Latest: Recipient of the Antonio Ruberti Young Researcher Prize (2023)

Fabio Pasqualetti

BIO and Research Interests

I am a Professor of Mechanical Engineering at the University of California, Riverside. I received a Ph.D. in Mechanical Engineering from the University of California, Santa Barbara in 2012. Prior to that, I completed a Laurea Magistrale (M.S. equivalent) in Automation Engineering and a Laurea (B.S. equivalent) in Computer Engineering at the University of Pisa, Italy, in 2007 and 2004. I am a Senior Member of IEEE.

My research focuses on control and network systems, machine learning, and computational neuroscience. I am the recipient of the Antonio Ruberti Young Researcher Prize (2023), the Young Investigator Research Award from the Air Force Office of Scientific Research (2019), and the Young Investigator Award from the Army Research Office (2017). Our articles received the O. Hugo Schuck Best Paper Award (2021), the Roberto Tempo Best CDC Paper Award (2020), the Control Systems Letters Outstanding Paper Award (2020), the ACC Best Student Paper Award (2019), and the IEEE Transactions on Control of Network Systems Outstanding Paper Award (2016).

Featured Presentations

Brain Networks and Control

Brain Networks and Control

We investigate the control principles underlying brain function, combining network neuroscience with control theory. Our work develops new methodologies to understand how the brain's structural connectivity shapes its dynamics and how external stimulation can be used to guide neural activity patterns.

Brain-Inspired Computing

Brain-Inspired Computing

We take inspiration from the human brain to design novel architectures for learning, decision making, and computation. Our approach leverages the theories of dynamical systems, control, and optimization to create algorithms that combine biological plausibility with engineering innovation and mimic the brain's efficiency.

Cyber-Physical Systems Security

Cyber-Physical Systems Security

We develop theoretical frameworks and computational tools to analyze and enhance the security of cyber-physical systems, with particular focus on power grids, autonomous vehicles, and industrial control systems. Our research combines control theory, optimization, and machine learning to detect and mitigate cyber attacks.

Network Control Theory

Network Control Theory

Our research explores fundamental properties of complex networks and develops novel control strategies for networked systems. We focus on problems of controllability, observability, and optimal control in large-scale networks, with applications ranging from transportation systems to social networks.

Robotics and Autonomous Systems

Robotics and Autonomous Systems

Our lab develops control and optimization algorithms for robotic systems, with a focus on multi-agent coordination, path planning, and learning-based control. We combine theoretical advances in control theory with practical implementation in robotic platforms.

[177] T. Guo, F. Pasqualetti, "Transfer Learning for LQR Control", Learning for Dynamics & Control (2025) (submitted).

[176] U. Casti, G. Baggio, S. Zampieri, F. Pasqualetti, "Controllable Neural Architectures for Multi-Task Control", European Control Conference (2025) (submitted).

[175] C. De Persis, D. Gadginmath, F. Pasqualetti, P. Tesi, "Feedback linearization through the lens of data", IEEE Transactions on Automatic Control (2024) (submitted).

[174] D. Gadginmath, S. Tripathi, F. Pasqualetti, "Fusing Multiple Algorithms for Heterogeneous Online Learning", IEEE Control Systems Letters (2024) (submitted).

[173] K. Elamvazhuthi, S. Oymak, F. Pasqualetti, "Noise in the reverse process improves the approximation capabilities of diffusion models", ArXiv (2024) (submitted).

[172] S. Tripathi, A. A. Al Makdah, F. Pasqualetti, "Time Varying Quadratic Optimization With Unknown Objective Function Using Noisy Gradients", American Control Conference (2024) (submitted).

[171] Y. Qin, F. Pasqualetti, D. S. Bassett, M. van Gerven, "Vibrational Control of Complex Networks", IEEE Transactions on Control of Network Systems (2024) (submitted).

[170] K. P. Szymula, F. Pasqualetti, A. M. Graybiel, T. M. Desrochers, D. S. Bassett, "Habit learning supported by efficiently controlled network dynamics in naive macaque monkeys", Nature Neuroscience (2020) (submitted). PDF

[169] A. A. Al Makdah, F. Pasqualetti, "Model-based and Data-based Dynamic Output Feedback for Externally Positive Systems", IEEE Conf. on Decision and Control (2024).

[168] D. Gadginmath, V. Krishnan, F. Pasqualetti, "Data-Driven Feedback Linearization using the Koopman Generator", IEEE Transactions on Automatic Control (2024).

[167] G. Bianchin, F. Pasqualetti, "Navigation Systems May Deteriorate Stability in Traffic Networks", IEEE Open Journal of Control Systems, vol. 3, pp. 239-252 (2024). PDF

[166] K. Elamvazhuthi, D. Gadginmath, F. Pasqualetti, "Denoising Diffusion-Based Control of Nonlinear Systems", IEEE Conf. on Decision and Control (2024).

[165] K. Elamvazhuthi, X. Zhang, S. Oymak, F. Pasqualetti, "A Score-based Deterministic Diffusion Algorithm with Smooth Scores for General Distributions", AAAI Conference on Artificial Intelligence, vol. 38 (2024).

[164] L. Gong, F. Pasqualetti, T. Papouin, S. Ching, "Astrocytes as a mechanism for meta-plasticity and contextually-guided network function", PLoS Computational Biology (2024).

[163] L. Parkes, J. Kim, J. Stiso, J. Brynildsen, M. Cieslak, S. Covitz, R. Gur, R. Gur, F. Pasqualetti, R. Shinohara, D. Zhou, T. Satterthwaite, D. S. Bassett, "A network control theory pipeline for studying the dynamics of the structural connectome", Nature Protocols (2024). DOI

[162] S. Cianchi, F. Celi, P. Tesi, F. Pasqualetti, "Data-driven Expressions for the Control of Network Systems with Asynchronous Experiments", IEEE Conf. on Decision and Control (2024).

[161] S. Zhang, D. Gadginmath, F. Pasqualetti, "Predicting AI Agent Behavior through Approximation of the Perron-Frobenius Operator", Advances in Neural Information Processing Systems (2024).

[160] T. Guo, A. A. Al Makdah, P. Tesi, F. Pasqualetti, "A Data-driven Stability Test for LTI systems", IEEE Conf. on Decision and Control (2024).

[159] Y. Qin, A. El-Gazzar, D. S. Bassett, F. Pasqualetti, M. van Gerven, "Analytical Characterization of Epileptic Dynamics in a Bistable System", IEEE Conf. on Decision and Control (2024).

[158] Z. Du, S. Oymak, F. Pasqualetti, "Prediction for Dynamical Systems via Transfer Learning", IEEE Conf. on Decision and Control (2024).

[157] A. A. Al Makdah, F. Pasqualetti, "On the Sample Complexity of the Linear Quadratic Gaussian Regulator", IEEE Conf. on Decision and Control (2023).

[156] C. De Persis, D. Gadginmath, F. Pasqualetti, P. Tesi, "Data-Driven Feedback Linearization with Complete Dictionaries", IEEE Conf. on Decision and Control (2023).

[155] F. Celi, G. Baggio, F. Pasqualetti, "Distributed Data-Driven Control of Network Systems", IEEE Open Journal of Control Systems, vol. 2, pp. 93-107 (2023). DOI

[154] F. Celi, G. Baggio, F. Pasqualetti, "Data-driven Eigenstructure Assignment for Sparse Feedback Design", IEEE Conf. on Decision and Control (2023).

[153] F. Celi, G. Baggio, F. Pasqualetti, "Closed-form and Robust Formulas for Data-driven LQ Control", Annual Reviews in Control, vol. 56 (2023).

[152] K. Elamvazhuthi, X. Zhang, S. Oymak, F. Pasqualetti, "Learning on Manifolds: Universal Approximations Properties using Geometric Controllability Conditions of Neural ODEs", Learning for Dynamics & Control (2023).

[151] S. Rakshit, F. Pasqualetti, "Robustness of Synchronization with Heterogeneous Self-dynamics and Interactions", IEEE Control Systems Letters (2023).

[150] T. Guo, A. A. Al Makdah, V. Krishnan, F. Pasqualetti, "Imitation and Transfer Learning for LQG Control", IEEE Control Systems Letters, vol. 7, pp. 2149-2154 (2023).

[149] T. Menara, F. Pasqualetti, "Modeling, Analisys, and Control of Functional Brain Networks", Control for Societal-Scale Challenges: Road Map 2030 (2023).

[148] Y. Chen, A. M. Ospina, F. Pasqualetti, E. Dall'Anese, "Multi-Task System Identification of Similar Linear Time-Invariant Dynamical Systems", IEEE Conf. on Decision and Control (2023).

[147] Y. Qin, A. M. Nobili, D. S. Bassett, F. Pasqualetti, "Vibrational Stabilization of Cluster Synchronization in Oscillator Networks", IEEE Open Journal of Control Systems, vol. 2, pp. 439-453 (2023). DOI

[146] Y. Qin, Y. Li, F. Pasqualetti, M. Fazel, S. Oymak, "Stochastic Contextual Bandits with Long Horizon Rewards", AAAI Conference on Artificial Intelligence (2023).

[145] A. Allibhoy, F. Celi, F. Pasqualetti, J. Cortés, "Optimal Network Interventions to Control the Spreading of Oscillations", IEEE Open Journal of Control Systems, vol. 1, pp. 141-151 (2022).

[144] A. A. Al Makdah, V. Krishnan, F. Pasqualetti, "Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness", IEEE Open Journal of Control Systems, vol. 1, pp. 85-99 (2022). DOI

[143] A. A. Al Makdah, V. Krishnan, V. Katewa, F. Pasqualetti, "Behavioral Feedback for Optimal LQG Control", IEEE Conf. on Decision and Control, pp. 4660-4666 (2022). PDF

[142] A. M. Nobili, Y. Qin, C. A. Avizzano, D. S. Bassett, F. Pasqualetti, "Vibrational Stabilization of Complex Network Systems", American Control Conference (2022).

[141] D. Gadginmath, V. Krishnan, F. Pasqualetti, "Direct vs Indirect Methods for Behavior-based Attack Detection", IEEE Conf. on Decision and Control (2022).

[140] F. Celi, F. Pasqualetti, "Data-driven Meets Geometric Control: Zero Dynamics, Subspace Stabilization, and Malicious Attacks", IEEE Control Systems Letters, vol. 6, pp. 2569-2574 (2022).

[139] F. Celi, G. Baggio, F. Pasqualetti, "Closed-form Estimates of the LQR Gain From Finite Data", IEEE Conf. on Decision and Control, pp. 4016-4021 (2022).

