergence of PAC: (b) A fast population
with an external slow input (e.g., sensori stimulus); (c) Two interact-
ing populations with distinct local oscillations (which also constitute
a simplified brain region). (d) Cross-region interconnection structure.

In this paper, we employ the Stuart-Landau (SL) equation
to model cross-frequency PAC and same-frequency synchrony
by considering two coupling schemes. We show that SL oscil-
lators with distinct frequencies coupled in a nonlinear fashion
can exhibit PAC in both architectures depicted in Figs. 1(b)–
1(c). Our results reveal that specific parametric relationships
modulate the emergence of PAC and its intensity, provid-
ing new insight on PAC behaviors in neuronal networks.
For oscillators within the same frequency band, the stan-
dard linear coupling scheme for the SL model is considered,
which characterizes same-frequency phase synchrony. More-
over, inspired by previous studies showing that low-frequency
oscillations are better suited for establishing long-distance
interactions than high-frequency ones [12,33], we put forth
an interconnection structure [see Fig. 1(d)] in which cross-
region interactions exist only between slow populations.
This structure underlies the integration of cross-frequency
coupling with same-frequency phase synchronization and
constitutes a building block that can be easily scaled to form
large networks. We then demonstrate the important role that
long-distance same-frequency phase synchrony, together with
regional PAC, plays in the coordination of high-frequency
local activity and in information routing.

II. OSCILLATOR MODEL

We start by introducing the SL equation:

ż = (σ + iω − |z|2)z, (1)

where z is a complex state (z = x + iy), with i = √−1, and
σ and ω are real. The SL oscillator is also known as a Hopf
oscillator, because, for σ < 0, the model undergoes a subcrit-
ical Hopf bifurcation with z = 0 being globally stable, and for
σ > 0, the model undergoes a supercritical Hopf bifurcation
with z converging to a limit cycle of radius

√
σ and angular

frequency ω. The SL oscillator can equivalently be described
in polar coordinates by letting z = reiθ , where r and θ are
referred to as the amplitude and phase angle of the oscillator,
respectively. While phase-only models such as the Kuramoto

model have been widely used to study synchrony in brain
oscillations, the SL model, like many other phase-amplitude
models [34–36], can capture richer behaviors than phase-only
ones [37,38].

Many studies have shown that the dynamics of a network
of neurons reduce to the SL equation (e.g., see Refs. [39,40]).
Therefore, despite the apparent simplicity, the SL equation has
been used to approximate neural behaviors at the population
level (e.g., see Refs. [24,41,42]). Local synaptic coupling can
synchronize the firing activity of neurons [32] and then bring
the population from a stationary to an oscillatory regime by
shifting the parameter σ in Eq. (1) from negative to positive.
The oscillation frequency mainly depends on the intrinsic
decay time of inhibition in the population [43].

Inspired by the previous work, we use the SL equation
given in Eq. (1) as a model system in this paper, aiming at pro-
viding insight on collective behaviors of neuronal networks.
The simplicity of the SL model enables us to describe the
dynamics of large networks and analyze how the parameters
of the networks affect the collective behaviors across frequen-
cies. The analysis leads to some theoretical hypotheses that
may be tested in networks of real neuronal populations.

III. EMERGENCE OF PAC BY EXOGENOUS INPUTS

We first show how PAC can arise in a population oscillating
at a high frequency subject to a slow exogenous input [i.e., the
architecture depicted in Fig. 1(b)].

Consider the dynamics of the population with an input u,
i.e.,

żf = (δf + iωf − |zf |2)zf + zfkI u, (2)

where zf = xf + iyf . We let δf > 0 and ωf > 0 such that there
is a fast intrinsic oscillation in this neuronal population. Such
self-sustained, fast oscillations (e.g., γ -oscillations) have been
observed in hippocampus [11], striatum [44], neocortex [45],
and other brain areas.

The input u can represent various sensory signals from
sensory cortices [32,46]. A complex-valued u brings changes
to the fast self-sustained oscillation by shifting the parameters
δf and ωf . The strength kI scales the influence of u on the fast
oscillation.

Although more general inputs are allowed, we consider u a
sinusoidal signal of amplitude (or strength) kI for the purposes
of simple illustration, i.e., u = sin(ωIt ). Consequently,

żf = (δf + kI sin(ωIt ) + iωf − |zf |2)zf .