[138] G. Baggio, F. Pasqualetti, S. Zampieri, "Energy-Aware Controllability of Complex Networks", Annual Reviews in Control, vol. 5, pp. 465-489 (2022).

[137] J. Swartz, F. Celi, F. Pasqualetti, A. von Meier, "Parameter Conditions to Prevent Voltage Oscillations Caused by LTC-Inverter Hunting on Power Distribution Grids", European Control Conference (2022).

[136] M. Boldrer, F. Pasqualetti, L. Palopoli, D. Fontanelli, "Multi-Agent Persistent Monitoring via Time-Inverted Kuramoto Dynamics", IEEE Control Systems Letters, vol. 6, pp. 2798-2803 (2022).

[135] R. Anguluri, V. Katewa, S. Roy, F. Pasqualetti, "Network Theoretic Analysis of Maximum a Posteriori Detectors for Sensor Analysis and Design", Automatica, vol. 141, pp. 110277 (2022). PDF

[134] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Functional Control of Oscillator Networks", Nature Communications, vol. 13, pp. 4721 (2022). DOI

[133] X. He, L. Caciagli, L. Parkes, J. Stiso, T. M Karrer, J. Z. Kim, Z. Lu, T. Menara, F. Pasqualetti, M. R. Sperling, J. I. Tracy, D. S. Bassett, "Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy", Science Advances, vol. 8, no. 45, pp. eabn2293 (2022).

[132] Y. Qin, D. S. Bassett, F. Pasqualetti, "Vibrational Control of Cluster Synchronization: Connections with Deep Brain Stimulation", IEEE Conf. on Decision and Control (2022). DOI PDF

[131] Y. Qin, D. S. Bassett, F. Pasqualetti, "Flexible Information Propagation in Oscillator Networks", IEEE Conf. on Decision and Control (2022).

[130] Y. Qin, T. Menara, S. Oymak, S. Ching, F. Pasqualetti, "Representation Learning for Context-Dependent Decision-Making", American Control Conference (2022).

[129] Y. Qin, T. Menara, S. Oymak, S. Ching, F. Pasqualetti, "Non-Stationary Representation Learning in Sequential Linear Bandits", IEEE Open Journal of Control Systems, vol. 1, pp. 41-56 (2022).

[128] A. A. Al Makdah, V. Katewa, F. Pasqualetti, "Robust Adversarial Classification via Abstaining", IEEE Conf. on Decision and Control, pp. 763-768 (2021).

[127] B. H. Scheid, A. Ashourvan, J. Stiso, K. A. Davis, F. Mikhail, F. Pasqualetti, B. Litt, D. S. Bassett, "Time-evolving controllability of effective connectivity networks during seizure progression", pnas (2021). DOI PDF

[126] F. Celi, G. Baggio, F. Pasqualetti, "Distributed Learning of Optimal Controls for Linear Systems", IEEE Conf. on Decision and Control, pp. 5764-5769 (2021).

[125] G. Baggio, D. S. Bassett, F. Pasqualetti, "Data-Driven Control of Complex Networks", Nature Communications, vol. 12, no. 1429 (2021). DOI PDF

[124] M. Boldrer, F. Riz, F. Pasqualetti, L. Palopoli, D. Fontanelli, "Time-Inverted Kuramoto Dynamics for $\kappa$-Clustered Circle Coverage", IEEE Conf. on Decision and Control, pp. 1205-1211 (2021).

[123] P. Srivastava, P. Mucha, K. Ochsner, E. Falk, F. Pasqualetti, D. S. Bassett, "Structural underpinnings of control in multiplex networks", Arxiv (2021).

[122] R. Anguluri, F. Pasqualetti, "Deflection-based Attack Detection for Network Systems", American Control Conference (2021).

[121] T. Menara, G. Lisi, F. Pasqualetti, A. Cortese, "Brain network dynamics fingerprints are resilient to data heterogeneity", Journal of Neural Engineering, vol. 18, no. 2, pp. 026004 (2021). PDF

[120] T. Menara, Y. Qin, D. S. Bassett, F. Pasqualetti, "Relay Interactions Enable Remote Synchronization in Networks of Phase Oscillators", IEEE Control Systems Letters, vol. 6, pp. 500-505 (2021). DOI

[119] U. Braun, A. Harneit, G. Pergola, T. Menara, A. Schaefer, R. F. Betzel, Z. Zang, J. I. Schweiger, X. Zhang, K. Schwarz, J. Chen, G. Blasi, A. Bertolino, D. Durstewitz, F. Pasqualetti, E. Schwarz, A. Meyer-Lindenberg, D. S. Bassett, H. Tost, "Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia", Nature Communications, no. 1, pp. 3478 (2021). DOI PDF

[118] V. Katewa, F. Pasqualetti, "Minimum-gain Pole Placement with Sparse Static Feedback", IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 1558-2523 (2021). PDF

[117] V. Katewa, F. Pasqualetti, "Optimal Dynamic Load-Altering Attacks Against Power Systems", American Control Conference (2021).

[116] V. Krishnan, F. Pasqualetti, "On Direct vs Indirect Data-Driven Predictive Control", IEEE Conf. on Decision and Control, pp. 736-741 (2021).

[115] V. Katewa, R. Anguluri, F. Pasqualetti, "On a Security vs Privacy Trade-off in Interconnected Dynamical Systems", Automatica, vol. 125 (2021). PDF

[114] Y. Qin, T. Menara, D. S. Bassett, F. Pasqualetti, "Phase-Amplitude Coupling in Neuronal Oscillator Networks", prr, vol. 3, no. 2 (2021). DOI PDF

[113] R. Anguluri, A. A. Al Makdah, V. Katewa, F. Pasqualetti, "On the Robustness of Data-Driven Controllers for Linear Systems", Learning for Dynamics & Control, vol. 120, pp. 404-412 (2020). PDF

[112] A. A. Al Makdah, V. Katewa, F. Pasqualetti, "Accuracy Prevents Robustness in Perception-based Control", American Control Conference (2020). PDF

[111] E. Tang, G. L. Baum, D. R. Roalf, T. D. Satterthwaite, F. Pasqualetti, D. S. Bassett, "Control of brain network dynamics across diverse scales of space and time", Physical Review E, vol. 101, no. 6 (2020).

[110] F. Celi, A. Allibhoy, F. Pasqualetti, J. Cortés, "Linear-Threshold Dynamics for the Study of Epileptic Events", IEEE Control Systems Letters, vol. 5, pp. 1405-1410 (2020). DOI

[109] F. Pasqualetti, S. Zhao, C. Favaretto, S. Zampieri, "Fragility Limits Performance in Complex Networks", Scientific Reports, vol. 10, no. 1774 (2020). PDF

[108] G. Baggio, F. Pasqualetti, "Learning Minimum-Energy Controls from Heterogeneous Data", American Control Conference (2020). PDF

[107] G. Bianchin, F. Pasqualetti, "Routing Apps May Cause Oscillatory Congestions in Traffic Networks", IEEE Conf. on Decision and Control, pp. 253-260 (2020). PDF

[106] J. K. Brynildsen, K. D. Mace, E. J. Cornblath, C. Weidler, F. Pasqualetti, D. S. Bassett, J. A. Blendy, "Gene coexpression patterns predict opiate-induced brain state transitions", pnas, vol. 141, pp. 110277 (2020). DOI PDF

[105] J. Stiso, M.-C. Corsi, J. Vettel, J. Garcia, F. Pasqualetti, F. de Vico-Fallani, T. Lucas, D. S. Bassett, "Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior", Journal of Neural Engineering, vol. 17, no. 4 (2020). PDF

[104] P. Srivastava, E. Nozari, J. Z. Kim, H. Ju, D. Zhou, C. Becker, F. Pasqualetti, D. S. Bassett, "Models of communication and control for brain networks: distinctions, convergence, and future outlook", Network Neuroscience, vol. 4, no. 4 (2020). PDF

[103] R. Anguluri, V. Katewa, F. Pasqualetti, "Centralized versus Decentralized Detection of Attacks in Stochastic Interconnected Systems", IEEE Transactions on Automatic Control, vol. 65, no. 9, pp. 3903-3910 (2020). PDF

[102] S. P. Patankar, J. Z. Kim, F. Pasqualetti, D. S. Bassett, "Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks", Network Neuroscience (2020). DOI PDF

[101] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Stability Conditions for Cluster Synchronization in Networks of Heterogeneous Kuramoto Oscillators", IEEE Transactions on Control of Network Systems, vol. 7, no. 1, pp. 302-314 (2020). DOI PDF

[100] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Conditions for Feedback Linearization of Network Systems", IEEE Control Systems Letters, vol. 4, no. 3, pp. 578-583 (2020). PDF

[99] T. M. Karrer, J. Z. Kim, J. Stiso, A. E. Kahn, F. Pasqualetti, U. Habel, D. S. Bassett, "A practical guide to methodological considerations in the controllability of structural brain networks", Journal of Neural Engineering, vol. 17, no. 026031 (2020). PDF

[98] V. Krishnan, A. A. Al Makdah, F. Pasqualetti, "Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing", Advances in Neural Information Processing Systems, vol. 33, pp. 10924-10935 (2020). PDF

[97] V. Katewa, C.-Z. Bai, V. Gupta, F. Pasqualetti, "Detection of Attacks in Cyber-Physical Systems: Theory and Applications", Safety, security, and privacy for cyber-physical systems (2020).

[96] V. Katewa, F. Pasqualetti, "On the real stability radius of sparse systems", Automatica, vol. 113, pp. 108685 (2020). PDF

[95] V. Krishnan, F. Pasqualetti, "Data-Driven Attack Detection for Linear Systems", IEEE Control Systems Letters, vol. 5, no. 2, pp. 671-676 (2020). PDF

[94] Y-C. Liu, G. Bianchin, F. Pasqualetti, "Secure Trajectory Planning Against Undetectable Spoofing Attacks", Automatica, vol. 112, pp. 108655 (2020). PDF

[93] Y. Qin, M. Cao, B. D. O. Anderson, D. S. Bassett, F. Pasqualetti, "Mediated Remote Synchronization: the Number of Mediators Matters", IEEE Control Systems Letters, vol. 5, no. 3, pp. 767-772 (2020). DOI PDF

[92] Z. Cui, J. Stiso, G. L. Baum, J. Z. Kim, D. R. Roalf, R. F. Betzel, S. Gu, Z. Lu, C. H. Xia, R. Ciric, T. M. Moore, R. T. Shinohara, K. Ruparel, C. Davatzikos, F. Pasqualetti, R. E. Gur, R. C. Gur, D. S. Bassett, T. D. Satterthwaite, "Optimization of Energy State Transition Trajectory Supports the Development of Executive Function During Youth", eLife, vol. 9, pp. e53060 (2020). PDF

[91] A. A. Al Makdah, V. Katewa, F. Pasqualetti, "A Fundamental Performance Limitation for Adversarial Classification", IEEE Control Systems Letters, vol. 4, no. 1, pp. 169-174 (2019). PDF

[90] D. S. Bassett, F. Pasqualetti, "Network-based approaches for understanding intrinsic control capacities of the human brain", The Cognitive Neurosciences VI (2019).

[89] E. J. Cornblath, E. Tang, G. L. Baum, T. M. Moore, A. Abedimpe, D. R. Roalf, R. C. Gur, R. E. Gur, F. Pasqualetti, T. D. Satterthwaite, D. S. Bassett, "Sex differences in network controllability as a predictor of executive function in youth", NeuroImage, no. 188, pp. 122-134 (2019). DOI PDF

[88] E. Nozari, F. Pasqualetti, J. Cortés, "Heterogeneity of central nodes explains the benefits of time-varying control scheduling in complex dynamical networks", Journal of Complex Networks, pp. 1-43 (2019). DOI PDF

[87] F. Pasqualetti, S. Gu, D. S. Bassett, "RE: Warnings and caveats in brain controllability", NeuroImage, vol. 197, pp. 586-588 (2019). DOI

[86] F. Pasqualetti, "Controllability of network systems", Encyclopedia of Systems and Control (2019).

[85] G. Bianchin, F. Pasqualetti, S. Kundu, "Resilience of Traffic Networks with Partially Controlled Routing", American Control Conference (2019).

[84] G. Bianchin, F. Pasqualetti, "Gramian-Based Optimization for the Analysis and Control of Traffic Networks", IEEE Transactions on Intelligent Transportation Systems, pp. 1-12 (2019).

[83] G. Bianchin, Y.-C. Liu, F. Pasqualetti, "Secure Navigation of Robots in Adversarial Environments", IEEE Control Systems Letters, vol. 4, no. 1, pp. 1-6 (2019). PDF

[82] G. Baggio, V. Katewa, F. Pasqualetti, S. Zampieri, "The Shannon Capacity of Linear Dynamical Networks", European Control Conference (2019).

[81] G. Baggio, V. Katewa, F. Pasqualetti, "Data-driven Minimum-Energy Controls for Linear Systems", IEEE Control Systems Letters, vol. 3, no. 3, pp. 589-594 (2019). PDF

[80] J. Stiso, A. N. Khambhati, T. Menara, A. E. Kahn, J. M. Stein, S. R. Das, R. Gorniak, J. Tracy, B. Litt, K. A. Davis, F. Pasqualetti, T. H. Lucas, D. S. Bassett, "White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions", Cell Reports, vol. 28, no. 10, pp. 2554 - 2566.e7 (2019). PDF

[79] R. Anguluri, V. Katewa, F. Pasqualetti, "A Probabilistic Approach to Design Switching Attacks against Interconnected Systems", American Control Conference (2019).

[78] S. Zhao, F. Pasqualetti, "Networks with Diagonal Controllability Gramians: Analysis, Graphical Conditions, and Design Algorithms", Automatica, vol. 102, pp. 10-18 (2019). PDF

[77] T. Menara, D. S. Bassett, F. Pasqualetti, "Structural Controllability of Symmetric Networks", IEEE Transactions on Automatic Control, vol. 64, no. 9, pp. 3740-3747 (2019). PDF

[76] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Exact and Approximate Stability Conditions for Cluster Synchronization of Kuramoto Oscillators", American Control Conference, pp. 205 - 210 (2019). PDF

[75] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "A Framework to Control Functional Connectivity in the Human Brain", IEEE Conf. on Decision and Control, pp. 4697-4704 (2019). PDF

[74] V. Katewa, F. Pasqualetti, V. Gupta, "On the Role of Cooperation in Private Multi-agent Systems", Privacy in Dynamical Systems (2019).

[73] A. Duz, S. Phillips, A. Fagiolini, R. G. Sanfelice, F. Pasqualetti, "Stealthy Attacks in Cloud-Connected (Linear-Impulsive) Systems", American Control Conference, pp. 146-152 (2018). PDF

[72] E. Wu-Yan, R. F. Betzel, E. Tang, S. Gu, F. Pasqualetti, D. S. Bassett, "Benchmarking measures of network controllability on canonical graph models", Journal of Nonlinear Science, pp. 1-39 (2018). DOI PDF

[71] F. Pasqualetti, C. Favaretto, S. Zhao, S. Zampieri, "Fragility and Controllability Tradeoff in Complex Networks", American Control Conference, pp. 216-221 (2018). PDF

[70] G. Bianchin, F. Pasqualetti, "A Network Optimization Framework for the Analysis and Control of Traffic Dynamics and Intersection Signaling", IEEE Conf. on Decision and Control, pp. 1017-1022 (2018).

[69] G. Bianchin, F. Pasqualetti, "Time-Delay Attacks in Network Systems", Cyber-Physical Systems Security, pp. 147 - 174 (2018).

[68] J. Kim, J. M. Soffer, A. E. Kahn, J. M. Vettel, F. Pasqualetti, D. S. Bassett, "Role of graph architecture in controlling dynamical networks with applications to neural systems", Nature Physics, vol. 14, pp. 91-98 (2018). DOI PDF

[67] R. Anguluri, V. Katewa, F. Pasqualetti, "Attack Detection in Stochastic Interconnected Systems: Centralized vs Decentralized Detectors", IEEE Conf. on Decision and Control, pp. 4541-4546 (2018).

[66] S. Gu, M. Cieslak, B. Baird, S. F. Muldoon, S. T. Grafton, F. Pasqualetti, D. S. Bassett, "The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure", Scientific Reports, vol. 8, no. 2507 (2018). DOI PDF

[65] S. Zhao, F. Pasqualetti, "Controllability Degree of Directed Line Networks: Nodal Energy and Asymptotic Bounds", European Control Conference, pp. 1857-1862 (2018).

[64] T. Menara, V. Katewa, D. S. Bassett, F. Pasqualetti, "The Structured Controllability Radius of Symmetric (Brain) Networks", American Control Conference, pp. 2802-2807 (2018). PDF

[63] R. Anguluri, V. Katewa, F. Pasqualetti, "On the Role of Information Sharing in the Security of Interconnected Systems", Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1168-1173 (2018). PDF

[62] A. Ganlath, R. Anguluri, V. Katewa, F. Pasqualetti, "Secure Reference-Tracking with Resource-Constrained UAVs", Conference on Control Technology and Applications, pp. 1319 - 1325 (2017). PDF

[61] C. Favaretto, A. Cenedese, F. Pasqualetti, "Cluster Synchronization in Networks of Kuramoto Oscillators", IFAC World Congress, pp. 2433-2438 (2017). PDF

[60] C. Favaretto, D. S. Bassett, A. Cenedese, F. Pasqualetti, "Bode meets Kuramoto: Synchronized Clusters in Oscillatory Networks", American Control Conference, pp. 2378-5861 (2017). PDF

[59] C.-Z. Bai, F. Pasqualetti, V. Gupta, "Data-injection attacks in stochastic control systems: Detectability and performance tradeoffs", Automatica, vol. 82, pp. 251-260 (2017). PDF

[58] C.-Z. Bai, V. Gupta, F. Pasqualetti, "On Kalman Filtering with Compromised Sensors: Attack Stealthiness and Performance Bounds", IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6641-6648 (2017). PDF

[57] E. Nozari, F. Pasqualetti, J. Cortés, "Time-invariant versus time-varying actuator scheduling in complex networks", American Control Conference, pp. 4995-5000 (2017). PDF

[56] G. Bianchin, P. Frasca, A. Gasparri, F. Pasqualetti, "The Observability Radius of Networks", IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 3006-3013 (2017). PDF

[55] J. D. Medaglia, F. Pasqualetti, R. H. Hamilton, S. L. Thompson-Schill, D. S. Bassett, "Brain and cognitive reserve: Translation via network control theory", Neuroscience and Biobehavioral Reviews, vol. 75, no. 2017, pp. 53-64 (2017). PDF

[54] J. D. Medaglia, S. Gu, F. Pasqualetti, R. L. Ashare, C. Lerman, J. Kable, D. S. Bassett, "Cognitive Control in the Controllable Connectome", Arxiv (2017).

[53] L. Tiberi, C. Favaretto, M. Innocenti, D. S. Bassett, F. Pasqualetti, "Synchronization Patterns in Networks of Kuramoto Oscillators: A Geometric Approach for Analysis and Control", IEEE Conf. on Decision and Control, pp. 481-486 (2017). PDF

[52] L. Wiles, S. Gu, F. Pasqualetti, D. S Bassett, D. F. Meaney, "Autaptic Connections Shift Network Excitability and Bursting", Scientific Reports, vol. 7, no. 44006 (2017). PDF

[51] S. Amini, F. Pasqualetti, M. Abbaszadeh, H. Mohsenian-Rad, "Hierarchical Location Identification of Destabilizing Faults and Attacks in Power Systems: A Frequency-Domain Approach", trgrid, vol. 10, no. 2, pp. 2036 - 2045 (2017). PDF

[50] S. Gu, R. F. Betzel, M. G. Mattar, M. Cieslak, P. R. Delio, S. T. Grafton, F. Pasqualetti, D. S. Bassett, "Optimal trajectories of brain state transitions", NeuroImage, vol. 148, pp. 305-317 (2017). DOI

[49] S. Phillips, A. Duz, F. Pasqualetti, R. G. Sanfelice, "Hybrid Attack Monitor Design to Detect Recurrent Attacks in a Class of Cyber-Physical Systems", IEEE Conf. on Decision and Control, pp. 1368-1373 (2017).