Then, σ , which determines the types of bifurcation in Eq. (1),
becomes time dependent, i.e., σ (t ) = δf + kI sin(ωIt ). It can
be seen that the fast amplitude rf tends to converge to

√
σ (t ),

which means that PAC should emerge.
Notice that, depending on how the fast oscillation behaves

throughout the slow cycle, PAC can be categorized into con-
tinuous and intermittent [32]. In the former, the fast oscillation
is constantly active, while in the latter, the fast oscillation
only appears in a certain phase interval of the slow cycle.
Our model is capable of capturing both categories of PAC,
and the input magnitude determines which type will occur.
We remark that PAC is different from beating, a well-known
phenomenon in acoustic and mechanical systems, describing
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FIG. 2. PAC by exogenous inputs. (a), (b) A weaker input (kI =
3) yields continuous PAC, while a strong one (kI = 18) yields in-
termittent PAC, where δf = 6 for both. (c) The δf in (a) is reduced
from 6 to 0.3, and a noticeable phase lag appears between peaks
(or valleys) of the fast amplitude oscillation and the slow phase
oscillation. (d)–(f) The dependence of PAC intensity (quantified by
the MI) on the input strength (d), the input frequency (e), and the
fast frequency (f). (Parameters adopted in this figure: If not specified
otherwise, δf = 0.3, kI = 3 ω f = 3 Hz, and ωI = 0.5 Hz.)

the situation where the superposition of two signals with simi-
lar frequencies and amplitudes exhibits a periodic variation on
the amplitude envelope. Unlike PAC, there is no other signal
modulating the variation of the amplitude envelope [47].

For a weak input, where kI < δf , σ (t ) is always positive
and the fast population remains in the oscillatory regime,
which implies that continuous PAC arises [see Fig. 2(a)].
Conversely, for a strong input, where kI > δf , σ (t ) can be
negative in some interval of the slow cycle. In these intervals,
the fast population is driven out of the oscillatory regime.
Thus, rf tends toward 0, and the fast oscillation may disappear.
We illustrate intermittent PAC for large kI in Fig. 2(b).

One can observe from Figs. 2(a) and 2(b) that the peaks and
valleys of the fast amplitude oscillation appear almost simul-
taneously as those of the slow input oscillation, respectively.
However, this situation does not always happen, and it highly
depends on δf in Eq. (2). As pointed out in Ref. [48], since σ in
Eq. (1) determines the convergence rate to the limit cycle, we
then reason that the rate of rf tracking

√
σ (t ) is also positively

correlated with δf . Therefore, a larger δf means a smaller
phase lag. Figure 2(c) demonstrates that a noticeable phase
lag appears for a smaller δf in comparison with Fig. 2(a).

After revealing the emergence of PAC, we investigate how
this phenomenon depends on the model parameters. More pre-
cisely, we utilize the Modulation Index (MI) [49] to measure
PAC intensity (see its definition and details for its computation
in the Appendix). As we have reasoned that the fast amplitude
rf tends to track

√
σ (t ) = √

δf · √
1 + kI/δf sin(ωIt ), it is clear

that a larger ratio kI/δf implies larger fluctuations in rf than a
weaker one. That is, the PAC intensity increases with kI/δf

[see Fig. 2(d)]. Additionally, for a fixed a ratio kI/δf , varia-
tions of δf impact the fluctuations of rf : A larger δf implies
more intense PAC [see Fig. 2(d)].

The input frequency ωI, which is called modulating fre-
quency, also has a profound impact on the PAC intensity. As
σ (t ) = δf + kI sin(ωIt ), a smaller ωI means a more slowly

varying σ (t ), which is easier for the fast amplitude rf to track.
Figure 2(e) shows that the PAC intensity decreases as ωI in-
creases. By contrast, the fast frequency ωf has little influence
on the PAC intensity [see Fig. 2(f)].

So far we have focused on the emergence of PAC in the
architecture shown in Fig. 1(b). That is, a slowly oscillating
input to the fast population modulates the fast amplitude.
However, some in vitro studies have shown that besides high-
frequency rhythms, low-frequency ones can also be generated
locally in a single brain region [50,51]. These heteroge-
neous rhythms then interact as in the architecture depicted in
Fig. 1(c). We now turn to the study of this architecture.