[48] S. Zhao, F. Pasqualetti, "Discrete-Time Dynamical Networks with Diagonal Controllability Gramian", IFAC World Congress, pp. 8297-8302 (2017). PDF

[47] T. Menara, G. Bianchin, M. Innocenti, F. Pasqualetti, "On the Number of Strongly Structurally Controllable Networks", American Control Conference, pp. 340-345 (2017). PDF

[46] V. Katewa, F. Pasqualetti, V. Gupta, "On Privacy vs Cooperation in Multi-agent Systems", International Journal of Control, vol. 91, no. 7, pp. 1-15 (2017). DOI PDF

[45] A. Gasparri, F. Pasqualetti, R. Santini, S. Panzieri, "Network Composition for Optimal Disturbance Rejection", American Control Conference, pp. 3764-3769 (2016). PDF

[44] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, F. Pasqualetti, "Cross-Layer Codesign for Secure Cyber-Physical Systems", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 35, no. 5, pp. 699-711 (2016). PDF

[43] G. Bianchin, P. Frasca, A. Gasparri, F. Pasqualetti, "The Observability Radius of Network Systems", American Control Conference, pp. 185-190 (2016). PDF

[42] R. Anguluri, R. Dhal, S. Roy, F. Pasqualetti, "Network Invariants for Optimal Input Detection", American Control Conference, pp. 3776-3781 (2016). PDF

[41] R. Anguluri, V. Gupta, F. Pasqualetti, "Periodic Coordinated Attacks Against Cyber-Physical Systems: Detectability and Performance Bounds", IEEE Conf. on Decision and Control, pp. 5079-5084 (2016). PDF

[40] R. F. Betzel, S. Gu, J. D. Medaglia, F. Pasqualetti, D. S. Bassett, "Optimally controlling the human connectome: the role of network topology", Scientific Reports, vol. 6, pp. 30770 (2016). PDF

[39] S. Amini, F. Pasqualetti, H. Mohsenian-Rad, "Dynamic Load Altering Attacks Against Power System Stability: Attack Models and Protection Schemes", trgrid, vol. 9, no. 4, pp. 2862 - 2872 (2016). PDF

[38] S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, D. S. Bassett, "Stimulation-based control of dynamic brain networks", PLoS Computational Biology, vol. 12, no. 9, pp. e1005076 (2016). PDF

[37] Y. Zhao, F. Pasqualetti, J. Cortés, "Scheduling of Control Nodes for Improved Network Controllability", IEEE Conf. on Decision and Control, pp. 1859-1864 (2016). PDF

[36] C.-Z. Bai, F. Pasqualetti, V. Gupta, "Security in stochastic control systems: Fundamental limitations and performance bounds", American Control Conference, pp. 195-200 (2015). PDF

[35] D. Borra, F. Pasqualetti, F. Bullo, "Continuous Graph Partitioning for Camera Network Surveillance", Automatica, vol. 52, no. 1, pp. 227-231 (2015). PDF

[34] F. Pasqualetti, F. Dörfler, F. Bullo, "A Divide-and-Conquer Approach to Distributed Attack Identification", IEEE Conf. on Decision and Control, pp. 5801-5807 (2015). PDF

[33] F. Pasqualetti, F. Dörfler, F. Bullo, "Control-Theoretic Methods for Cyberphysical Security: Geometric Principles for Optimal Cross-Layer Resilient Control Systems", IEEE Control Systems Magazine, vol. 35, no. 1, pp. 110-127 (2015). PDF

[32] F. Pasqualetti, Q. Zhu, "Design and Operation of Secure Cyber-Physical Systems", Embedded Systems Letters, vol. 7, no. 1, pp. 3-6 (2015). PDF

[31] G. Bianchin, F. Pasqualetti, S. Zampieri, "The Role of Diameter in the Controllability of Complex Networks", IEEE Conf. on Decision and Control, pp. 980-985 (2015). PDF

[30] S. Amini, F. Pasqualetti, H. Mohsenian-Rad, "Detecting dynamic load altering attacks: A data-driven time-frequency analysis", smartgridcomm, pp. 503-508 (2015). PDF

[29] S. Amini, H. Mohsenian-Rad, F. Pasqualetti, "Dynamic Load Altering Attacks in Smart Grid", IEEE PES Conf. on Innovative Smart Grid Technologies (2015). DOI PDF

[28] S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, B. Y. Alfred, A. E. Kahn, J. D. Medaglia, J. M. Vettel, M. B. Miller, S. T. Grafton, D. S. Bassett, "Controllability of structural brain networks", Nature Communications, vol. 6 (2015). DOI PDF

[27] F. Pasqualetti, D. Borra, F. Bullo, "Consensus Networks over Finite Fields", Automatica, vol. 50, no. 2 (2014). PDF

[26] F. Pasqualetti, F. Zanella, J. R. Peters, M. Spindler, R. Carli, F. Bullo, "Camera Network Coordination for Intruder Detection", IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1169-1683 (2014). PDF

[25] F. Pasqualetti, S. Zampieri, F. Bullo, "Controllability Metrics, Limitations and Algorithms for Complex Networks", IEEE Transactions on Control of Network Systems, vol. 1, no. 1, pp. 40-52 (2014). PDF

[24] F. Pasqualetti, S. Zampieri, F. Bullo, "Controllability metrics and algorithms for complex networks", American Control Conference (2014). PDF

[23] F. Pasqualetti, S. Zampieri, "On the Controllability of Isotropic and Anisotropic Networks", IEEE Conf. on Decision and Control, pp. 607-612 (2014). PDF

[22] F. Dörfler, F. Pasqualetti, F. Bullo, "Continuous-Time Distributed Observers with Discrete Communication", IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp. 296-304 (2013). PDF

[21] F. Pasqualetti, D. Borra, F. Bullo, "Finite-Field Consensus", IEEE Conf. on Decision and Control, pp. 2629-2634 (2013). PDF

[20] F. Pasqualetti, F. Dörfler, F. Bullo, "Attack Detection and Identification in Cyber-Physical Systems", IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2715-2729 (2013). DOI PDF

[19] V. Srivastava, F. Pasqualetti, F. Bullo, "Stochastic Surveillance Strategies for Spatial Quickest Detection", International Journal of Robotics Research, vol. 32, no. 12, pp. 1438-1458 (2013). PDF

[18] D. Borra, F. Pasqualetti, F. Bullo, "Continuous graph partitioning for camera network surveillance", IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 228-233 (2012). PDF

[17] F. Pasqualetti, A. Franchi, F. Bullo, "On Cooperative Patrolling: Optimal Trajectories, Complexity Analysis and Approximation Algorithms", IEEE Transactions on Robotics, vol. 28, no. 3, pp. 592-606 (2012). PDF

[16] F. Pasqualetti, F. Dörfler, F. Bullo, "Cyber-physical security via geometric control: Distributed monitoring and malicious attacks", IEEE Conf. on Decision and Control, pp. 3418-3425 (2012). PDF

[15] F. Pasqualetti, J. W. Durham, F. Bullo, "Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms", IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1181-1188 (2012). PDF

[14] F. Pasqualetti, R. Carli, F. Bullo, "Distributed Estimation via Iterative Projections with Application to Power Network Monitoring", Automatica, vol. 48, no. 5, pp. 747-758 (2012). PDF

[13] F. Zanella, F. Pasqualetti, R. Carli, F. Bullo, "Simultaneous boundary partitioning and cameras synchronization for optimal video surveillance", IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 1-6 (2012). PDF

[12] M. Spindler, F. Pasqualetti, F. Bullo, "Distributed multi-camera synchronization for smart-intruder detection", American Control Conference (2012). PDF

[11] F. Dörfler, F. Pasqualetti, F. Bullo, "Distributed detection of cyber-physical attacks in power networks: A waveform relaxation approach", Allerton Conf. on Communications, Control and Computing (2011). PDF

[10] F. Pasqualetti, A. Bicchi, F. Bullo, "Consensus Computation in Unreliable Networks: A System Theoretic Approach", IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 90-104 (2011). DOI PDF

[9] F. Pasqualetti, A. Bicchi, F. Bullo, "A graph-theoretical characterization of power network vulnerabilities", American Control Conference, pp. 3918-3923 (2011). PDF

[8] F. Pasqualetti, F. Dörfler, F. Bullo, "Cyber-physical attacks in power networks: Models, fundamental limitations and monitor design", IEEE Conf. on Decision and Control and European Control Conference (2011). PDF

[7] F. Pasqualetti, R. Carli, F. Bullo, "A distributed method for state estimation and false data detection in power networks", smartgridcomm (2011). PDF

[6] F. Pasqualetti, A. Franchi, F. Bullo, "On optimal cooperative patrolling", IEEE Conf. on Decision and Control, pp. 7153-7158 (2010). PDF

[5] F. Pasqualetti, R. Carli, A. Bicchi, F. Bullo, "Identifying cyber attacks via local model information", IEEE Conf. on Decision and Control, pp. 5961-5966 (2010). PDF

[4] F. Pasqualetti, R. Carli, A. Bicchi, F. Bullo, "Distributed estimation and detection under local information", IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 263-268 (2010). PDF

[3] F. Pasqualetti, A. Bicchi, F. Bullo, "On the security of linear consensus networks", IEEE Conf. on Decision and Control, pp. 4894-4901 (2009). PDF

[2] F. Pasqualetti, S. Martini, A. Bicchi, "Steering a Leader-Follower Team Via Linear Consensus", Hybrid Systems: Computation and Control, vol. 4981, pp. 642-645 (2008). PDF

[1] F. Pasqualetti, A. Bicchi, F. Bullo, "Distributed intrusion detection for secure consensus computations", IEEE Conf. on Decision and Control, pp. 5594-5599 (2007). PDF

[88] C. De Persis, D. Gadginmath, F. Pasqualetti, P. Tesi, "Feedback linearization through the lens of data", IEEE Transactions on Automatic Control (2024) (submitted).

[87] D. Gadginmath, S. Tripathi, F. Pasqualetti, "Fusing Multiple Algorithms for Heterogeneous Online Learning", IEEE Control Systems Letters (2024) (submitted).

[86] K. Elamvazhuthi, S. Oymak, F. Pasqualetti, "Noise in the reverse process improves the approximation capabilities of diffusion models", ArXiv (2024) (submitted).

[85] Y. Qin, F. Pasqualetti, D. S. Bassett, M. van Gerven, "Vibrational Control of Complex Networks", IEEE Transactions on Control of Network Systems (2024) (submitted).

[84] K. P. Szymula, F. Pasqualetti, A. M. Graybiel, T. M. Desrochers, D. S. Bassett, "Habit learning supported by efficiently controlled network dynamics in naive macaque monkeys", Nature Neuroscience (2020) (submitted). PDF

[83] D. Gadginmath, V. Krishnan, F. Pasqualetti, "Data-Driven Feedback Linearization using the Koopman Generator", IEEE Transactions on Automatic Control (2024).

[82] G. Bianchin, F. Pasqualetti, "Navigation Systems May Deteriorate Stability in Traffic Networks", IEEE Open Journal of Control Systems, vol. 3, pp. 239-252 (2024). PDF

[81] L. Gong, F. Pasqualetti, T. Papouin, S. Ching, "Astrocytes as a mechanism for meta-plasticity and contextually-guided network function", PLoS Computational Biology (2024).

[80] L. Parkes, J. Kim, J. Stiso, J. Brynildsen, M. Cieslak, S. Covitz, R. Gur, R. Gur, F. Pasqualetti, R. Shinohara, D. Zhou, T. Satterthwaite, D. S. Bassett, "A network control theory pipeline for studying the dynamics of the structural connectome", Nature Protocols (2024). DOI

[79] F. Celi, G. Baggio, F. Pasqualetti, "Distributed Data-Driven Control of Network Systems", IEEE Open Journal of Control Systems, vol. 2, pp. 93-107 (2023). DOI

[78] F. Celi, G. Baggio, F. Pasqualetti, "Closed-form and Robust Formulas for Data-driven LQ Control", Annual Reviews in Control, vol. 56 (2023).

[77] S. Rakshit, F. Pasqualetti, "Robustness of Synchronization with Heterogeneous Self-dynamics and Interactions", IEEE Control Systems Letters (2023).

[76] T. Guo, A. A. Al Makdah, V. Krishnan, F. Pasqualetti, "Imitation and Transfer Learning for LQG Control", IEEE Control Systems Letters, vol. 7, pp. 2149-2154 (2023).

[75] Y. Qin, A. M. Nobili, D. S. Bassett, F. Pasqualetti, "Vibrational Stabilization of Cluster Synchronization in Oscillator Networks", IEEE Open Journal of Control Systems, vol. 2, pp. 439-453 (2023). DOI

[74] A. Allibhoy, F. Celi, F. Pasqualetti, J. Cortés, "Optimal Network Interventions to Control the Spreading of Oscillations", IEEE Open Journal of Control Systems, vol. 1, pp. 141-151 (2022).

[73] A. A. Al Makdah, V. Krishnan, F. Pasqualetti, "Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness", IEEE Open Journal of Control Systems, vol. 1, pp. 85-99 (2022). DOI

[72] F. Celi, F. Pasqualetti, "Data-driven Meets Geometric Control: Zero Dynamics, Subspace Stabilization, and Malicious Attacks", IEEE Control Systems Letters, vol. 6, pp. 2569-2574 (2022).

[71] G. Baggio, F. Pasqualetti, S. Zampieri, "Energy-Aware Controllability of Complex Networks", Annual Reviews in Control, vol. 5, pp. 465-489 (2022).

[70] M. Boldrer, F. Pasqualetti, L. Palopoli, D. Fontanelli, "Multi-Agent Persistent Monitoring via Time-Inverted Kuramoto Dynamics", IEEE Control Systems Letters, vol. 6, pp. 2798-2803 (2022).

[69] R. Anguluri, V. Katewa, S. Roy, F. Pasqualetti, "Network Theoretic Analysis of Maximum a Posteriori Detectors for Sensor Analysis and Design", Automatica, vol. 141, pp. 110277 (2022). PDF

[68] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Functional Control of Oscillator Networks", Nature Communications, vol. 13, pp. 4721 (2022). DOI

[67] X. He, L. Caciagli, L. Parkes, J. Stiso, T. M Karrer, J. Z. Kim, Z. Lu, T. Menara, F. Pasqualetti, M. R. Sperling, J. I. Tracy, D. S. Bassett, "Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy", Science Advances, vol. 8, no. 45, pp. eabn2293 (2022).

[66] Y. Qin, T. Menara, S. Oymak, S. Ching, F. Pasqualetti, "Non-Stationary Representation Learning in Sequential Linear Bandits", IEEE Open Journal of Control Systems, vol. 1, pp. 41-56 (2022).

[65] B. H. Scheid, A. Ashourvan, J. Stiso, K. A. Davis, F. Mikhail, F. Pasqualetti, B. Litt, D. S. Bassett, "Time-evolving controllability of effective connectivity networks during seizure progression", pnas (2021). DOI PDF

[64] G. Baggio, D. S. Bassett, F. Pasqualetti, "Data-Driven Control of Complex Networks", Nature Communications, vol. 12, no. 1429 (2021). DOI PDF

[63] P. Srivastava, P. Mucha, K. Ochsner, E. Falk, F. Pasqualetti, D. S. Bassett, "Structural underpinnings of control in multiplex networks", Arxiv (2021).

[62] T. Menara, G. Lisi, F. Pasqualetti, A. Cortese, "Brain network dynamics fingerprints are resilient to data heterogeneity", Journal of Neural Engineering, vol. 18, no. 2, pp. 026004 (2021). PDF

[61] T. Menara, Y. Qin, D. S. Bassett, F. Pasqualetti, "Relay Interactions Enable Remote Synchronization in Networks of Phase Oscillators", IEEE Control Systems Letters, vol. 6, pp. 500-505 (2021). DOI

[60] U. Braun, A. Harneit, G. Pergola, T. Menara, A. Schaefer, R. F. Betzel, Z. Zang, J. I. Schweiger, X. Zhang, K. Schwarz, J. Chen, G. Blasi, A. Bertolino, D. Durstewitz, F. Pasqualetti, E. Schwarz, A. Meyer-Lindenberg, D. S. Bassett, H. Tost, "Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia", Nature Communications, no. 1, pp. 3478 (2021). DOI PDF

[59] V. Katewa, F. Pasqualetti, "Minimum-gain Pole Placement with Sparse Static Feedback", IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 1558-2523 (2021). PDF

[58] V. Katewa, R. Anguluri, F. Pasqualetti, "On a Security vs Privacy Trade-off in Interconnected Dynamical Systems", Automatica, vol. 125 (2021). PDF

[57] Y. Qin, T. Menara, D. S. Bassett, F. Pasqualetti, "Phase-Amplitude Coupling in Neuronal Oscillator Networks", prr, vol. 3, no. 2 (2021). DOI PDF

[56] E. Tang, G. L. Baum, D. R. Roalf, T. D. Satterthwaite, F. Pasqualetti, D. S. Bassett, "Control of brain network dynamics across diverse scales of space and time", Physical Review E, vol. 101, no. 6 (2020).

[55] F. Celi, A. Allibhoy, F. Pasqualetti, J. Cortés, "Linear-Threshold Dynamics for the Study of Epileptic Events", IEEE Control Systems Letters, vol. 5, pp. 1405-1410 (2020). DOI

[54] F. Pasqualetti, S. Zhao, C. Favaretto, S. Zampieri, "Fragility Limits Performance in Complex Networks", Scientific Reports, vol. 10, no. 1774 (2020). PDF

[53] J. K. Brynildsen, K. D. Mace, E. J. Cornblath, C. Weidler, F. Pasqualetti, D. S. Bassett, J. A. Blendy, "Gene coexpression patterns predict opiate-induced brain state transitions", pnas, vol. 141, pp. 110277 (2020). DOI PDF

[52] J. Stiso, M.-C. Corsi, J. Vettel, J. Garcia, F. Pasqualetti, F. de Vico-Fallani, T. Lucas, D. S. Bassett, "Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior", Journal of Neural Engineering, vol. 17, no. 4 (2020). PDF

[51] P. Srivastava, E. Nozari, J. Z. Kim, H. Ju, D. Zhou, C. Becker, F. Pasqualetti, D. S. Bassett, "Models of communication and control for brain networks: distinctions, convergence, and future outlook", Network Neuroscience, vol. 4, no. 4 (2020). PDF

[50] R. Anguluri, V. Katewa, F. Pasqualetti, "Centralized versus Decentralized Detection of Attacks in Stochastic Interconnected Systems", IEEE Transactions on Automatic Control, vol. 65, no. 9, pp. 3903-3910 (2020). PDF

[49] S. P. Patankar, J. Z. Kim, F. Pasqualetti, D. S. Bassett, "Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks", Network Neuroscience (2020). DOI PDF

[48] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Stability Conditions for Cluster Synchronization in Networks of Heterogeneous Kuramoto Oscillators", IEEE Transactions on Control of Network Systems, vol. 7, no. 1, pp. 302-314 (2020). DOI PDF

[47] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Conditions for Feedback Linearization of Network Systems", IEEE Control Systems Letters, vol. 4, no. 3, pp. 578-583 (2020). PDF

[46] T. M. Karrer, J. Z. Kim, J. Stiso, A. E. Kahn, F. Pasqualetti, U. Habel, D. S. Bassett, "A practical guide to methodological considerations in the controllability of structural brain networks", Journal of Neural Engineering, vol. 17, no. 026031 (2020). PDF

[45] V. Katewa, F. Pasqualetti, "On the real stability radius of sparse systems", Automatica, vol. 113, pp. 108685 (2020). PDF

[44] V. Krishnan, F. Pasqualetti, "Data-Driven Attack Detection for Linear Systems", IEEE Control Systems Letters, vol. 5, no. 2, pp. 671-676 (2020). PDF

[43] Y-C. Liu, G. Bianchin, F. Pasqualetti, "Secure Trajectory Planning Against Undetectable Spoofing Attacks", Automatica, vol. 112, pp. 108655 (2020). PDF

[42] Y. Qin, M. Cao, B. D. O. Anderson, D. S. Bassett, F. Pasqualetti, "Mediated Remote Synchronization: the Number of Mediators Matters", IEEE Control Systems Letters, vol. 5, no. 3, pp. 767-772 (2020). DOI PDF

[41] Z. Cui, J. Stiso, G. L. Baum, J. Z. Kim, D. R. Roalf, R. F. Betzel, S. Gu, Z. Lu, C. H. Xia, R. Ciric, T. M. Moore, R. T. Shinohara, K. Ruparel, C. Davatzikos, F. Pasqualetti, R. E. Gur, R. C. Gur, D. S. Bassett, T. D. Satterthwaite, "Optimization of Energy State Transition Trajectory Supports the Development of Executive Function During Youth", eLife, vol. 9, pp. e53060 (2020). PDF

[40] A. A. Al Makdah, V. Katewa, F. Pasqualetti, "A Fundamental Performance Limitation for Adversarial Classification", IEEE Control Systems Letters, vol. 4, no. 1, pp. 169-174 (2019). PDF

[39] E. J. Cornblath, E. Tang, G. L. Baum, T. M. Moore, A. Abedimpe, D. R. Roalf, R. C. Gur, R. E. Gur, F. Pasqualetti, T. D. Satterthwaite, D. S. Bassett, "Sex differences in network controllability as a predictor of executive function in youth", NeuroImage, no. 188, pp. 122-134 (2019). DOI PDF

[38] E. Nozari, F. Pasqualetti, J. Cortés, "Heterogeneity of central nodes explains the benefits of time-varying control scheduling in complex dynamical networks", Journal of Complex Networks, pp. 1-43 (2019). DOI PDF

[37] F. Pasqualetti, S. Gu, D. S. Bassett, "RE: Warnings and caveats in brain controllability", NeuroImage, vol. 197, pp. 586-588 (2019). DOI

[36] G. Bianchin, F. Pasqualetti, "Gramian-Based Optimization for the Analysis and Control of Traffic Networks", IEEE Transactions on Intelligent Transportation Systems, pp. 1-12 (2019).