IV. PAC BY LOCAL INTERACTIONS: SHAPING
OF A BRAIN REGION

As depicted in Fig. 1(c), a fast population may locally
interact with a slow one. The two population dynamics are

żs = (δs + ivs − |zs|2)zs + zs f (zf ), (3)

żf = (δf + ivf − |zf |2)zf + z f f (zs), (4)

where zs = xs + iys, zf = xf + iyf , and δs, δf > 0. The oscilla-
tors’ natural frequencies are determined by vs and vf , with
vf > vs. The complex function f (·) describes how the two
populations are interconnected. If the connection is unidi-
rectional from the slow population to the fast one (a case
studied in Ref. [52]), i.e., f (zf ) = 0, then Eq. (4) reduces to
Eq. (2) with input u = f (zs). In this case, our analysis above
concludes that PAC emerges if f (zs) is a function of the slow
phase.

We next turn our attention to the more interesting case
wherein the interaction between the two populations is bidi-
rectional. In this paper, we simply consider f (z) = kz, and it
is worth mentioning that our analysis below applies to other
interconnection functions. Then, Eq. (3) and Eq. (4) become

żs = [(δs + kxf ) + i(vs + kyf ) − |zs|2]zs, (5)

żf = [(δf + kxs ) + i(vf + kys ) − |zf |2]zf . (6)

In polar coordinates, zs = rseiθs and zf = rfeiθf . It can be ob-
served that the terms σ and ω, which determine the amplitude
and phase in the slow and fast population in Eq. (1), read as
σs = δs + kxf , ωs = vs + kyf , and σf = δf + kxs, ωf = vf +
kys, respectively. Interestingly, the amplitudes and phases of
the two populations become dependent on one another due to
the interconnection. Notice that such dependence is asymmet-
ric due to the frequency difference.

We find that the slow oscillation remains relatively inde-
pendent from the fast one. Since vf > vs, one can see that zf

oscillates faster than the zs. Applying averaging techniques
developed in Ref. [53] to the dynamics in Eq. (5), we obtain
the approximate guiding system

˙̂zs = (δs + ivs − |ẑs|2)ẑs,

which corresponds to the dynamics of the decoupled slow
population. The solutions to Eq. (5) and the guiding system
satisfy

‖zs(t ) − ẑs(t )‖ � cvs/v f
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FIG. 3. PAC by local interactions. (a) Ds/δs with Ds =
supt ||zs(t ) − ẑs(t )|| measures the derivation of zs(t ) from the solu-
tion of its decoupled counterpart. As vf/vs increases, the derivation
shrinks dramatically (k = 5, δf = 0.3). (b) PAC emerges by local
interaction between two populations as in Fig. 1 (c), where the slow
frequency is 6.5 Hz (θ band), and the fast one is 30Hz (γ band).
(c) PAC intensity (measured by the MI) increases with kδs/δf . Given
a fixed ratio kδs/δf , PAC becomes more intense for larger δf .

for some positive c. Loosely speaking, the slow trajectory
zs(t ) fluctuates in the neighborhood of the trajectory of its
decoupled counterpart ẑs(t ). Such fluctuations decrease as the
two frequencies separate [see Fig. 3(a)].

In contrast, Eq. (6) can be rewritten as

żf = [(δf + krs cos θs) + i(vf + rs sin θs) − |zf |2]zf

Similar to our earlier analysis, the fast amplitude rf tends to
track

√
δf + krs cos θs, which implies PAC.

Let the fast population in Fig. 1(c) oscillate in the γ band
and the slow population oscillate in the θ band (a choice com-
patible with empirical observations). Figure 3(b) shows that
PAC emerges from the interaction of these two populations.
The PAC intensity here also depends on the slow amplitude rs,
which is determined by δs. Note that the connection strength
k also affects PAC intensity. Therefore, one can infer that the
PAC becomes more intense as kδs/δf increases [see Fig. 3(c)].
Similar to the previous section, a larger δf also yields more
intense PAC.