[35] G. Bianchin, Y.-C. Liu, F. Pasqualetti, "Secure Navigation of Robots in Adversarial Environments", IEEE Control Systems Letters, vol. 4, no. 1, pp. 1-6 (2019). PDF

[34] G. Baggio, V. Katewa, F. Pasqualetti, "Data-driven Minimum-Energy Controls for Linear Systems", IEEE Control Systems Letters, vol. 3, no. 3, pp. 589-594 (2019). PDF

[33] J. Stiso, A. N. Khambhati, T. Menara, A. E. Kahn, J. M. Stein, S. R. Das, R. Gorniak, J. Tracy, B. Litt, K. A. Davis, F. Pasqualetti, T. H. Lucas, D. S. Bassett, "White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions", Cell Reports, vol. 28, no. 10, pp. 2554 - 2566.e7 (2019). PDF

[32] S. Zhao, F. Pasqualetti, "Networks with Diagonal Controllability Gramians: Analysis, Graphical Conditions, and Design Algorithms", Automatica, vol. 102, pp. 10-18 (2019). PDF

[31] T. Menara, D. S. Bassett, F. Pasqualetti, "Structural Controllability of Symmetric Networks", IEEE Transactions on Automatic Control, vol. 64, no. 9, pp. 3740-3747 (2019). PDF

[30] E. Wu-Yan, R. F. Betzel, E. Tang, S. Gu, F. Pasqualetti, D. S. Bassett, "Benchmarking measures of network controllability on canonical graph models", Journal of Nonlinear Science, pp. 1-39 (2018). DOI PDF

[29] J. Kim, J. M. Soffer, A. E. Kahn, J. M. Vettel, F. Pasqualetti, D. S. Bassett, "Role of graph architecture in controlling dynamical networks with applications to neural systems", Nature Physics, vol. 14, pp. 91-98 (2018). DOI PDF

[28] S. Gu, M. Cieslak, B. Baird, S. F. Muldoon, S. T. Grafton, F. Pasqualetti, D. S. Bassett, "The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure", Scientific Reports, vol. 8, no. 2507 (2018). DOI PDF

[27] C.-Z. Bai, F. Pasqualetti, V. Gupta, "Data-injection attacks in stochastic control systems: Detectability and performance tradeoffs", Automatica, vol. 82, pp. 251-260 (2017). PDF

[26] C.-Z. Bai, V. Gupta, F. Pasqualetti, "On Kalman Filtering with Compromised Sensors: Attack Stealthiness and Performance Bounds", IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6641-6648 (2017). PDF

[25] G. Bianchin, P. Frasca, A. Gasparri, F. Pasqualetti, "The Observability Radius of Networks", IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 3006-3013 (2017). PDF

[24] J. D. Medaglia, F. Pasqualetti, R. H. Hamilton, S. L. Thompson-Schill, D. S. Bassett, "Brain and cognitive reserve: Translation via network control theory", Neuroscience and Biobehavioral Reviews, vol. 75, no. 2017, pp. 53-64 (2017). PDF

[23] J. D. Medaglia, S. Gu, F. Pasqualetti, R. L. Ashare, C. Lerman, J. Kable, D. S. Bassett, "Cognitive Control in the Controllable Connectome", Arxiv (2017).

[22] L. Wiles, S. Gu, F. Pasqualetti, D. S Bassett, D. F. Meaney, "Autaptic Connections Shift Network Excitability and Bursting", Scientific Reports, vol. 7, no. 44006 (2017). PDF

[21] S. Amini, F. Pasqualetti, M. Abbaszadeh, H. Mohsenian-Rad, "Hierarchical Location Identification of Destabilizing Faults and Attacks in Power Systems: A Frequency-Domain Approach", trgrid, vol. 10, no. 2, pp. 2036 - 2045 (2017). PDF

[20] S. Gu, R. F. Betzel, M. G. Mattar, M. Cieslak, P. R. Delio, S. T. Grafton, F. Pasqualetti, D. S. Bassett, "Optimal trajectories of brain state transitions", NeuroImage, vol. 148, pp. 305-317 (2017). DOI

[19] V. Katewa, F. Pasqualetti, V. Gupta, "On Privacy vs Cooperation in Multi-agent Systems", International Journal of Control, vol. 91, no. 7, pp. 1-15 (2017). DOI PDF

[18] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, F. Pasqualetti, "Cross-Layer Codesign for Secure Cyber-Physical Systems", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 35, no. 5, pp. 699-711 (2016). PDF

[17] R. F. Betzel, S. Gu, J. D. Medaglia, F. Pasqualetti, D. S. Bassett, "Optimally controlling the human connectome: the role of network topology", Scientific Reports, vol. 6, pp. 30770 (2016). PDF

[16] S. Amini, F. Pasqualetti, H. Mohsenian-Rad, "Dynamic Load Altering Attacks Against Power System Stability: Attack Models and Protection Schemes", trgrid, vol. 9, no. 4, pp. 2862 - 2872 (2016). PDF

[15] S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, D. S. Bassett, "Stimulation-based control of dynamic brain networks", PLoS Computational Biology, vol. 12, no. 9, pp. e1005076 (2016). PDF

[14] D. Borra, F. Pasqualetti, F. Bullo, "Continuous Graph Partitioning for Camera Network Surveillance", Automatica, vol. 52, no. 1, pp. 227-231 (2015). PDF

[13] F. Pasqualetti, F. Dörfler, F. Bullo, "Control-Theoretic Methods for Cyberphysical Security: Geometric Principles for Optimal Cross-Layer Resilient Control Systems", IEEE Control Systems Magazine, vol. 35, no. 1, pp. 110-127 (2015). PDF

[12] F. Pasqualetti, Q. Zhu, "Design and Operation of Secure Cyber-Physical Systems", Embedded Systems Letters, vol. 7, no. 1, pp. 3-6 (2015). PDF

[11] S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, B. Y. Alfred, A. E. Kahn, J. D. Medaglia, J. M. Vettel, M. B. Miller, S. T. Grafton, D. S. Bassett, "Controllability of structural brain networks", Nature Communications, vol. 6 (2015). DOI PDF

[10] F. Pasqualetti, D. Borra, F. Bullo, "Consensus Networks over Finite Fields", Automatica, vol. 50, no. 2 (2014). PDF

[9] F. Pasqualetti, F. Zanella, J. R. Peters, M. Spindler, R. Carli, F. Bullo, "Camera Network Coordination for Intruder Detection", IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1169-1683 (2014). PDF

[8] F. Pasqualetti, S. Zampieri, F. Bullo, "Controllability Metrics, Limitations and Algorithms for Complex Networks", IEEE Transactions on Control of Network Systems, vol. 1, no. 1, pp. 40-52 (2014). PDF

[7] F. Dörfler, F. Pasqualetti, F. Bullo, "Continuous-Time Distributed Observers with Discrete Communication", IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp. 296-304 (2013). PDF

[6] F. Pasqualetti, F. Dörfler, F. Bullo, "Attack Detection and Identification in Cyber-Physical Systems", IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2715-2729 (2013). DOI PDF

[5] V. Srivastava, F. Pasqualetti, F. Bullo, "Stochastic Surveillance Strategies for Spatial Quickest Detection", International Journal of Robotics Research, vol. 32, no. 12, pp. 1438-1458 (2013). PDF

[4] F. Pasqualetti, A. Franchi, F. Bullo, "On Cooperative Patrolling: Optimal Trajectories, Complexity Analysis and Approximation Algorithms", IEEE Transactions on Robotics, vol. 28, no. 3, pp. 592-606 (2012). PDF

[3] F. Pasqualetti, J. W. Durham, F. Bullo, "Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms", IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1181-1188 (2012). PDF

[2] F. Pasqualetti, R. Carli, F. Bullo, "Distributed Estimation via Iterative Projections with Application to Power Network Monitoring", Automatica, vol. 48, no. 5, pp. 747-758 (2012). PDF

[1] F. Pasqualetti, A. Bicchi, F. Bullo, "Consensus Computation in Unreliable Networks: A System Theoretic Approach", IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 90-104 (2011). DOI PDF

[83] T. Guo, F. Pasqualetti, "Transfer Learning for LQR Control", Learning for Dynamics & Control (2025) (submitted).

[82] U. Casti, G. Baggio, S. Zampieri, F. Pasqualetti, "Controllable Neural Architectures for Multi-Task Control", European Control Conference (2025) (submitted).

[81] S. Tripathi, A. A. Al Makdah, F. Pasqualetti, "Time Varying Quadratic Optimization With Unknown Objective Function Using Noisy Gradients", American Control Conference (2024) (submitted).

[80] A. A. Al Makdah, F. Pasqualetti, "Model-based and Data-based Dynamic Output Feedback for Externally Positive Systems", IEEE Conf. on Decision and Control (2024).

[79] K. Elamvazhuthi, D. Gadginmath, F. Pasqualetti, "Denoising Diffusion-Based Control of Nonlinear Systems", IEEE Conf. on Decision and Control (2024).

[78] K. Elamvazhuthi, X. Zhang, S. Oymak, F. Pasqualetti, "A Score-based Deterministic Diffusion Algorithm with Smooth Scores for General Distributions", AAAI Conference on Artificial Intelligence, vol. 38 (2024).

[77] S. Cianchi, F. Celi, P. Tesi, F. Pasqualetti, "Data-driven Expressions for the Control of Network Systems with Asynchronous Experiments", IEEE Conf. on Decision and Control (2024).

[76] S. Zhang, D. Gadginmath, F. Pasqualetti, "Predicting AI Agent Behavior through Approximation of the Perron-Frobenius Operator", Advances in Neural Information Processing Systems (2024).

[75] T. Guo, A. A. Al Makdah, P. Tesi, F. Pasqualetti, "A Data-driven Stability Test for LTI systems", IEEE Conf. on Decision and Control (2024).

[74] Y. Qin, A. El-Gazzar, D. S. Bassett, F. Pasqualetti, M. van Gerven, "Analytical Characterization of Epileptic Dynamics in a Bistable System", IEEE Conf. on Decision and Control (2024).

[73] Z. Du, S. Oymak, F. Pasqualetti, "Prediction for Dynamical Systems via Transfer Learning", IEEE Conf. on Decision and Control (2024).

[72] A. A. Al Makdah, F. Pasqualetti, "On the Sample Complexity of the Linear Quadratic Gaussian Regulator", IEEE Conf. on Decision and Control (2023).

[71] C. De Persis, D. Gadginmath, F. Pasqualetti, P. Tesi, "Data-Driven Feedback Linearization with Complete Dictionaries", IEEE Conf. on Decision and Control (2023).

[70] F. Celi, G. Baggio, F. Pasqualetti, "Data-driven Eigenstructure Assignment for Sparse Feedback Design", IEEE Conf. on Decision and Control (2023).

[69] K. Elamvazhuthi, X. Zhang, S. Oymak, F. Pasqualetti, "Learning on Manifolds: Universal Approximations Properties using Geometric Controllability Conditions of Neural ODEs", Learning for Dynamics & Control (2023).

[68] Y. Chen, A. M. Ospina, F. Pasqualetti, E. Dall'Anese, "Multi-Task System Identification of Similar Linear Time-Invariant Dynamical Systems", IEEE Conf. on Decision and Control (2023).

[67] Y. Qin, Y. Li, F. Pasqualetti, M. Fazel, S. Oymak, "Stochastic Contextual Bandits with Long Horizon Rewards", AAAI Conference on Artificial Intelligence (2023).

[66] A. A. Al Makdah, V. Krishnan, V. Katewa, F. Pasqualetti, "Behavioral Feedback for Optimal LQG Control", IEEE Conf. on Decision and Control, pp. 4660-4666 (2022). PDF

[65] A. M. Nobili, Y. Qin, C. A. Avizzano, D. S. Bassett, F. Pasqualetti, "Vibrational Stabilization of Complex Network Systems", American Control Conference (2022).

[64] D. Gadginmath, V. Krishnan, F. Pasqualetti, "Direct vs Indirect Methods for Behavior-based Attack Detection", IEEE Conf. on Decision and Control (2022).

[63] F. Celi, G. Baggio, F. Pasqualetti, "Closed-form Estimates of the LQR Gain From Finite Data", IEEE Conf. on Decision and Control, pp. 4016-4021 (2022).

[62] J. Swartz, F. Celi, F. Pasqualetti, A. von Meier, "Parameter Conditions to Prevent Voltage Oscillations Caused by LTC-Inverter Hunting on Power Distribution Grids", European Control Conference (2022).

[61] Y. Qin, D. S. Bassett, F. Pasqualetti, "Vibrational Control of Cluster Synchronization: Connections with Deep Brain Stimulation", IEEE Conf. on Decision and Control (2022). DOI PDF

[60] Y. Qin, D. S. Bassett, F. Pasqualetti, "Flexible Information Propagation in Oscillator Networks", IEEE Conf. on Decision and Control (2022).

[59] Y. Qin, T. Menara, S. Oymak, S. Ching, F. Pasqualetti, "Representation Learning for Context-Dependent Decision-Making", American Control Conference (2022).

[58] A. A. Al Makdah, V. Katewa, F. Pasqualetti, "Robust Adversarial Classification via Abstaining", IEEE Conf. on Decision and Control, pp. 763-768 (2021).

[57] F. Celi, G. Baggio, F. Pasqualetti, "Distributed Learning of Optimal Controls for Linear Systems", IEEE Conf. on Decision and Control, pp. 5764-5769 (2021).

[56] M. Boldrer, F. Riz, F. Pasqualetti, L. Palopoli, D. Fontanelli, "Time-Inverted Kuramoto Dynamics for $\kappa$-Clustered Circle Coverage", IEEE Conf. on Decision and Control, pp. 1205-1211 (2021).

[55] R. Anguluri, F. Pasqualetti, "Deflection-based Attack Detection for Network Systems", American Control Conference (2021).

[54] V. Katewa, F. Pasqualetti, "Optimal Dynamic Load-Altering Attacks Against Power Systems", American Control Conference (2021).

[53] V. Krishnan, F. Pasqualetti, "On Direct vs Indirect Data-Driven Predictive Control", IEEE Conf. on Decision and Control, pp. 736-741 (2021).

[52] R. Anguluri, A. A. Al Makdah, V. Katewa, F. Pasqualetti, "On the Robustness of Data-Driven Controllers for Linear Systems", Learning for Dynamics & Control, vol. 120, pp. 404-412 (2020). PDF

[51] A. A. Al Makdah, V. Katewa, F. Pasqualetti, "Accuracy Prevents Robustness in Perception-based Control", American Control Conference (2020). PDF

[50] G. Baggio, F. Pasqualetti, "Learning Minimum-Energy Controls from Heterogeneous Data", American Control Conference (2020). PDF

[49] G. Bianchin, F. Pasqualetti, "Routing Apps May Cause Oscillatory Congestions in Traffic Networks", IEEE Conf. on Decision and Control, pp. 253-260 (2020). PDF

[48] V. Krishnan, A. A. Al Makdah, F. Pasqualetti, "Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing", Advances in Neural Information Processing Systems, vol. 33, pp. 10924-10935 (2020). PDF

[47] G. Bianchin, F. Pasqualetti, S. Kundu, "Resilience of Traffic Networks with Partially Controlled Routing", American Control Conference (2019).

[46] G. Baggio, V. Katewa, F. Pasqualetti, S. Zampieri, "The Shannon Capacity of Linear Dynamical Networks", European Control Conference (2019).

[45] R. Anguluri, V. Katewa, F. Pasqualetti, "A Probabilistic Approach to Design Switching Attacks against Interconnected Systems", American Control Conference (2019).

[44] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "Exact and Approximate Stability Conditions for Cluster Synchronization of Kuramoto Oscillators", American Control Conference, pp. 205 - 210 (2019). PDF

[43] T. Menara, G. Baggio, D. S. Bassett, F. Pasqualetti, "A Framework to Control Functional Connectivity in the Human Brain", IEEE Conf. on Decision and Control, pp. 4697-4704 (2019). PDF

[42] A. Duz, S. Phillips, A. Fagiolini, R. G. Sanfelice, F. Pasqualetti, "Stealthy Attacks in Cloud-Connected (Linear-Impulsive) Systems", American Control Conference, pp. 146-152 (2018). PDF

[41] F. Pasqualetti, C. Favaretto, S. Zhao, S. Zampieri, "Fragility and Controllability Tradeoff in Complex Networks", American Control Conference, pp. 216-221 (2018). PDF

[40] G. Bianchin, F. Pasqualetti, "A Network Optimization Framework for the Analysis and Control of Traffic Dynamics and Intersection Signaling", IEEE Conf. on Decision and Control, pp. 1017-1022 (2018).

[39] R. Anguluri, V. Katewa, F. Pasqualetti, "Attack Detection in Stochastic Interconnected Systems: Centralized vs Decentralized Detectors", IEEE Conf. on Decision and Control, pp. 4541-4546 (2018).

[38] S. Zhao, F. Pasqualetti, "Controllability Degree of Directed Line Networks: Nodal Energy and Asymptotic Bounds", European Control Conference, pp. 1857-1862 (2018).

[37] T. Menara, V. Katewa, D. S. Bassett, F. Pasqualetti, "The Structured Controllability Radius of Symmetric (Brain) Networks", American Control Conference, pp. 2802-2807 (2018). PDF

[36] R. Anguluri, V. Katewa, F. Pasqualetti, "On the Role of Information Sharing in the Security of Interconnected Systems", Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1168-1173 (2018). PDF

[35] A. Ganlath, R. Anguluri, V. Katewa, F. Pasqualetti, "Secure Reference-Tracking with Resource-Constrained UAVs", Conference on Control Technology and Applications, pp. 1319 - 1325 (2017). PDF

[34] C. Favaretto, A. Cenedese, F. Pasqualetti, "Cluster Synchronization in Networks of Kuramoto Oscillators", IFAC World Congress, pp. 2433-2438 (2017). PDF

[33] C. Favaretto, D. S. Bassett, A. Cenedese, F. Pasqualetti, "Bode meets Kuramoto: Synchronized Clusters in Oscillatory Networks", American Control Conference, pp. 2378-5861 (2017). PDF

[32] E. Nozari, F. Pasqualetti, J. Cortés, "Time-invariant versus time-varying actuator scheduling in complex networks", American Control Conference, pp. 4995-5000 (2017). PDF

[31] L. Tiberi, C. Favaretto, M. Innocenti, D. S. Bassett, F. Pasqualetti, "Synchronization Patterns in Networks of Kuramoto Oscillators: A Geometric Approach for Analysis and Control", IEEE Conf. on Decision and Control, pp. 481-486 (2017). PDF

[30] S. Phillips, A. Duz, F. Pasqualetti, R. G. Sanfelice, "Hybrid Attack Monitor Design to Detect Recurrent Attacks in a Class of Cyber-Physical Systems", IEEE Conf. on Decision and Control, pp. 1368-1373 (2017).