So far a single oscillator has been employed to capture the
dynamics of oscillations in each frequency band. In practice,
each frequency band may consist of a number of similar but
heterogeneous oscillators, forming slow and fast clusters [see
Fig. 4(a)]. The oscillators are diffusively connected within
each cluster, and the cross-cluster (or cross-frequency) inter-
connections are in the same nonlinear fashion as considered
in Eq. (5) and Eq. (6). Then, their dynamics are governed by

żi
s = (

δi
s + ivi

s − |zi
s|2

)
zi

s

+ ks

n

n∑
j=1

ai j
(
z j

s − zi
s

) + k

m
zi

s

m∑
p=1

cipzp
f ,

żp
f = (

δ
p
f + ivp

f − |zp
f |2

)
zp

f

+ kf

m

m∑
q=1

bpq
(
zq

f − zp
f

) + k

n
zp

f

n∑
i=1

cipzi
s,

where we have assumed that there are n and m oscillators in
the slow and fast clusters, respectively. The matrix A = [ai j] ∈
Rn×n is the adjacency matrix of the slow cluster, where there is
an undirected connection between the ith and jth oscillators if
ai j > 0. Likewise, B = [bpq] ∈ Rn×n is the adjacency matrix
of the fast cluster. The matrix C = [cip] ∈ Rn×m describes the

FIG. 4. General structure for a brain region. (a) Heterogeneous
oscillators constitute each frequency band. (b) The dependence of
the PAC intensity (quantified by the MI) on the intracluster coupling
strengths ks and kf . For simplicity, we consider n = m = 20, and
the within-cluster connections and the cross-cluster interconnections
are both assumed to be all-to-all. Parameters δi

s, δ
p
f , vi

s, and v
p
f are

randomly drawn from normal distributions N (δs, �s ), N (δf ,� f ),
N (vs,Vs ), and N (vf ,Vf ), respectively. Each cluster is considered to
consist of 20 oscillators, and K = 1, (δs, �s ) = (8, 0.8), (δf , �f ) =
(1, 0.1), (vs,Vs ) = (4, 0.4), and (vf ,Vf ) = (40, 2). For each pair of
ks and kf , the MI value in the figure is the mean for 1000 random
trials.

cross-frequency interconnections, i.e., there is an undirected
interconnection between the ith oscillator in the slow cluster
and the pth oscillator in the fast cluster if cip > 0. Here ks and
kf are the coupling strengths within the slow and fast cluster,
respectively, and k represents the cross-frequency coupling
strength.

Phase synchrony may affect the intensity of PAC between
the slow and the fast clusters. Surprisingly, for a fixed inter-
cluster connection k, Fig. 4(b) shows that the intensity of PAC
mainly depends on the ks. In other words, the synchrony level
of the modulating (slow) cluster, determined by the coupling
strength of the slow cluster ks, plays a dominant role in con-
trolling the PAC intensity. In contrast, the synchrony in the
modulated cluster is negligible.

We put forth that the architecture depicted in Fig. 1(c) [or a
more general version Fig. 4(a)] constitutes the basic organiza-
tion of a brain region containing oscillations in two frequency
bands. This architecture can be easily extended to account for
situations in which more than two frequency bands coexist in
a single brain region.

Because numerous brain functions require synchronous
activation of different brain regions, we now extend the single-
region architecture discussed above [see Fig. 1(c)] to multiple
coupled regions.

V. PHASE SYNCHRONY GOVERNS
PAC ACROSS DISTANT REGIONS

As a building block for more complex network structures,
we consider a two-region clique as depicted in Fig. 1(d),
wherein interaction across brain regions is established by
oscillations in the low-frequency range. Then, we show how
cross-region phase synchrony contributes to integrate local
high-frequency activities across long distances and to control
the direction of information flow between regions.
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FIG. 5. Roles of low-frequency phase synchrony. (a) PLV of the
fast amplitudes in the two regions against the ratio Kc/�ωs. The
line indicated the mean of 1000 random realizations contained in
the shaded area. It can be inferred that the fast populations becomes
more correlated as the synchrony of the slow oscillations increases.
(b), (c) Lead-lag relationship between the two signals: z1

s precedes z2
s

if v1
s > v2

s and vice versa.

Under the structure depicted in Fig. 1(d), the dynamics of
the neural populations become

żp
s = (

δp
s + ivp

s − |zp
s |2

)
zs + kpzp

s zp
f + kc

(
z−p

s − zp
s

)
, (7)

żp
f = (

δ
p
f + ivp

f − |zp
f |2

)
zf + kpzp

f zp
s , (8)

where the superscript p ∈ {1, 2} is the region index (−p = 2
if p = 1 and −p = 1 otherwise). Notice that the cross-region
connection within the same frequency band is diffusive, which
permits synchrony of slow oscillations. Here, kp and kc are the
within- and cross-region connection strengths, respectively.

We find that the cross-region connection strength kc deter-
mines the phase synchrony between the two slow populations.
One can reason that if the slow phases are synchronized,
the fast amplitudes also behave coherently, provided there
is local PAC in each region. Let r̄1

f and r̄2
f be the average

amplitudes in the two regions. To measure the correlation of
these two amplitudes, we calculate the phase-locking value
(PLV) [49]. A large PLV implies that the two amplitudes are
highly correlated (see the definition of computation of PLV in
the Appendix). Let �ωs = |v1

s − v2
s | be the natural frequency

of the two slow populations. The ratio kc/�ωs determines the
synchrony of the slow populations. Figure 5(a) shows that the
PLV increases with the ratio kc/�ωs. Phase synchronization
in the low-frequency range coordinates local high-frequency
activities regulated by PAC, which is consistent with empirical
studies such as Ref. [12].

Finally, we put forth that the considered model may shed
new light on the directionality of information flow across
brain regions. Specifically, we show how natural frequency
differences affect the lead-lag relationship of oscillatory
rhythms between brain regions. It suffices to investigate the
lead-lag direction in the low-frequency range, as we already
know that slow oscillations govern communications across
regions. Moreover, within each region the slow population
remains relatively independent from the fast one. Thus it is
sufficient to study the two diffusively coupled slow popula-
tions in Fig. 1(d), whose dynamics are approximately

żp
s = (

δp
s + ivp

s − ∣∣zp
s

∣∣2)
zs + kc

(
z−p

s − zp
s

)
, (9)

where p = 1, 2, and −p = 2 if p = 1, −p = 1 if p = 2. In
polar coordinates, zp

s = rp
s eiθ p

s , and Eq. (9) can be rewritten

as

ṙ p
s = [

δp
s − (

rp
s

)2]
rp

s + kc
[
r−p

s cos
(
θ−p

s − θ p
s

) − r−p
s

]
,

θ̇ p
s = vp

s + kc
r−p

s

rp
s

sin
(
θ−p

s − θ p
s

)
.

For a strong connection kc, the system converges to a solu-
tion with synchronized frequencies and constant but different
amplitudes, i.e., θ̇1

s − θ̇2
s = 0, ṙ1

s = 0, and ṙ2
s = 0. Letting

θ1
s − θ2

s = c12 yields

v1
s − v2

s − kc

(
r2

s

r1
s

+ r1
s

r2
s

)
sin c12 = 0,

which has a solution

c12 = arcsin
(v1

s − v2
s

kcλ

)
,

with λr2
s /r1

s + r1
s /r2

s > 0. Note that we do not discuss the

other solution c12 = π − arcsin( v1
s −v2

s
kcλ

) since it is unstable.
The system converges to a solution wherein the phase θ2

s
lags behind (resp. leads) θ1

s if v1
s > v2

s (resp. v1
s < v2

s ), which
we illustrate in Figures. 5(b)–5(c). Suppose v1

s > v2
s , then we

have that

z2
s (t ) = r2

s cos
[
θ2

s (t )
] + i sin[θ2

s (t )] = r2
s

r1
s

z1
s

(
t − c12

ω

)
,

with ω being the synchronized frequency, which means that z2
s

lags behind z1
s by τ = c12/ω. This behavior may suggest that

the former acts as the information sender, and the latter acts as
the receiver, since phase lead-lag relationship is widely used in
previous studies to infer the directionality of the information
flow (e.g., see Refs. [54,55]).

To summarize, we postulate that synchronization supports
effective communication, and that the natural frequency dif-
ferences determine the information flow directionality. We
conjecture that the brain is capable of controlling this direc-
tionality effectively by manipulating the natural frequencies
of neural populations. Further experimental studies are needed
to investigate these conjectures. We remark that our findings
provide some useful insights regarding the inference of direc-
tionality in information flow. As low-frequency oscillations
are much more engaged in cross-region communication than
the high-frequency counterparts, the latter may be filtered out
from recorded signals when analyzing information flow across
distant regions.