[29] S. Zhao, F. Pasqualetti, "Discrete-Time Dynamical Networks with Diagonal Controllability Gramian", IFAC World Congress, pp. 8297-8302 (2017). PDF

[28] T. Menara, G. Bianchin, M. Innocenti, F. Pasqualetti, "On the Number of Strongly Structurally Controllable Networks", American Control Conference, pp. 340-345 (2017). PDF

[27] A. Gasparri, F. Pasqualetti, R. Santini, S. Panzieri, "Network Composition for Optimal Disturbance Rejection", American Control Conference, pp. 3764-3769 (2016). PDF

[26] G. Bianchin, P. Frasca, A. Gasparri, F. Pasqualetti, "The Observability Radius of Network Systems", American Control Conference, pp. 185-190 (2016). PDF

[25] R. Anguluri, R. Dhal, S. Roy, F. Pasqualetti, "Network Invariants for Optimal Input Detection", American Control Conference, pp. 3776-3781 (2016). PDF

[24] R. Anguluri, V. Gupta, F. Pasqualetti, "Periodic Coordinated Attacks Against Cyber-Physical Systems: Detectability and Performance Bounds", IEEE Conf. on Decision and Control, pp. 5079-5084 (2016). PDF

[23] Y. Zhao, F. Pasqualetti, J. Cortés, "Scheduling of Control Nodes for Improved Network Controllability", IEEE Conf. on Decision and Control, pp. 1859-1864 (2016). PDF

[22] C.-Z. Bai, F. Pasqualetti, V. Gupta, "Security in stochastic control systems: Fundamental limitations and performance bounds", American Control Conference, pp. 195-200 (2015). PDF

[21] F. Pasqualetti, F. Dörfler, F. Bullo, "A Divide-and-Conquer Approach to Distributed Attack Identification", IEEE Conf. on Decision and Control, pp. 5801-5807 (2015). PDF

[20] G. Bianchin, F. Pasqualetti, S. Zampieri, "The Role of Diameter in the Controllability of Complex Networks", IEEE Conf. on Decision and Control, pp. 980-985 (2015). PDF

[19] S. Amini, F. Pasqualetti, H. Mohsenian-Rad, "Detecting dynamic load altering attacks: A data-driven time-frequency analysis", smartgridcomm, pp. 503-508 (2015). PDF

[18] S. Amini, H. Mohsenian-Rad, F. Pasqualetti, "Dynamic Load Altering Attacks in Smart Grid", IEEE PES Conf. on Innovative Smart Grid Technologies (2015). DOI PDF

[17] F. Pasqualetti, S. Zampieri, F. Bullo, "Controllability metrics and algorithms for complex networks", American Control Conference (2014). PDF

[16] F. Pasqualetti, S. Zampieri, "On the Controllability of Isotropic and Anisotropic Networks", IEEE Conf. on Decision and Control, pp. 607-612 (2014). PDF

[15] F. Pasqualetti, D. Borra, F. Bullo, "Finite-Field Consensus", IEEE Conf. on Decision and Control, pp. 2629-2634 (2013). PDF

[14] D. Borra, F. Pasqualetti, F. Bullo, "Continuous graph partitioning for camera network surveillance", IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 228-233 (2012). PDF

[13] F. Pasqualetti, F. Dörfler, F. Bullo, "Cyber-physical security via geometric control: Distributed monitoring and malicious attacks", IEEE Conf. on Decision and Control, pp. 3418-3425 (2012). PDF

[12] F. Zanella, F. Pasqualetti, R. Carli, F. Bullo, "Simultaneous boundary partitioning and cameras synchronization for optimal video surveillance", IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 1-6 (2012). PDF

[11] M. Spindler, F. Pasqualetti, F. Bullo, "Distributed multi-camera synchronization for smart-intruder detection", American Control Conference (2012). PDF

[10] F. Dörfler, F. Pasqualetti, F. Bullo, "Distributed detection of cyber-physical attacks in power networks: A waveform relaxation approach", Allerton Conf. on Communications, Control and Computing (2011). PDF

[9] F. Pasqualetti, A. Bicchi, F. Bullo, "A graph-theoretical characterization of power network vulnerabilities", American Control Conference, pp. 3918-3923 (2011). PDF

[8] F. Pasqualetti, F. Dörfler, F. Bullo, "Cyber-physical attacks in power networks: Models, fundamental limitations and monitor design", IEEE Conf. on Decision and Control and European Control Conference (2011). PDF

[7] F. Pasqualetti, R. Carli, F. Bullo, "A distributed method for state estimation and false data detection in power networks", smartgridcomm (2011). PDF

[6] F. Pasqualetti, A. Franchi, F. Bullo, "On optimal cooperative patrolling", IEEE Conf. on Decision and Control, pp. 7153-7158 (2010). PDF

[5] F. Pasqualetti, R. Carli, A. Bicchi, F. Bullo, "Identifying cyber attacks via local model information", IEEE Conf. on Decision and Control, pp. 5961-5966 (2010). PDF

[4] F. Pasqualetti, R. Carli, A. Bicchi, F. Bullo, "Distributed estimation and detection under local information", IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 263-268 (2010). PDF

[3] F. Pasqualetti, A. Bicchi, F. Bullo, "On the security of linear consensus networks", IEEE Conf. on Decision and Control, pp. 4894-4901 (2009). PDF

[2] F. Pasqualetti, S. Martini, A. Bicchi, "Steering a Leader-Follower Team Via Linear Consensus", Hybrid Systems: Computation and Control, vol. 4981, pp. 642-645 (2008). PDF

[1] F. Pasqualetti, A. Bicchi, F. Bullo, "Distributed intrusion detection for secure consensus computations", IEEE Conf. on Decision and Control, pp. 5594-5599 (2007). PDF

[6] T. Menara, F. Pasqualetti, "Modeling, Analisys, and Control of Functional Brain Networks", Control for Societal-Scale Challenges: Road Map 2030 (2023).

[5] V. Katewa, C.-Z. Bai, V. Gupta, F. Pasqualetti, "Detection of Attacks in Cyber-Physical Systems: Theory and Applications", Safety, security, and privacy for cyber-physical systems (2020).

[4] D. S. Bassett, F. Pasqualetti, "Network-based approaches for understanding intrinsic control capacities of the human brain", The Cognitive Neurosciences VI (2019).

[3] F. Pasqualetti, "Controllability of network systems", Encyclopedia of Systems and Control (2019).

[2] V. Katewa, F. Pasqualetti, V. Gupta, "On the Role of Cooperation in Private Multi-agent Systems", Privacy in Dynamical Systems (2019).

[1] G. Bianchin, F. Pasqualetti, "Time-Delay Attacks in Network Systems", Cyber-Physical Systems Security, pp. 147 - 174 (2018).

News

July 2024

Ahmed Allibhoy will join our group as a postdoctoral researcher.

March 2024

Our Neural-Sync MURI proposal is selected for funding!

December 2023

Honored to receive the 2023 Antonio Ruberti Young Researcher Prize!

Principal Investigator

Fabio Pasqualetti

Fabio Pasqualetti, Ph.D.

Professor

Department of Mechanical Engineering
University of California at Riverside

Email: fabiopas@ucr.edu

Office: A309 Bourns Hall
Phone: (951) 827-2327

Research interests: Control theory, cyber-physical systems security, network systems, and brain networks.

Postdoctoral Researchers

Dr. Shiqi Zhang

Dr. Shiqi Zhang

Operator theory and AI agents

Email: shiqi.zhang@ucr.edu

Web: Google Scholar profile

Dr. Ahmed Allibhoy

Dr. Ahmed Allibhoy

Optimization and dynamical systems

Email: aallibho@ucr.edu

Web: ahmedallibhoy.github.io

Ph.D. Students

Darshan Gadginmath

Darshan Gadginmath

Stochastic and nonlinear data-driven control

Email: dgadg001@ucr.edu

Web: darshangm.github.io

Taosha Guo

Taosha Guo

Data-driven control and oscillator networks

Email: tguo023@ucr.edu

Web: www.taosha-guo.com

Shivanshu Tripathi

Shivanshu Tripathi

Distributed and online optimization and learning

Email: strip008@ucr.edu

Web: www.shivanshu-tripathi.com

Danial Zenoozi

Danial Zenoozi

Network neuroscience

Email: dzeno001@ucr.edu

Web: www.danial-zenoozi.com

Former Students and Postdocs

Former Postdoctoral Researchers

  • Karthik Elamvazhuthi (Postdoc, ME, UCR, 2022-2024) - Currently Postdoc at Los Alamos National Laboratory
  • Abed AlRahman Al Makdah (Postdoc, ME, UCR, 2024) - Currently Postdoc at Arizona State University (ECE)
  • Zhe Du (Postdoc, ME, UCR, 2023-2025)
  • Sarbendu Rakshit (Postdoc, ME, UCR, 2022-2023) - Currently Assistant Professor at IIITDM Kancheepuram
  • Yuzhen Qin (Postdoc, ME, UCR, 2020-2023) - Currently Assistant Professor at Radboud University, the Netherlands
  • Vishaal Krishnan (Postdoc, ME, UCR, 2020-2022) - Currently Postdoc in Applied Mathematics at the School of Engineering and Applied Sciences, Harvard University
  • Giacomo Baggio (Postdoc, ME, UCR, 2018-2019) - Currently Assistant Professor in the Department of Information Engineering, University of Padova
  • Vaibhav Katewa (Postdoc, ME, UCR, 2017-2019) - Currently Assistant Professor at Indian Institute of Science, Bangalore, India
  • Shiyu Zhao (Postdoc, ME, UCR, 2016) - Currently Assistant Professor in the School of Engineering, Westlake University, Hangzhou, China

Former Ph.D. Students

  • Federico Celi (Ph.D., ME, UCR, 2024) - Currently Research Scientist at NATO-CMRE
    "Closed-Form and Robust Expressions for the Data-Driven Control of Centralized and Distributed Systems"
  • Abed AlRahman Al Makdah (Ph.D., ECE, UCR, 2023) - Currently Postdoc at Arizona State University (ECE)
    "Learning Robust Models for Control: Fundamental Insights and Benchmarking Control Design"
  • Tommaso Menara (Ph.D., ME, UCR, 2021) - Currently VC Fellow at ARTIS Ventures
    "Reverse Engineering Synchronization of Brain Network Dynamics: Controllability Properties and Functional Patterns"
  • Gianluca Bianchin (Ph.D., ME, UCR, 2020) - Currently Assistant Professor in the ICTEAM Institute at the Université Catholique de Louvain, Belgium
    "Control-Theoretic Methods for the Robustness of Network Systems: Application to Traffic Control and Cyber-Physical Security"
  • Rajasekhar Anguluri (Ph.D., ME, UCR, 2019) - Currently Assistant Professor at University of Maryland, Baltimore County
    "Security of Interconnected Stochastic Dynamical Systems"

Former M.S. Students

  • Akila Ganlath (M.S., ME, UCR, 2019) - Currently at Toyota InfoTechnology Center, USA
  • Yin-Chen Liu (M.S., ME, UCR, 2017) - Currently at Toyota InfoTechnology Center, USA
    "RSSI-Aided Secure Trajectory Planning in the Presence of Spoofing"
  • Mikalie Lai (M.S., BIEN, UCR, 2015)
    "Estimation and Control in Brain Networks"
  • John Tran (M.S., ME, UCR, 2014)
    "Optimal Task Allocation in Crowdsourcing for Human Robot Interaction"

Open Positions

PhD and Postdocs openings in the areas of data-driven control, learning, and (brain) networks! Strong mathematical background needed. To apply, please send me your CV, transcripts (for PhD), and a brief statement of purpose.