VI. CONCLUDING REMARKS

In this paper, we have focused on studying cross-frequency
phase-amplitude coupling in neuronal networks. With the aid
of the SL equation and a nonlinear coupling scheme, we
demonstrate the parametric relationships that modulate PAC
intensity. These relationships point to hypotheses that could
be tested for real neuronal networks. Different from exiting
models that are intricate, the considered model is clean and
simple enough to allow theoretical insights. Further, we have
provided a cross-region structure for interactions of multiple
brain regions, which enable the study of PAC and phase syn-
chronization simultaneously. We believe that the combination
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of this interconnection structure and the the SL model may
also pave a way to study other cross-frequency coupling apart
from PAC, same-frequency phase synchrony, and their inter-
play.

The brain is a complex network. How different regions are
integrated in numerous cognitive processes may depend on
brain network structure. Our work can be further extended
to study the important role of network structure in affecting
cross-frequency coupling, phase synchronization, and, in turn,
the cognitive performance such as working memory, attention,
and learning.
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APPENDIX

1. Modulation Index

Since its introduction, the MI serves as a popular measure
to quantify the PAC intensity [49]. In the following, we sum-
marize the steps to compute the MI.

We first derive the phase-amplitude distribution P of two
complex signals—a slow one, zs(t ) = xs(t ) + iys(t ), and fast
one, zf (t ) = xf (t ) + iyf (t )—as follows:

(1) We extract the time series of the phases of zs(t ). For
each time instant t , the phase is θs(t ) in zs(t ) = rs(t )eiθs (t ).

(2) Extract the time series of the amplitude envelope of
zf (t ). Analogously, the amplitude at each time instant t is rf (t )
in zf (t ) = rf (t )eiθf (t ).

(3) Divide the phases θs(t ) into n bins, where n can be any
positive number. We use n = 18 in this paper, i.e., we bin the
phase interval 0 to 360◦ into 18 intervals of 20◦. For each bin,
we calculate the mean of rf (t ), denoted by 〈rf〉i. Specifically,
〈rf〉i = 1

N

∑N
j=1 rf (t j ), where t j are the sample points such that

θs(t j ) belong to the ith bin and N is the number of such sample
points.

(4) Normalize the mean amplitude in each bin by P( j) =
〈rf 〉i∑n
j=1〈rf 〉 j

.

Notice that the phase-amplitude distribution satisfies
P(i) � 0 for any i and

∑n
j=1 P( j) = 1, akin to a probability

mass function. The intensity of PAC can be inferred intuitively
by visual inspection of the plot of P over all the bins. Never-
theless, to provide a quantitative measure of PAC intensity, the
MI is defined as

MI = DKL(P,U )

log(n)
,

where DKL(P,U ) = log(n) − H (P), H (P) =
−∑n

j=1 P( j) log[P( j)], and U represent the uniform
distribution. Loosely speaking, the MI is a scaled
Kullback-Leibler distance of the phase-amplitude distribution
from the uniform distribution, satisfying 0 � MI � 1.
Note that the Kullback-Leibler distance is widely used in
information theory and statistics to measure the distance
between two distributions. MI = 1 means that P is a
Dirac-like distribution, while MI = 0 is equivalent to a
uniform distribution. Thus, for any signal, a larger MI means
more intense PAC.

2. PLV

Given two time series of phases φ1(t ) and φ2(t ), the PLV
is computed using the following formula:

PLV = 1

T

∣∣∣∣∣
T∑

t=1

ei[φ1(t )−φ2(t )]

∣∣∣∣∣, (A1)

where T is the number of sample time points. The PLV takes
value on [0,1], where 1 reflects that the two phases are locked
and 0 means that they are completely desynchronized. For a
real signal, its time series of phases can be computed using
the Hilbert transform.

In our case, we use PLV to measure the correlation of
the fast amplitudes between regions. Let r̄1

f (t ) and r̄2
f (t ) be

the average amplitudes in the two regions. Using the Hilbert
transform, the series of phases, denoted by �(r̄1

f ) and �(r̄2
f ),

can be computed, respectively. Therefore, the PLV value of
�(r̄1

f ) and �(r̄2
f ) can be obtained by Eq. (A1). A large PLV

means that the two fast amplitudes are highly correlated, while
PLV = 0 implies that they are uncorrelated.
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